
 1

Interfacing Python with Fortran

Bob Dowling

University Computing Service

http://www-uxsup.csx.cam.ac.uk/courses/PythonFortran/

 2

Outline of course

Python vs. Fortran

Fortran subroutine → Python function

Fortran 77

Numerical Python module

Efficiency

We start by comparing Python and Fortran, seeing them as complements
rather than opposites. Then we get to work converting a Fortran subroutine
into a module callable from Python.
We will work mainly in Fortran 95 but will review how to make it work with
Fortran 77.
There will be a brief discussion of the underlying Numerical Python module
and finally we will address a few more efficiency improvements we can
make.

 3

Python Fortran

Interpreted Compiled

General purpose Numerical

Dynamic Static

Python is a general purpose scripting language. It's excellent for gluing
components of a task together and for high-level programming. It's
dynamic nature (variables don't need to be declared up front; Python just
makes sure they have what it needs as they go along) makes it very easy
to use for quick programs. But it is an interpreted scripting language; it
cannot compete with languages compiled down to machine code for speed.
Fortran is such a language. It compiles to machine code and the design of
the language means it can be optimized very well. It is designed for
numerical work (Formula Translation) and, despite the ongoing criticisms
from the computing language snobs, has shown its worth by surviving and
adapting over the past fifty years since its creation in 1957 (the first Fortran
compiler). It is not, however, a general purpose programming language.

 4

Python Fortran

Best of both worlds!

But there is no reason why we cannot get the best of both worlds. Python
and Fortran should not be thought of as in opposition but as complements
for one another.
In this course we will write our high-level program in Python and call Fortran
subroutines for the numerically intensive elements.

 5

Set up the environment

> cd

> tar -xf /ux/Lessons/pyfort/lesson.tgz

> cd pyfort

> ls -l
…

We will start by setting up a directory in our home directories ready for this
course.
We are following the usual font conventions where
> represents the system prompt,
>>> represents the Python prompt,
command bold face represents what you type, and
response plain text represents the computer's response.
If you are following these notes in the class do this:
> cd
> tar -xzf /ux/Lessons/pyfort/lesson.tgz
> cd pyfort

If you are following them off-line then you can download the lesson file from
the web at
http://www-uxsup.csx.cam.ac.uk/courses/pyfort/lesson.tgz to a file
lesson.tgz in your home directory and unpack that instead.

 6

Running example: ∇2 on a grid

b
j,k

= a
j-1,k

+a
j+1,k

+a
j,k-1

+a
j,k+1

- 4a
j,k()/2

b[j][k] = 0.5*(a[j-1][k] + a[j+1][k] +
a[j][k-1] + a[j][k+1] ‒
4.0*a[j][k])

b(j,k) = 0.5*(a(j-1,k) + a(j+1,k) +
a(j,k-1) + a(j,k+1) ‒
4.0*a(j,k))

Python

Fortran

As our running example of a numerical routine we will take an easy case so
that we don't distract ourselves with numerical detail. We will calculate the
discrete “∇2” on a rectangular grid. The time taken to do this scales linearly
with the total size of the array being processed.

 7

program.py

Pure Python

import thing

b = thing.del2(a)
… #!/usr/bin/python

#!/usr/bin/python

def del2(array):
…

thing.py

…

We could do this with pure Python. We might imagine (and soon we will
see) one Python script (program.py, say) containing the high level logic of a
program and a second one (thing.py, say) containing a module of the
various numerical routines. The Python interpreter would run through
program.py, calling routines out of thing.py as needed.
Splitting the numerical functions out to a separate file is not contrived; it
makes perfect sense as you may want to use these routines in other Python
programs.

 8

Mixed Python and Fortran

program.py

import thing

b = thing.del2(a)
… …

#!/usr/bin/python

function del2(array)
…

thing.f95

…

Actually we will
use a subroutine

Our aim will be to replace the Python module with a set of Fortran files so
that the numerical routines can be written in Fortran and called from
Python as if it was just another module. In practice it won't be quite as
simple as our ideal shown in the slide, but it won't be too bad.
(The example shows a Fortran 95 program. We can use Fortran 77 or
Fortran 95 but in this course we will work in a contemporary Fortran.)

 9

subroutine del2
…

thing.f95

…
import thing
…

program.py

Tool: f2py

Python
import

Fortran source code

Shared library
CPU-specific
machine code

Python module

457f 464c …
0003 003e …
…

thing.so

Of course Fortran is a compiled language, so Python can't interpret directly
from the source code. Instead we take the Fortran file and compile it using
a special program called f2py which creates a dynamic library (“shared
object”) file which contains native machine code (which gives it the Fortran
speed) but whose functions have the interfaces of a Python module (which
lets us call it from Python).

 10

Python arrays: lists of lists
a

00
a

01
a

02

a
10

a
11

a
12

[[, ,] ,

[, ,]]

a
01 data[0][1]

data

a
00

a
01

a
02

a
10

a
11

a
12

a
00

a
01

a
02 data[0]

a
01

a
11

?

We're going to be throwing about arrays of numerical data in this course, so
we will start by reminding ourselves how Python normally handles arrays of
data. Suppose we have a two dimensional grid of data points.
Mathematically we would represent the data as a

jk
 where j marks the row

and k the column. In compliance with the Python numbering convention we
start counting at 0.
Python has lists. So our array is treated in Python as a list of rows. Each of
those rows is a list of the values in that row. This makes it easy to refer to a
row of data at a time, but harder to refer to a column.

 11

Fortran 95 arrays
a

00
a

01
a

02

a
10

a
11

a
12

, , , ,

a
01 data(0,1)

Fortran memory order

a
00

a
10

a
01

a
11

a
02

a
12

a
00

a
01

a
02 data(0,:)

a
01

a
11

,

data(:,1)

Fortran has contiguous blocks of memory to store arrays. The Fortran
compiler works out where in that block any particular reference is.
References to rows and columns etc. are converted into start positions, end
positions and “strides” ‒ the number of elements in memory to skip each
time. Fortran can refer to rows and columns with equal ease, therefore.
Note the order in which the array data is laid out in memory. The first index
varies fastest (i.e. every item).

 12

C arrays
a

00
a

01
a

02

a
10

a
11

a
12

, , , ,

a
01 data[0][1]

C memory order

a
00

a
01

a
02

a
10

a
11

a
12

a
00

a
01

a
02 data[0]

a
01

a
11

,

?
Same as
Python

C stores arrays in a way very similar to Python's list of lists. Each list is laid
down in memory one after the other. A row is identified as an offset into
this block of elements. There is no way to refer to a column. In this it has
exactly the same limitations as Python.
Note that the order of elements in a C array is different from the Fortran
order. In C the first index varies slowest.

 13

Python trick for creating arrays

>>> data = [x**2 for x in range(0, 5)]

>>> data
[0, 1, 4, 9, 16]

>>> data = [0 for x in range(0, 5)]

>>> data
[0, 0, 0, 0, 0]

Given that we are going to be working with arrays we should see a simple
Python trick for creating arrays simply. Python has a neat syntax for
creating lists of values by twisting the usual for loop inside a list.
It was designed to evaluate functions for values in lists:
>>> [x**2 for x in range(0,10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> ['m%sss' % x for x in ['a', 'e', 'i', 'o', 'u']]
['mass', 'mess', 'miss', 'moss', 'muss']
but there is no reason why it can't be used with constant values to initialise
a list of zeroes, say:
>>> [0.0 for x in range(0,10)]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

 14

Python trick for creating arrays

[[0.0 for col in range(0, 5)]

for row in range(0, 3)]

[[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0]]

inner loop: each row
has five columns

outer loop: there
are three rows

That list can be regarded as one row so we can repeat the trick to create a
list of those lists:
>>> [[0.0 for x in range(0,10)] for y in range(0,5)]
[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0]]

 15

Pure Python example — 1

> cd ~/pyfort/pure-python

> ls -l
-rw-r--r-- …

Main program

Module

program.py
thing.py -rw-r--r-- …

So let's get started with a pure Python example. In the directory ~/pyfort/
pure-python is a simple program that spits out some results which don't
interest us. What matters is that it has the two-way split of a program file
and a module file.

 16

Pure Python code
#!/usr/bin/python

import thing

m = 1000
n = 2000

data = [[…
for j in range(0,n)]
for i in range(0,m)]

fuzzed = thing.del2(data, m, n)

…

def del2(stuff, m, n):

fuzz = [[0.0
for k in range(0,n)]
for j in range(0,m)]

for j in range(1,m-1):
for k in range(1,n-1):

fuzz[j][k] = 0.5*(
stuff[j-1][k] +
stuff[j+1][k] +
stuff[j][k-1] +
stuff[j][k+1] -
4.0*stuff[j][k]
)

return fuzzprogram.py

thing.py

The code involved is not that complex for our simple example. The module
defines the function that calculates ∇2 and the program calls it.

 17

Pure Python example

> time python program.py
0.0
6.37510625
25.50010625
…
408.000106245
516.375106253

real 0m11.137s
user 0m10.965s
sys 0m0.112s

22 seconds

We can run the command and also time it.
When we come to work on the mixed Python/Fortran example, we will
compare the results we get with those generated here. We will also
compare the time taken.
For those of you who have not seen the “time” command before, it yields
three measures of how long a command took to run.
“Real time” is the elapsed, clock on the wall time taken. This includes the
time when your command wasn't running because the computer was
running somebody else's program. It's just the difference between end and
start times.
“User time” is the measure of how much system time went into running
your code.
“System time” is the amount of system time that was taken up by the core
operating system (the kernel) on behalf of your code.

 18

> cd ~/pyfort/f95-python

> ls -l
-rw-r--r-- …

Mixed language example — 1

Main program

Module

program.py
thing.f95 -rw-r--r-- …

Now let's look at an example of mixing Python and Fortran files. The
directory ~/pyfort/f95-python contains two files. The program.py file is
exactly the same as the file in the pure-python directory. But instead of a
thing.py Python file there is a thing.f95 Fortran source code file.

 19

Write the module in Fortran 95

subroutine del2(stuff, fuzz, m, n)
implicit none

integer, intent(in) :: m
integer, intent(in) :: n
double precision, intent(in), dimension(m,n) :: stuff
double precision, intent(out), dimension(m,n) :: fuzz

…

end subroutine del2
thing.f95

The thing.f95 file contains a subroutine with the same name as the
function in the thing.py file we saw before, del2(). It does not have
exactly the same arguments as the Python function and is a subroutine
rather than a function.
Note that we have specified the properties of the four arguments as tightly
as we can in their declarations. In particular, we have specified which
parameters are to be read from and which to be written into. This will
matter when we come to represent this Fortran subroutine as a Python
function.
Also note that we do not create the fuzz array. In the Fortran we assume
that it has already been created and is being passed into the subroutine.

 20

>

…

Mixed language example — 2

The new command

-c --fcompiler=gnu95
-m thing thing.f95
f2py

> ls -l
-rw-r--r-- … program.py

thing.f95-rw-r--r-- …
thing.so-rwxr-xr-x … Python module

The first thing we must do is to compile the Fortran source code to machine
code. We do not use the Fortran compiler directly. Instead we use a
program called “f2py”. It requires a stack of options to do what we want it
to do and we will examine those very soon. For the time being we will issue
the command shown in the slide and see that it creates one additional file,
thing.so. In machine code library terms this is a “shared object”, also
known as a “dynamic library”. It is a block of machine code defining some
functions that multiple programs can use.
It does not, however, simply contain the Fortran subroutine del2() so that
it could be called from another Fortran program. Instead, it contains a
number of functions which correspond to those needed by a Python
program. This file is a machine code representation of a Python module
called “thing” which can be imported into a Python program.

 21

Mixed language example — 3

> time python

0.0
6.37510625
25.50010625
…

program.py Exactly the
same program

Same output

real 0m7.804s
user 0m6.856s
sys 0m0.280s

7 seconds

So now we can run our program again but this time we use a machine code
module rather than a Python module.
It gives exactly the same results and is faster. (To be honest, these timing
tests are way too short to give seriously meaningful data, but they are
sufficient to make the point.)

 22

A closer look at the f2py command

f2py

-c

--fcompiler='gnu95'

-m thing

thing.f95

compile

select Fortran compiler

name of Python module

Fortran source file(s)

f2py is the name of the program, meaning “Fortran to Python”.
It is capable of more than just creation of the module so we explicitly tell it
to compile with the “-c” option.
The exact options and settings required depend on the Fortran compiler
being used. The option “--fcompiler” allows us to specify exactly which
compiler and set of options to use. This does mean that f2py can only be
used with compilers it supports but the list is long. See the appendix at the
end of the notes for a full list (as of version 2.4422 of f2py). Alternatively,
the command “f2py -c --help-fcompiler” will list all the compiler keys.
The “-m” option specifies the name of the module being created. It does not
need to match the name of the Fortran source code file.
Finally we list the Fortran source code files we need to compile. In this case
there is only one but it is possible to quote multiple Fortran files on the
command line.

 23

A closer look at the module

>>> print thing.__doc__
This module 'thing' is auto-generated
with f2py.
Functions:

fuzz= del2 (stuff, m=shape(array,0),
n=shape(array,1))

.

>>> import thing

Now let's look at the module itself. We will launch Python interactively and
import the module by hand.
The module's __doc__ string contains the interface definitions for the
functions within the module, in our case just del2(). There are many things
to observe in this definition and we will address them now.

 24

A closer look at the module

>>> print thing.__doc__
This module 'thing' is auto-generated
with f2py.
Functions:

fuzz= del2 (stuff, m=shape(stuff,0),
n=shape(stuff,1))

.

Name of
function

intent(out)
argument
becomes a
return value

dimension arguments
get default values

The first thing we notice is that we have a module function with the same
name as the Fortran subroutine. Big deal.
More interestingly, we note that while the subroutine had a parameter fuzz
which was declared with intent(out) the Python function has that
parameter as its return value. If multiple parameters had been declared
with intent(out) then a tuple of them would have been the function's
return value.
Better still, the two dimension parameters now have (the correct) default
values established.
We will see the “shape()” function a bit later but in a nut-shell, the shape
of an array along its 0th axis is the number of rows it has and its shape
along its 1st axis is its number of columns.

 25

>>> print thing.

del2

(m,n)
)'d'

Return objects:

 m :=
 n :=

Optional arguments:

Required arguments:

input int
input int

shape(stuff,0)
shape(stuff,1)

 with bounds (m,n)
)'d'array(rank-2input:stuff

with bounds
array(rank-2:fuzz

)[m,n],stuff(del2=fuzz
Function signature- :

.__doc__del2
Description of
what goes in
and out

As well as getting a summary of the functions in the module from the
module's __doc__ strings, we can get detail from the function's.
The “signature” is a posh way to describe everything about the function
that you need to know from the outside, while telling you nothing about
what it actually does on the inside. So the signature describes what all the
arguments to the function are and what type they have to be. It also
describes the types of the output without describing what they will contain.
We will go through the signature created for our new del2() function one
chunk at a time.

 26

del2

(m,n)
)'d'

Return objects:

 m :=
 n :=

Optional arguments:

Required arguments:

input int
input int

shape(stuff,0)
shape(stuff,1)

 with bounds (m,n)
)'d'array(rank-2input:stuff

with bounds
array(rank-2:fuzz

)[m,n],stuff(del2=fuzz
Function signature- :

output
required

optional

The first line is a slightly marked up example of how the function is used
from Python.
We see that the function produces a single output and takes one mandatory
input. The square brackets indicate optional arguments. We still don't know
what the arguments (or returned value) are yet and that's what comes
next.
The arguments are given names for consistency throughout the signature
definition. These name are taken from our function definition but of course
there's no constraint on what names you choose to use.

 27

del2

(m,n)
)'d'

Return objects:

 m :=
 n :=

Optional arguments:
input int
input int

shape(stuff,0)
shape(stuff,1)

 with bounds (m,n)
)'d'rank-2 arrayinput:stuff

with bounds
array(rank-2:fuzz

)[m,n],stuff(del2=fuzz
Function signature- :

argument
name

Required arguments:

input
only

two
axes

double
precision

dimensions

(

We start with the required argument.
It is described as being an “input” argument. This isn't as self-evident as it
appears. Of course it's an input argument, but it's an input-only argument.
The function will not modify any part of the object being passed in.
It is described as a “rank-2 array” which means it has two axes or
dimensions (rows and columns, say). In conjunction with its input-only
status this tells us that no element of the array will be modified.
Next we see what it is an array of. (Real numbers, integers, complex
numbers,…) The doc strings says it is an array of 'd'. This is code for
“double precision”. The set of data types will be detailed more closely in a
later slide, but for now we note that this is an array of double precision
numbers.
Finally, we get to see the sizes of the two axes. There are m rows and n
columns. Of course, we don't know what m and n are yet; they're optional
arguments. However, this identifies the two letters that will be used
elsewhere to describe sizes of arrays in this signature.

 28

del2

(m,n)
)'d'

Return objects:

 m :=
 n :=

Optional arguments:

Required arguments:

input
input

shape(stuff,0)
shape(stuff,1)

 with bounds (m,n)
)'d'array(rank-2input:stuff

with bounds
array(rank-2:fuzz

)[m,n],stuff(del2=fuzz
Function signature- :

shape function:
size along an axis

int
int

values will
not be
changed

integers

Next we see the optional arguments. Here again we are told that the values
are input-only and that they are integers. But most importantly we see
what their default values are. We will see the shape() function later, but for
now we just need to know that shape(stuff,0) is the size of the array
along “axis 0”, that is the number of rows. Similarly shape(stuff, 1) is
the size along “axis 1”, the number of columns.
Given that these “default” values are the only ones we will ever use, we
might ask ourselves why the arguments exist at all. We will see how to
eliminate them, forcing the use of the shape() values, in a few slides' time.

 29

del2

(m,n)
)'d'

Return objects:

 m :=
 n :=

Optional arguments:

Required arguments:

input int
input int

shape(stuff,0)
shape(stuff,1)

 with bounds (m,n)
)'d'array(rank-2input:stuff

with bounds
array(rank-2:fuzz

)[m,n],stuff(del2=fuzz
Function signature- :

argument
name in
Fortran

two
axes

double
precision

dimensions

Finally we see the information about the returned value(s) of the function.
Here we see the same definition of the type and shape of the array as we
saw for the input array. This time, of course, it is not described as an
“input” parameter. Note that by specifying the bounds (m,n) the signature
text indicates that the output array is the same size as the input.

 30

>>> input = [[float(j**2 + k**2)
for j in range(0,3)]
for k in range(0,4)]

>>> input
[[0.0, 1.0, 4.0], [1.0, 2.0, 5.0], [4.0,
5.0, 8.0], [9.0, 10.0, 13.0]]

A standard
list of lists.

Now let's look at what's happening a little more closely.
We'll create an array of values to have something to throw at the function.
Note that this is just a standard Python list of lists.
We can create the output array by calling the del2() function out of the
thing module but if we print it out we see that it presents itself rather
differently compared to the input array. Whatever it was we got from the
del2() function, it wasn't a simple list of lists.
Note also that we are exploiting the default values set up for us by the
module. We could have run
>>> output = thing.del2(input, 4, 3)

with the same result.

 31

>>> output = thing.del2(input)

output>>>

array([[0., 0., 0.],
[0., 2., 0.],
[0., 2., 0.],
[0., 0., 0.]])

Something
else!

So what do we get out of the function? It's not another Pythonic list of lists.

 32

>>> type(output)
<type 'numpy. '>ndarray

“numpy”: The
Numerical Python
module

“ndarray”: An
n-dimensional array

“Treat it like a list and it behaves like a list.”

You will recall that Python has a built-in type() function which returns the
type of an object. We can examine the type of the input and output to
confirm that they are, indeed, different.
>>> type(input)
<type 'list'>
>>> type(output)
<type 'numpy.ndarray'>

The numpy module (which we haven't imported explicitly yet but will soon)
is the Numerical Python module. Among other things it provides a type of
object for storing n-dimensional arrays. It is one of these objects that we
have been returned.
But we were able to treat it as if it was just a standard Python “list of lists”
array. The numpy.ndarray is one of those Python objects designed to
behave like a list if you treat it like a list. That's why it worked
transparently.
We will return to look at NumPy itself in a few slides' time.

 33

>>> output[1][1]

“Treat it like a list and it behaves like a list.”

2.0

>>> len(output)

4

>>> len(output[0])

3

>>> output[1,1]
2.0

The “Fortran way”

The “Python way”

This object can be addressed in the traditional Fortran style of a set of
indices separated by commas. But while this new type of object is not a
normal Python array, we are able to treat it as if it was just a standard
Python “list of lists” array. The numpy.ndarray is one of those Python
objects designed to behave like a list if you treat it like a list. That's why it
worked transparently.

 34

del2

(m,n)
)'d'

Return objects:

 m :=
 n :=

Optional arguments:

Required arguments:

input
input

shape(stuff,0)
shape(stuff,1)

 with bounds (m,n)
)'d'array(rank-2input:stuff

with bounds
array(rank-2:fuzz

)[m,n],stuff(del2=fuzz
Function signature- :

int
int

Why have them at all?

Now we will look at cleaning up the interface between Fortran and Python.
We currently have some optional arguments whose values, if used, must
match those of the array. Why should we have them at all?
Next we will examine how to change the automatically provided function
signatures given to us by f2py.
We will also be able to use this technique to get Fortran 77 programs to
work for us.

 35

Fortran
source

thing.f95

Python
module

thing.so

f2py -c

Signature
file

thing.pyf

Edited
signature
file
thing.pyf

Edit

f2py -h

f2py -c

At the moment we simply convert directly from the Fortran 95 file to the
compiled Python module.
What we are going to do is to take a more circuitous route, getting to see
and modify a file which only appears internally when we go direct. This is
called the “signature file” and determines the interfaces of the functions in
the module created.
We will start by not changing the signature at all, to make sure that we can
recreate what we already have.

 36

> f2py

Fortran
source

thing.f95

Signature
file

thing.pyff2py -h

thing.f95-m thing-h thing.pyf

Build this
signature file

For this
module

From this
Fortran

Initially we take our f2py command and pass it options to tell it to build a
signature file (-h thing.pyf) rather than to compile a module (-c).
Because we aren't compiling anything we don't need to tell it our compiler
(--fcompiler=…). Apart from that the command is the same as usual:
> f2py -h thing.pyf -m thing thing.f95
We get a file called “thing.pyf” created. This is the signature file.

 37

The signature file

integer
check(shape(stuff,0)==m)
depend(stuff)

…

…
, ,intent(in)optional

,
m=shape(stuff,0)::

Type Optional Input only

Required
value

Default
value

We do not need to understand the syntax of the signature file in any depth.
We can follow our noses and achieve enough. We will focus on the lines
corresponding to the arguments of the subroutine.
The signature file in its entirety should look something like this. Note that it
uses an exclamation mark, “!”, to introduce comments.

python module thing ! in
 interface ! in :thing
 subroutine del2(array,fuzz,m,n) ! in :thing:thing.f95
 double precision dimension(m,n), intent(in) :: array
 double precision dimension(m,n), intent(out),
depend(m,n) :: fuzz
 integer optional, intent(in),
check(shape(array,0)==m), depend(array) :: m=shape(array,0)
 integer optional, intent(in),
check(shape(array,1)==n), depend(array) :: n=shape(array,1)
 end subroutine del2
 end interface
end python module thing

 38

Python
module

thing.so

Original
signature
file
thing.pyff2py -c

> f2py -c
thing.pyf

-m thing--fcompiler=gnu95-c
thing.f95

Compile
this module

with this
signature from this

Fortran.

Now we will complete the compilation process, using the signature file. Of
course, this won't gain us anything because we haven't changed that file.
> f2py -c --fcompiler=gnu95 -m thing thing.pyf thing.f95
This produces a shared object Python module which is essentially identical
to the one we got from going direct. (They're not byte-for-byte identical but
their functions are the same.)

 39

>>> f2py -c
thing.pyf

-m thing--fcompiler=gnu95-c
thing.f95

The only change to
what we did before

The command is identical to our previous all-in-one compilation command
except that the source code files are preceded by the (potentially edited)
signature file.

 40

[m,n]

>>> import thing

>>> print thing.del2.__doc__

del2 - Function signature:
 fuzz = del2(array,

Optional
arguments

…

)

We can check the function signatures to see they are totally unchanged.

 41

Editing the signature file

integer
check(shape(stuff,0)==m)
depend(stuff)

…

…
, ,intent(in)optional

,
m=shape(stuff,0)::

integer
check(shape(stuff,1)==n)
depend(stuff)

, ,intent(in)optional
,

n=shape(stuff,1)::

intent(in) intent(in,)hide

So let's look at the signature file. We do not need to know its entire syntax,
just a couple of simple tricks.
We will concentrate on the lines that relate to the two optional arguments,
m and n and, in particular, the “intent()” statement. This is derived
directly from the Fortran source. In a Python signature file, however, we can
add intentions that are not legal Fortran. We adjust the text “intent(in)” to
“intent(in,hide)”. This is not legal Fortran ― there is no hide option ― but is
legal in a Python signature file.

 42

Editing the signature file

integer
check(shape(stuff,0)==m)
depend(stuff)

…

…
, ,intent(in,hide)optional

,
m=shape(stuff,0)::

integer
check(shape(stuff,1)==n)
depend(stuff)

, ,intent(in,hide)optional
,

n=shape(stuff,1)::

intent(in) intent(in,)hide

Not legal Fortran

python module thing ! in
 interface ! in :thing
 subroutine del2(array,fuzz,m,n) ! in :thing:thing.f95
 double precision dimension(m,n), intent(in) :: array
 double precision dimension(m,n), intent(out),
depend(m,n) :: fuzz
 integer optional, intent(in,hide),
check(shape(array,0)==m), depend(array) :: m=shape(array,0)
 integer optional, intent(in,hide),
check(shape(array,1)==n), depend(array) :: n=shape(array,1)
 end subroutine del2
 end interface
end python module thing

 43

Using the signature file

Python
module

thing.so

Edited
signature
file
thing.pyff2py -c

>>> f2py -c
thing.pyf

-m thing--fcompiler=gnu95-c
thing.f95

“intent(in,hide)”

Now we will rebuild the Python module using our modified signature file.

 44

The new del2() function

>>> import thing

>>> print thing.del2.__doc__
del2 - Function signature:

No optional
arguments

 fuzz = del2(stuff)
…

And now we see a new function signature from the Python module with no
mention of the optional arguments and a far more “Pythonic” style of
interface.
Is it worth doing?
If you are creating a “quickie” Python interface for just your own quick use
then almost certainly not.
If you are creating a module for use and re-use, possibly by other people
who know less about the Fortran than you do, then almost certainly it is
worth it.

 45

A Fortran 77 interlude

> cd ...

f2py -c -m thing thing.f>

There is one other reason for introducing signature files. They are one route
towards integrating Fortran 77 to Python.
If you aren't interested in Fortran 77 you can stop listening for a bit. First
we change directory to …
Once there we build a Python module just as we have in the past.

 46

A Fortran 77 interlude

 SUBROUTINE DEL2(STUFF, FUZZ, M, N)
 IMPLICIT NONE
…

del2 - Function signature:
del2(stuff,fuzz,[m,n])

Required arguments:
stuff : input rank-2 array('d')
with bounds (m,n)
fuzz :
with bounds (m,n)
…

rank-2 array('d')input

Wrong!

We observe that the function is not what we want. The Python function has
been created with what was out return value as a function argument. We
need to know how to adjust this.

 47

 DOUBLE PRECISION FUZZ
 DIMENSION FUZZ(M,N)

Fortran 77

double precision dimension(m,n),
depend(m,n) :: fuzz

Signature
file

double precision dimension(m,n),
depend(m,n),intent(out) :: fuzz

Edited to
add intent

457f 464c …
0003 003e …

Module

Instead of moving directly from the Fortran 77 source to the Python module
we will create the signature file first. Once we have it we will edit it to
specify that the Fortran argument is intended for outgoing values only.
Then we use the edited signature file to generate the final module.

 48

457f 464c …
0003 003e …

del2 - Function signature:
fuzz = del2(stuff)

Required arguments:
stuff : input rank-2 array('d')
with bounds (m,n)

Return objects:
fuzz : rank-2 array('d')
with bounds (m,n)

Correct!

And now we find that the function has the signature we wanted.
If we had wanted to we could have added intent(in,hide) for m and n
too.

 49

The NumPy module

http://www.scipy.org/NumPy/

Part of the Scientific Python suite of modules.

Provides the fundamental n-dimensional arrays.

(And some other stuff…)

http://www.scipy.org/Topical_Software/

And now back to NumPy.
On-line documentation about the module itself can be found at
http://www.scipy.org/NumPy/ but the documentation on the f2py tool is
somewhat lacking at present.
It lies at the core of a set of modules known as “Scientific Python”. There
are far more modules in that set than we can cover in one afternoon, and
you should visit their web site for current information. A subject-oriented
guide to the set of modules can be found at
http://www.scipy.org/Topical_Software and should be your starting
place.
In this afternoon's course we will focus on the aspects of numpy relevant to
f2py.

 50

call crunch(

not
converted

[[1.0,2.0],
 [3.0,4.0]]

output = crunch(input)

array([[1.0,2.0],
 [3.0,4.0]])

output, input , 2, 2)

array([[1.0,3.0],
 [2.0,4.0]])

array([[1.0,3.0],
 [2.0,4.0]])

numpy.ndarray list of lists

intent(in)intent(out)

converted

Python

Fortran

Let's work out how we got from the list of lists we started with for our array
and ended up with the NumPy array our function gave us back.
When we fed our list of lists to our function the module created by f2py
automatically converted it to a NumPy array. People who require peak
performance should notice that that's an operation that will be run every
time we feed in a pure Python list of lists, as part of a loop say. If we create
a NumPy array in Python (we'll see how to later) and pass it in there's no
conversion, obviously.
Recall that we wrote the procedure in Fortran as a subroutine, not a
function. It gets passed the array to fill in. Again there is scope for
inefficiency if it has to do this time and time again for something which
could be the same object.

 51
output, input , 2, 2

list
list

list

1.0 2.0

3.0 4.0

numpy.ndarray

1.0 2.0 3.0 4.0

Dimensions,
types, etc.

)crunch(

numpy.ndarray

1.0 3.0 2.0 4.0

Dimensions,
types, etc.

So how does it work?
NumPy arrays are genuine Python objects that store their data internally in
one of the layouts as C or Fortran uses. (We'll see how to select which in a
moment.) When used from Python the whole object is addressed. When
used from C or Fortran the memory address of just that inner data-bearing
core is passed to the system.
So when we fed our list of lists to our function the module created by f2py
automatically converted it to a NumPy array. This has Fortran-addressable
data within it alongside the extra data that Python uses.
Because we wrote the procedure in Fortran as a subroutine, not a function,
it gets passed the already-existing array to fill in. That array is created by
the f2py wrappings as another NumPy array and the address of the Fortran-
style data layout is passed to the Fortran we wrote.
When the output object is passed back to the Python the Python system
picks up the “wrapping” Python object.

 52

crunch(da)

array([[1.0,2.0],
 [3.0,4.0]])

da , 2, 3)call crunch(

array([[1.0,3.0],
 [2.0,4.0]])

array([[1.0,3.0],
 [2.0,4.0]])

array([[1.0,2.0],
 [3.0,4.0]])

ta

ta

intent(inout)

How to
create
these?

Python

Fortran

We do need to know how to create NumPy arrays within Python; we can't
just rely on our f2py-created modules to do magic.
Suppose we were using a Fortran subroutine that manipulated a data array
in place. We have to be able to pass it in in the right form already.

 53

NumPy n-dimensional arrays

>>> import numpy

>>> x = [[1.0,2.0,3.0], [4.0,5.0,6.0]]

>>> x

[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]

So let's look at the NumPy module itself.
We'll start by importing the num,py module. Note that the module name is
all lower case.
For our data we will use a fairly trivial 2×3 array represented in Python
style as a list of two lists of three elements.

 54

NumPy n-dimensional arrays

>>> y = numpy.array(x)

>>> y

n.b. not “ndarray”

array([[1., 2., 3.],
 [4., 5., 6.]])

>>> type(y)

<type 'numpy.ndarray'>

Now we create a NumPy array.
The numpy module has a function array() which creates a numpy.ndarray
object from a Python list. Note that the function is called just “array()” and
not “ndarray()”. (In object-oriented speak this is a factory function, not a
constructor.)

 55

Good habit

>>> y = numpy.array(x,

>>> y

array([[1., 2., 3.],
 [4., 5., 6.]])

>>> type(y)

<type 'numpy.ndarray'>

)order='Fortran'

Fortran style
memory layout

Internally data can be ordered either in C order or in Fortran order. While
the arrays automatically created by f2py's modules are all in Fortran order
that is not the default for numpy.array(). It is a good habit to get into to
always add the optional argument order='Fortran' to override this default.

 56

>>> y = numpy.array(x,)order='Fortran'

>>> y.flags

C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

Each NumPy array comes with some flags expressing various of its
properties. For the time being we are only interested in two of them.
C_CONTIGUOUS says whether or the data is internally laid out in the C order
suitable for passing to a C function.
F_CONTIGUOUS says whether or the data is internally laid out in the Fortran
order suitable for passing to a Fortran subroutine or function.

 57

>>> z = numpy.array(x,)order='C'

>>> z.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

>>> z = numpy.array(x)

Default

If we explicitly say that C ordering is to be used the two contiguity flags are
switched round. Note that this is the default. Specifying the order is a a
good habit to get into. There is no way to specify a different default.

 58

NumPy n-dimensional arrays

>>> z = numpy.ndarray (2,3)(

Single argument Tuple of
dimensions>>> z

array([[
 [

],
]])

0.00e+00, 3.12e-37, 2.33e-30
5.39e-37, 1.17e+79, 0.00e+00

Random
content

Type matches
Python “float”

,
order='Fortran')

There is a constructor for NumPy arrays called numpy.ndarray().
It's first argument is a tuple of dimensions. Recall that a “single” is best
written “(2,)”. It can also be passed the ordering argument.
Note that in true Fortran or C style (and unlike Python) it does not initialise
its data so you get random muck in your object.

 59

NumPy n-dimensional arrays

>>> z = numpy.ndarray ((,

>>> z

array([[
 [

],
]])

0.00e+00, 3.12e-37, 2.33e-30
5.39e-37, 1.17e+79, 0.00e+00

3),2

rows columns

“axis 0” “axis 1”

2
3

order='Fortran')

We will take the excuse of this tuple to look at the dimensions of a NumPy
array.
In the two-dimensional case the first number is the number of rows and the
second the number of columns. Because we have to be able to generalise
to an arbitrary number of dimensions NumPy avoids these two words and
instead calls them “axis 0” and “axis 1” of the array. Axis 0 corresponds to
the first index (remember that Python counts from zero!). Axis 1
corresponds to the second.

 60

NumPy n-dimensional arrays

>>> z.fill(

>>> z

array([[
 [

],
]])

0., 0., 0.
0., 0., 0.

)0.0

If you want your data initialised then the “fill()” method might be useful.
This is passed one value of the same base type as the array and sets every
element to that value.

 61

NumPy n-dimensional arrays

>>> a = numpy.ndarray (2,)(

)dtype

,

a 1-tuple

>>> a

>>> a

array([

'float'=

])3.22e+54,2.33e+45

order='Fortran',

But how do I specify that I want an array of floating point numbers (the
default) as opposed to integers or complex numbers (also available)?
There is another optional argument, dtype (“data type”), which specifies
the type. This can take a number of values but we'll restrict our attention to
the most useful.
dtype='float' gets Fortran double precision floating point numbers.

 62

NumPy n-dimensional arrays

>>> b = numpy.ndarray (2,)(

)dtype

,>>>

>>> b

array([

'int'=

])12558876,47034678

order='Fortran',

dtype='int' gets integers.

 63

NumPy n-dimensional arrays

>>> c = numpy.ndarray (2,)(

)dtype

,>>>

>>> c

array([

'complex'=

])4.715e-09 +6.879e-31j

,0.000e+00 -3.133e-94j

order='Fortran',

dtype='complex' gets double precision complex numbers.

 64

NumPy n-dimensional arrays

>>>>>> a.dtype

dtype('float64')

>>>>>> b.dtype

dtype('int64')

>>>>>> c.dtype

dtype('complex128')

We can ask for the data back again with the dtype attribute. This lets us
see the detailed type information corresponding to the simple aliases we
used to create the arrays.

 65

Python NumPy gfortran

int32 integer(kind=4)

int64 integer(kind=8)int

int16 integer(kind=2)

int8 integer(kind=1)

If you really want to see the grubby details here they are for integers…

 66

Python NumPy gfortran

float32 real(kind=4)

float64 real(kind=8)float

“double precision”

complex64 complex(kind=4)

complex128 complex(kind=8)complex

…and for floating point numbers.

 67

Many NumPy module functions

>>> import numpy

>>> print numpy.__doc__

…

>>> print numpy.core.__doc__

…

The NumPy module has a lot of functionality. Without touching the Fortran
integration it could easily consume a course itself.

 68

input
Python
“array”

input
NumPy
array

output
NumPy
array

del2(
output
NumPy
array

array,fuzz,m,n)

convert

create

Python Fortran

Finally, we will consider a small efficiency improvement that we can make.
Our greatest gain, of course, is that the core numerical routine is written in
Fortran and compiled to machine code rather than being written in Python
and interpreted.
The input Python list of lists gets automatically converted to a NumPy array.
This takes time. Similarly the output NumPy array has to be created to be
passed to the Fortran subroutine.

 69

input
Python
“array”

input
NumPy
array

output
NumPy
array

del2(
output
NumPy
array

other stuff

array,fuzz,m,n)

convert
×N

create×N

run×N

These are just one-off conversions and creations. However, they can mount
up in any looping environment where the f2py-created module function is
used repeatedly.

 70

input
NumPy
array

input
NumPy
array

output
NumPy
array

del2(
output
NumPy
array

other stuff

array,fuzz,m,n)

create×1

no
conversion

create×N

run×N

First, we can eliminate the conversion of a Python list of lists to a NumPy
array if we can reuse the same array in each iteration of the loop. We still
have to set its values each loop but we are spared the actual creation of the
object.

 71

…

…

data=[[…]]

input = numpy.array(
data,
order='Fortran'
)

Set up your
data in Python

Convert it to a
NumPy array

We can create a Python list of lists outside the loop and convert it to a
NumPy array outside the loop. Any changes to the values we want to make
inside the loop have to be made to the NumPy array. So this is a rather silly
way to create a NumPy array.

 72

…

…

…

input = numpy.ndarray(
shape=(m,n),
dtype='d',
order='Fortran'
)

input[i,j] = …

Create a
NumPy array

Define its
content

Better is to create the NumPy array directly and then set its values.
Recall that the numpy.array() function converts Python lists into NumPy
arrays. The numpy.ndarry() function creates NumPy arrays directly. (In
object-oriented speak it's a “factory method”.)

 73

input
NumPy
array

input
NumPy
array

output
NumPy
array

del2(
output
NumPy
array

other stuff

array,fuzz,m,n)

create×1

create×1

run×N

no
conversion

reuse

Similarly, if we can provide the embedded Fortran subroutine with the same
NumPy array each time and just have the Fortran subroutine overwrite its
previous values we are saved the effort of creating it each time too.

 74

…
output = numpy.ndarray(

)
…

shape=input.shape,
dtype=input.dtype,
order='Fortran',

“same as
the input”

So as well as creating the input NumPy array, we create the output one too.
Note how we can make sure it matches the input array exactly.

 75

0

200

400

600

time simple
Python

efficient
Python

simple
Fortran

efficient
Fortran

So is it worth it?
Here are some timing tests for a 3,000×2,000 grid, each performed a
hundred times. The absolute values are meaningless but the ratios are
revealing.
Again, the major saving is in converting the core subroutine from Python to
Fortran. We do get further savings from not recreating objects
unnecessarily, in both the pure Python and mixed Python/Fortran worlds.
But converting from Python to Fortran gains us a factor of 10 speed
improvement. Converting to efficient Fortran gains us a factor of 20.
Not bad for an afternoon's work.

f2py supported compilers

The complete set of Fortran compilers known to your instance of f2py can be ascertained with the
command “f2py -c --help-fcompiler”.

The complete set for version 2.4422 of f2py is given here. Compilers are identified by key with
the options “f2py -c --fcompiler=key …”.

Key Description of compiler
absoft Absoft Corporation Fortran Compiler
compaq Compaq Fortran Compiler
g95 G95 Fortran Compiler (g95)
gnu95 GNU Fortran 95 compiler (gfortran, the successor to g95)
gnu GNU Fortran 77 compiler (g77)
hpux HP Fortran 90 Compiler
ibm IBM XL Fortran Compiler
intel Intel Fortran Compiler for 32-bit apps
intele Intel Fortran Compiler for Itanium applications
intelem Intel Fortran Compiler for EM64T-based applications
intelev Intel Visual Fortran Compiler for Itanium applications
intelv Intel Visual Fortran Compiler for 32-bit applications
lahey Lahey/Fujitsu Fortran 95 Compiler
mips MIPSpro Fortran Compiler
nag NAGWare Fortran 95 Compiler
pg Portland Group Fortran Compiler
sun Sun or Forte Fortran 95 Compiler
vast Pacific-Sierra Research Fortran 90 Compiler

