Homework 1

Due date: Feb 16, 2021, 11:55PM.
Bibliography: Trefethen \& Bau, Lectures 1-8. Problems 1-4 $=1$ pt each, Problem $5=4$ points.

1. Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$. Compute the SVDs of the following matrices in terms of $\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V}$:
a) $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}$
b) $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}$
c) $\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}$
d) $\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}$
2. Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$. Define the Moore-Penrose pseduo-inverse $\boldsymbol{A}^{+}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}$. Show that

$$
\boldsymbol{A}^{+}=\arg \inf _{\boldsymbol{X} \in \mathbb{R}^{m \times n}}\|\boldsymbol{A} \boldsymbol{X}-\boldsymbol{I}\|_{F} .
$$

What is the value of the infinum?
3. Prove:
a) $\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{A}$
b) $\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{A}^{+}$
c) $\boldsymbol{A}^{+} \boldsymbol{A}=\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)^{T}$
d) $\boldsymbol{A} \boldsymbol{A}^{+}=\left(\boldsymbol{A} \boldsymbol{A}^{+}\right)^{T}$
4. Let $\boldsymbol{A} \in \mathbb{R}^{m \times m}$ with $\mathrm{SVD} \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$, and define

$$
\boldsymbol{H}=\left[\begin{array}{ll}
\mathbf{0} & \boldsymbol{A}^{T} \\
\boldsymbol{A} & \mathbf{0}
\end{array}\right]
$$

a) Express the eigenvalues of \boldsymbol{H} in terms of the singular values of \boldsymbol{A}.
b) Express the eigenvectors of \boldsymbol{H} in terms of the singular vectors of \boldsymbol{A}.
c) Extend above expressions to rectangular $\boldsymbol{A} \in \mathbb{R}^{m \times n}, m>n$
5. Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ denote image data from a work of artist A, and $\boldsymbol{B} \in \mathbb{R}^{m \times n}$ that from a work of artist B.
a) Choose two images, and present a sequence of rank-one compressions of the image
b) Construct a work using composition style of artist A (i.e., the large singular values and associated singular vectors) with the brush syle of artist B (i.e., the small singular values and associated singular vectors).
c) Construct a work using composition style of artist B with the brush style of artist A.

Note: The MATH662/images directory contains paintings

