
LINEAR MAPPINGS

1. Functions

1.1. Relations

The previous chapter focused on mathematical expression of the concept of quantification, the act of associating
human observation with measurements, as a first step of scientific inquiry. Consideration of different types of quanti-
ties led to various types of numbers, vectors as groupings of numbers, and matrices as groupings of vectors. Symbols
were introduced for these quantities along with some intial rules for manipulating such objects, laying the foundation
for an algebra of vectors and matrices. Science seeks to not only observe, but to also explain, which now leads to
additional operations for working with vectors and matrices that will define the framework of linear algebra.

Explanations within scientific inquiry are formulated as hypotheses, from which predictions are derived and tested.
A widely applied mathematical transcription of this process is to organize hypotheses and predictions as two sets
X and Y , and then construct another set R of all of the instances in which an element of X is associated with an
element in Y . The set of all possible instances of x ∈ X and y∈ Y , is the Cartesian product of X with Y , denoted as
X × Y = {(x, y)| x ∈ X, y ∈ Y}, a construct already encountered in the definition of the real 2-space ℛ2 = (ℝ2, ℝ, +, ⋅)
where ℝ2 =ℝ×ℝ. Typically, not all possible tuples (x,y)∈X ×Y are relevant leading to the following definition.

DEFINITION. (RELATION) . A relation R between two sets X,Y is a subset of the Cartesian product X ×Y, R⊆X ×Y.

Similar to the difficulties encountered in attempting rigorous definition of a natural number, careful parsing of the
above definition also would reveal self-references since the member of symbol ∈, and the subset of symbol ⊆ are
both themselves examples of relations. As before, this is set aside to concetrate on the key concept of associating
an input x ∈ X with an output y ∈ Y . Associating an output to an input is also useful, leading to the definition of an
inverse relation as R−1 ⊆ Y × X, R−1 ={(y, x) | (x, y) ∈R}. Note that an inverse exists for any relation, and the inverse
of an inverse is the original relation, (R−1)−1 =R. From the above, a relation is a triplet (a tuple with three elements),
(X,Y ,R), that will often be referred to by just its last member R.

Computers can be programmed to work not only with numbers as Octave does, but also with general symbols as
exemplified by another freely available software package called Maxima. Most data science applications involve
numerical computation, but some knowledge of symbolic computation is also useful, as when working with sets that
often arises in data classification. The colon symbol denotes assignment in Maxima, and sets can be defined using
curly braces with automatic elimination of repeated elements. All common set manipulations are provided, such as
the Cartesian product ×, and element of ∈. operations.

%i1] X: {a,b,c,b,a}

(%o1) {a,b, c}

%i2] Y: {alpha,beta,gamma}

(%o2) {𝛼,𝛽,𝛾}

%i3] XxY: cartesian_product(X,Y)

(%o3) {[a,𝛼], [a,𝛽], [a,𝛾], [b,𝛼], [b,𝛽], [b,𝛾], [c,𝛼], [c,𝛽], [c,𝛾]}

%i4] [elementp([a,alpha],XxY), elementp([alpha,a],XxY)]

(%o4) [true, false]

%i5]
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Associate the first three Latin and Greek letters by defining R = {(a, 𝛼), (b, 𝛽), (c, 𝛾)}. This is a relation between
X = {a, b, c} and Y = {𝛼, 𝛽, 𝛾} since it is a subset of X × Y , which can be checked by defining a function that checks
whether some r∈R is also an element of X ×Y . Maxima functions are defined using the := operator, and map applies
a function to all elements of a set.
%i10] R: {[a,alpha],[b,beta],[c,gamma]}$

verifyXxY(r):= elementp(r,XxY)$
map(verifyXxY,R)

(%o12) {true}

%i13]

Suppose that the Greek alphabet ordering is not known, and a might conceivably be associated to any of 𝛼, 𝛽, 𝛾.
This defines another relation S = {(a,𝛼), (a, 𝛽), (a, 𝛾)}. Finally consider possible reorderings of the Greek alphabet,
formulated as relationships between Y and itself, with P={(𝛼,𝛽), (𝛽,𝛾), (𝛾,𝛼)} and I ={(𝛼,𝛼), (𝛽,𝛽), (𝛾,𝛾)} two
such possible reorderings. The relations R,S,P, I defined here will be used to exemplify various properties below.

%i13] S: {[a,alpha],[a,beta],[a,gamma]}$
YxY: cartesian_product(Y,Y)$ verifyYxY(r):= elementp(r,YxY)$
P: {[alpha,beta], [beta,gamma], [gamma,alpha]}$
I: {[alpha,alpha], [beta,beta], [gamma,gamma]}$
[map(verifyXxY,S), map(verifyYxY,P), map(verifyYxY,I)]

(%o18) [{true}, {true}, {true}]

Homogeneous relations. Many types of relations are defined in mathematics and encountered in linear algebra, and
establishing properties of specific relations is an important task within data science. A commonly encountered type of
relationship is from a set onto itself, known as a homogeneous relation. Among the above-defined relations P,I ⊆Y ×Y
are homogeneous, while R, S ⊆ X × Y are not. For homogeneous relations H ⊆ A × A, it is common to replace the set
membership notation (a,b)∈H to state that a∈ A is in relationship H with b∈ A, with a binary operator notation a∼∼∼H b.
Familiar examples include the equality and less than relationships between reals, E,L ⊆ℝ×ℝ, in which (a,b)∈E is
replaced by a=b, and (a,b)∈L is replaced by a<b. The equality relationship is its own inverse, and the inverse of the
less than relationship is the greater than relation G⊆ℝ×ℝ, G=L−1, a<b⇒b>a. Homogeneous relations H ⊆ A× A
are classified according to the following criteria.

Reflection. Relation H is reflexive if (a,a)∈H for any a∈ A. The equality relation E ⊆ℝ×ℝ is reflexive, ∀a∈ A,
a=a, the less than relation L ⊆ℝ×ℝ is not, 1∈R, 1≮1.

Symmetry. Relation H is symmetric if (a, b) ∈ H implies that (b, a) ∈ H, (a, b) ∈ H ⇒ (b, a) ∈ H. The equality
relation E ⊆ℝ×ℝ is symmetric, a=b⇒b=a, the less than relation L ⊆ℝ×ℝ is not, a<b⇏b<a.

Anti-symmetry. Relation H is anti-symmetric if (a, b) ∈ H for a ≠ b, then (b, a) ∉ H. The less than relation
L ⊆ℝ×ℝ is antisymmetric, a<b⇒b≮a.

Transitivity. Relation H is transitive if (a, b)∈ H and (b, c)∈ H implies (a, c)∈ H. for any a ∈ A. The equality
relation E ⊆ℝ×ℝ is transitive, a=b∧b=c⇒a=c, as is the less than relation L ⊆ℝ×ℝ, a<b∧b<c⇒a< c.

Certain combinations of properties often arise. A homogeneous relation that is reflexive, symmetric, and transitive
is said to be an equivalence relation. Equivalence relations include equality among the reals, or congruence among
triangles. A homogeneous relation that is reflexive, anti-symmetric and transitive is a partial order relation, such as
the less than or equal relation between reals. Finally, a homogeneous relation that is anti-symmetric and transitive is
an order relation, such as the less than relation between reals.

1.2. Functions
Functions between sets X and Y are a specific type of relationship that often arise in science. For a given input x ∈X,
theories that predict a single possible output y∈Y are of particular scientific interest.



DEFINITION. (FUNCTION) . A function from set X to set Y is a relation F ⊆X ×Y, that associates to x ∈X a single y∈Y.

The above intuitive definition can be transcribed in precise mathematical terms as F ⊆X ×Y is a function if (x, y)∈F
and (x, z) ∈ F implies y= z. Since it's a particular kind of relation, a function is a triplet of sets (X, Y , F), but with a
special, common notation to denote the triplet by f :X → Y , with F ={(x, f (x))|x ∈X, f (x)∈Y} and the property that
(x, y) ∈ F ⇒ y = f (x). The set X is the domain and the set Y is the codomain of the function f . The value from the
domain x∈X is the argument of the function associated with the function value y= f (x). The function value y is said to
be returned by evaluation y= f (x). The previously defined relations R,P, I are functions but S ={(a,𝛼), (a,𝛽),(a,𝛾)}
is not. All relations can be inverted, and inversion of a function defines a new relation, but which might not itself be
a function. For example the relation S−1 ={(𝛼,a), (𝛽,a), (𝛾,a)} is a function, but its inverse (S−1)−1 =S is not.

Familiar functions include:
• the trigonometric functions cos:ℝ→[−1,1], sin:ℝ→[−1,1] that for argument 𝜃∈ℝ return the function values

cos(𝜃), sin(𝜃) giving the Cartesian coordinates (x,y)∈ℝ2 of a point on the unit circle at angular extent 𝜃 from
the x-axis;

• the exponential and logarithm functions exp:ℝ→ℝ, log:(0,∞)→ℝ, as well as power and logarithm functions
in some other base a;

• polynomial functions pn:ℝ→ℝ, defined by a succession of additions and multiplications

pn(x)=anxn +an−1xn−1 + ⋅ ⋅ ⋅ +a1x +a0 =�
i=0

n

ai x i=((an x +an−1)x + ⋅ ⋅ ⋅ +a1)x +a0.

Simple functions such as sin, cos, exp, log, are predefined in Octave, and when given a vector argument return the
function applied to each vector component.

octave] disp(cos(0:pi/4:pi))

1.0000e+00 7.0711e-01 6.1232e-17 -7.0711e-01 -1.0000e+00

octave] y=log2(1:8); disp(y)

0.00000 1.00000 1.58496 2.00000 2.32193 2.58496 2.80735 3.00000

octave] disp(pow2(y))

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

octave] a=[1 0 -1]; x=-2:2; y=polyval(a,x); disp(y)

3 0 -1 0 3

octave]

As seen previously, a Euclidean space Em = (ℝm, ℝ, +, ⋅) can be used to suggest properties of more complex spaces
such as the vector space of continuous functions 𝒞0(ℝ). A construct that will be often used is to interpret a vector
within Em as a function, since 𝒗∈ℝm with components 𝒗=[ v1 v2 . . . vm ]T also defines a function v: {1,2,...,m}→ℝ,
with values v(i)=vi. As the number of components grows the function v can provide better approximations of some
continuous function f ∈𝒞0(ℝ) through the function values vi =v(i)= f (xi) at distinct sample points x1, x2, . . . , xm.

The above function examples are all defined on a domain of scalars or naturals and returned scalar values. Within
linear algebra the particular interest is on functions defined on sets of vectors from some vector space 𝒱=(V ,S,+, ⋅)
that return either scalars f :V →S, or vectors from some other vector space 𝒲=(W,S,+, ⋅), 𝒈:V →W. The codomain
of a vector-valued function might be the same set of vectors as its domain, 𝒉:V →V . The fundamental operation within
linear algebra is the linear combination a𝒖+b𝒗 with a,b∈S, 𝒖,𝒗∈V . A key aspect is to characterize how a function
behaves when given a linear combination as its argument, for instance f (a𝒖+b𝒗) or 𝒈(a𝒖+b𝒗).

1.3. Linear functionals
Consider first the case of a function defined on a set of vectors that returns a scalar value. These can be interpreted as
labels attached to a vector, and are very often encountered in applications from natural phenomena or data analysis.
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DEFINITION. (FUNCTIONAL) . A functional on vector space 𝒱= (V ,S,+, ⋅) is a function from the set of vectors V to
the set of scalars S of the vector space 𝒱.

DEFINITION. (LINEAR FUNCTIONAL) . The functional f : V →S on vector space 𝒱 =(V , S,+, ⋅) is a linear functional
if for any two vectors 𝒖,𝒗∈V and any two scalars a,b

f (a𝒖+b𝒗)=af (𝒖)+bf (𝒗). (1)

Many different functionals may be defined on a vector space 𝒱=(V ,S,+, ⋅), and an insightful alternative description
is provided by considering the set of all linear functionals, that will be denoted as V ∗ = { f | f : V → S}. These can be
organized into another vector space 𝒱∗ =(V ∗,S,+, ⋅) with vector addition of linear functionals f ,g∈V ∗ and scaling
by a∈S defined by

( f +g)(𝒖)= f (𝒖)+g(𝒖), (af )(𝒖)=af (𝒖), 𝒖∈V . (2)

DEFINITION. (DUAL VECTOR SPACE) . For some vector space 𝒱, the vector space of linear functionals 𝒱∗ is called
the dual vector space.

As is often the case, the above abstract definition can better be understood by reference to the familiar case of Euclidean
space. Consider ℛ2 = (ℝ2, ℝ, +, ⋅), the set of vectors in the plane with 𝒙 ∈ ℝ2 the position vector from the origin
(0, 0) to point X in the plane with coordinates (x1, x2). One functional from the dual space ℛ2

∗ is f2(𝒙) = x2, i.e.,
taking the second coordinate of the position vector. The linearity property is readily verified. For 𝒙,𝒚∈ℛ2, a,b∈ℝ,

f2(a𝒙+b𝒚)=ax2+by2 =af2(𝒙)+bf2(𝒚).

Given some constant value h∈ℝ, the curves within the plane defined by f2(𝒙)=h are called the contour lines or level
sets of f2. Several contour lines and position vectors are shown in Figure 1. The utility of functionals and dual spaces
can be shown by considering a simple example from physics. Assume that x2 is the height above ground level and a
vector 𝒙 is the displacement of a body of mass m in a gravitational field. The mechanical work done to lift the body
from ground level to height h is W =mgh with g the gravitational acceleration. The mechanical work is the same for
all displacements 𝒙 that satisfy the equation f2(𝒙) = h. The work expressed in units mgΔh can be interpreted as the
number of contour lines f2(𝒙)=nΔh intersected by the displacement vector 𝒙. This concept of duality between vectors
and scalar-valued functionals arises throughout mathematics, the physical and social sciences and in data science. The
term “duality” itself comes from geometry. A point X in ℝ2 with coordinates (x1,x2) can be defined either as the end-
point of the position vector 𝒙, or as the intersection of the contour lines of two funtionals f1(𝒙) = x1 and f2(𝒙) = x2.
Either geometric description works equally well in specifying the position of X, so it might seem redundant to have
two such procedures. It turns out though that many quantities of interest in applications can be defined through use of
both descriptions, as shown in the computation of mechanical work in a gravitational field.
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Figure 1. Vectors in E2 and contour lines of the functional f (𝒙) =x2

1.4. Linear mappings
Consider now functions 𝒇 : V → W from vector space 𝒱 = (V , S, +, ⋅) to another vector space 𝒲 = (W, T , +, ⋅). As
before, the action of such functions on linear combinations is of special interest.



DEFINITION. (LINEAR MAPPING) . A function 𝒇 :V →W, from vector space 𝒱=(V ,S,+, ⋅) to vector space 𝒲=(W,
S,⊕,⊙) is called a linear mapping if for any two vectors 𝒖,𝒗∈V and any two scalars a,b∈S

𝒇 (a𝒖+b𝒗)=a 𝒇 (𝒖)+b 𝒇 (𝒗). (3)

The image of a linear combination a𝒖 + b𝒗 through a linear mapping is another linear combination a 𝒇 (𝒖) + b 𝒇 (𝒗),
and linear mappings are said to preserve the structure of a vector space, and called homomorphisms in mathematics.
The codomain of a linear mapping might be the same as the domain in which case the mapping is said to be an
endomorphism.

Matrix-vector multiplication has been introduced as a concise way to specify a linear combination

𝒇 (𝒙)=𝑨𝒙=x1 𝒂1 + ⋅ ⋅ ⋅ +xn 𝒂n,

with 𝒂1, . . . , 𝒂n the columns of the matrix, 𝑨=[ 𝒂1 𝒂2 . . . 𝒂n ]. This is a linear mapping between the real spaces ℛm,
ℛn, 𝒇 :ℝm→ℝn, and indeed any linear mapping between real spaces can be given as a matrix-vector product.

2. Measurements
Vectors within the real space ℛm can be completely specified by m real numbers, even though m is large in many
realistic applications. A vector within 𝒞0(ℝ), i.e., a continuous function defined on the reals, cannot be so specified
since it would require an infinite, non-countable listing of function values. In either case, the task of describing the
elements of a vector space 𝒱 = (V , S, +, ⋅) by simpler means arises. Within data science this leads to classification
problems in accordance with some relevant criteria.

2.1. Equivalence classes

Many classification criteria are scalars, defined as a scalar-valued function f :𝒱→S on a vector space, 𝒱=(V ,S,+, ⋅).
The most common criteria are inspired by experience with Euclidean space. In a Euclidean-Cartesian model (ℝ2,ℝ,
+, ⋅) of the geometry of a plane Π, a point O ∈ Π is arbitrarily chosen to correspond to the zero vector 𝟎 =[ 0 0 ]T ,
along with two preferred vectors 𝒆1, 𝒆2 grouped together into the identity matrix 𝑰. The position of a point X ∈Π with
respect to O is given by the linear combination

𝒙=𝑰𝒙+𝟎=[ 𝒆1 𝒆2 ]� x1
x2

�=x1 𝒆1+x2𝒆2 .

Several possible classifications of points in the plane are depicted in Figure 2: lines, squares, circles. Intuitively, each
choice separates the plane into subsets, and a given point in the plane belongs to just one in the chosen family of
subsets. A more precise characterization is given by the concept of a partition of a set.

DEFINITION. (PARTITION) . A partition of a set is a grouping of its elements into non-empty subsets such that every
element is included in exactly one subset.

In precise mathematical terms, a partition of set S is P = {Si | Si ⊂ P, Si ≠ ∅, i ∈ I} such that ∀x ∈ S, ∃! j ∈ I for which
x ∈Sj. Since there is only one set (∃! signifies “exists and is unique”) to which some given x ∈S belongs, the subsets
Si of the partition P are disjoint, i ≠ j ⇒Si ∩Sj =∅. The subsets Si are labeled by i within some index set I . The index
set might be a subset of the naturals, I ⊂ℕ in which case the partition is countable, possibly finite. The partitions of
the plane suggested by Figure 2 are however indexed by a real-valued label, i ∈ℝ with I ⊂ℝ.

A technique which is often used to generate a partition of a vector space 𝒱 = (V , S,+, ⋅) is to define an equivalence
relation between vectors, H ⊆ V × V . For some element 𝒖 ∈ V , the equivalence class of 𝒖 is defined as all vectors 𝒗
that are equivalent to 𝒖, {𝒗| (𝒖, 𝒗) ∈ H }. The set of equivalence classes of is called the quotient set and denoted as
V /H, and the quotient set is a partition of V . Figure 2 depicts four different partitions of the plane. These can be
interpreted geometrically, such as parallel lines or distance from the origin. With wider implications for linear algebra,
the partitions can also be given in terms of classification criteria specified by functions.
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Figure 2. Equivalence classes within the plane

2.2. Norms
The partition of ℝ2 by circles from Figure 2 is familiar; the equivalence classes are sets of points whose position vector
has the same size, {𝒙=[ x1 x2 ]T | (x1

2+x2
2)1/2=r}, or is at the same distance from the origin. Note that familiarity with

Euclidean geometry should not obscure the fact that some other concept of distance might be induced by the data. A
simple example is statement of walking distance in terms of city blocks, in which the distance from a starting point to
an address x1=3 blocks east and x2=4 blocks north is x1+x2=7 city blocks, not the Euclidean distance (x1

2+x2
2)1/2=5

since one cannot walk through the buildings occupying a city block.

The above observations lead to the mathematical concept of a norm as a tool to evaluate vector magnitude. Recall that
a vector space is specified by two sets and two operations, 𝒱 = (V , S, +, ⋅), and the behavior of a norm with respect
to each of these components must be defined. The desired behavior includes the following properties and formal
definition.

Unique value. The magnitude of a vector 𝒗 ∈V should be a unique scalar, requiring the definition of a function.
The scalar could have irrational values and should allow ordering of vectors by size, so the function should
be from V to ℝ, f : V → ℝ. On the real line the point at coordinate x is at distance |x| from the origin, and
to mimic this usage the norm of 𝒗 ∈ V is denoted as ‖𝒗‖, leading to the definition of a function ‖ ‖: V → ℝ+,
ℝ+ ={a|a∈ℝ,a⩾0}.

Null vector case. Provision must be made for the only distinguished element of V , the null vector 𝟎. It is natural
to associate the null vector with the null scalar element, ‖𝟎‖=0. A crucial additional property is also imposed
namely that the null vector is the only vector whose norm is zero, ‖𝒗‖ = 0 ⇒ 𝒗 = 𝟎. From knowledge of a
single scalar value, an entire vector can be determined. This property arises at key junctures in linear algebra,
notably in providing a link to another branch of mathematics known as analysis, and is needed to establish the
fundamental theorem of linear algbera or the singular value decomposition encountered later.

Scaling. Transfer of the scaling operation 𝒗 = a𝒖 property leads to imposing ‖𝒗‖ = |a| ‖𝒖‖. This property ensures
commensurability of vectors, meaning that the magnitude of vector 𝒗 can be expressed as a multiple of some
standard vector magnitude ‖𝒖‖.

Vector addition. Position vectors from the origin to coordinates x,y>0 on the real line can be added and |x +y|=
|x| + |y|. If however the position vectors point in different directions, x > 0, y < 0, then |x + y| < |x| + |y|. For a
general vector space the analogous property is known as the triangle inequality, ‖𝒖+𝒗‖⩽‖𝒖‖+‖𝒗‖ for 𝒖,𝒗∈V .

DEFINITION. (NORM) . A norm on the vector space 𝒱 = (V , S, +, ⋅) is a function ‖ ‖: V → ℝ+ that for 𝒖, 𝒗 ∈ V, a ∈ S
satisfies:

1. ‖𝒗‖=0⇒𝒗=𝟎;
2. ‖a𝒖‖= |a| ‖𝒖‖;
3. ‖𝒖+𝒗‖⩽‖𝒖‖+‖𝒗‖.

Note that the norm is a functional, but the triangle inequality implies that it is not generally a linear functional.
Returning to Figure 2, consider the functions fi:ℝ2→ℝ+ defined for 𝒙=[ x1 x2 ]T through values

f1(𝒙)= |x1|, f2(𝒙)= |x2|, f3(𝒙)= |x1|+ |x2|, f4(𝒙)=(|x1|2 +|x2|2)1/2.



Sets of constant value of the above functions are also equivalence classes induced by the equivalence relations Ei for
i =1,2, 3,4.

1. f1(𝒙)=c⇒|x1| =c, E1 ={(𝒙, 𝒚)| f1(𝒙)= f1(𝒚)⇔|x1| = |y1| }⊆ℝ2 ×ℝ2;

2. f2(𝒙)=c⇒|x2| =c, E2 ={(𝒙, 𝒚)| f2(𝒙)= f2(𝒚)⇔|x2| = |y2| }⊆ℝ2 ×ℝ2;

3. f3(𝒙)=c⇒|x1| + |x2|=c, E3={(𝒙, 𝒚)| f3(𝒙)= f3(𝒚)⇔|x1| + |x2|= |y1| + |y2| }⊆ℝ2 ×ℝ2;

4. f4(𝒙)=c⇒(|x1|2 +|x2|2)1/2=c, E4={(𝒙, 𝒚)| f4(𝒙)= f4(𝒚)⇔(|x1|2 +|x2|2)1/2=(|y1|2 +|y2|2)1/2 }⊆ℝ2 ×ℝ2.

These equivalence classes correspond to the vertical lines, horizontal lines, squares, and circles of Figure 2. Not all
of the functions fi are norms since f1(𝒙) is zero for the non-null vector 𝒙=[ 0 1 ]T , and f2(𝒙)is zero for the non-null
vector 𝒙=[ 1 0 ]T . The functions f3 and f4 are indeed norms, and specific cases of the following general norm.

DEFINITION. (p-NORM IN ℛm) . The p-norm on the real vector space ℛm=(ℝm,ℝ,+, ⋅) for p⩾1 is the function ‖ ‖p:
V →ℝ+ with values ‖𝒙‖p =(|x1|p +|x2|p + ⋅ ⋅ ⋅ + |xm|p)1/p, or

‖𝒙‖p =((((((((((((((�
i=1

m

|xi|p))))))))))))))
1/p

for 𝒙∈ℝm. (4)

Denote by xi the largest component in absolute value of 𝒙∈ℝm. As p increases, |xi|p becomes dominant with respect
to all other terms in the sum suggesting the definition of an inf-norm by

‖𝒙‖∞ = max
1⩽i⩽m

|xi| .

This also works for vectors with equal components, since the fact that the number of components is finite while p→∞
can be used as exemplified for 𝒙=[ a a . . . a ]T , by ‖𝒙‖p =(m |a|p)1/p =m1/p |a|, with m1/p →1.

Note that the Euclidean norm corresponds to p=2, and is often called the 2-norm. The analogy between vectors and
functions can be exploited to also define a p-norm for 𝒞0[a,b]=(C([a,b]), ℝ,+, ⋅) , the vector space of continuous
functions defined on [a,b].

DEFINITION. (p-NORM IN 𝒞0[a,b]) . The p-norm on the vector space of continuous functions 𝒞0[a,b] for p⩾1 is the
function ‖ ‖p:V →ℝ+ with values

‖ f ‖p =��
a

b
| f (x)|p dx�1/p, for f ∈C[a,b]. (5)

The integration operation ∫a
b can be intuitively interpreted as the value of the sum ∑i=1

m from equation (4) for very
large m and very closely spaced evaluation points of the function f (xi), for instance |xi+1−xi|=(b−a)/m. An inf-norm
can also be define for continuous functions by

‖ f ‖∞ = sup
x∈[a,b]

| f (x)|,

where sup, the supremum operation can be intuitively understood as the generalization of the max operation over the
countable set {1,2, . . . ,m} to the uncountable set [a,b].
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Figure 3. Regions within ℝ2 for which ‖𝒙‖p⩽1, for p =1,2, 3,∞.
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Vector norms arise very often in applications, especially in data science since they can be used to classify data, and
are implemented in software systems such as Octave in which the norm function with a single argument computes the
most commonly encountered norm, the 2-norm. If a second argument p is specified the p-norm is computed.

octave] x=[1; 1; 1]; disp([norm(x) sqrt(3)])

1.7321 1.7321

octave] m=9; x=ones(m,1); disp([norm(x) sqrt(m)])

3 3

octave] m=4; x=ones(m,1); disp([norm(x,1) m])

4 4

octave] disp([norm(x,1) norm(x,2) norm(x,4) norm(x,8) norm(x,16) norm(x,inf)])

4.0000 2.0000 1.4142 1.1892 1.0905 1.0000

octave]

2.3. Inner product
Norms are functionals that define what is meant by the size of a vector, but are not linear. Even in the simplest case
of the real line, the linearity relation |x + y| = |x| + |y| is not verified for x > 0, y < 0. Nor do norms characterize the
familiar geometric concept of orientation of a vector. A particularly important orientation from Euclidean geometry
is orthogonality between two vectors. Another function is required, but before a formal definition some intuitive
understanding is sought by considering vectors and functionals in the plane, as depicted in Figure 4. Consider a
position vector 𝒙=[ x1 x2 ]T ∈ℝ2 and the previously-encountered linear functionals

f1, f2:ℝ2→ℝ, f1(𝒙)=x1, f2(𝒙)=x2.

The x1 component of the vector 𝒙 can be thought of as the number of level sets of f1 times it crosses; similarly for
the x2 component. A convenient labeling of level sets is by their normal vectors. The level sets of f1 have normal
𝒆1

T = [ 1 0 ], and those of f2 have normal vector 𝒆2
T = [ 0 1 ]. Both of these can be thought of as matrices with two

columns, each containing a single component. The products of these matrices with the vector 𝒙 gives the value of the
functionals f1, f2

𝒆1
T 𝒙=[ 1 0 ]� x1

x2
�=1 ⋅x1 +0 ⋅x2=x1= f1(𝒙),

𝒆2
T 𝒙=[ 0 1 ]� x1

x2
�=0 ⋅x1+1⋅ x2=x1 = f2(𝒙).
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Figure 4. Euclidean space E2 and its dual E2
∗.

In general, any linear functional f defined on the real space ℛm can be labeled by a vector

𝒂T =[ a1 a2 . . . am ],



and evaluated through the matrix-vector product f (𝒙)=𝒂T 𝒙. This suggests the definition of another function s:ℝm×
ℝm →ℝ,

s(𝒂, 𝒙)=𝒂T 𝒙.

The function s is called an inner product, has two vector arguments from which a matrix-vector product is formed and
returns a scalar value, hence is also called a scalar product. The definition from an Euclidean space can be extended
to general vector spaces. For now, consider the field of scalars to be the reals S =ℝ.

DEFINITION. (INNER PRODUCT) . An inner product in the vector space 𝒱=(V ,ℝ,+, ⋅) is a function s:V ×V →ℝ with
properties

Symmetry. For any 𝒂,𝒙∈V, s(𝒂, 𝒙)= s(𝒙,𝒂).

Linearity in second argument. For any 𝒂,𝒙, 𝒚∈V, 𝛼,𝛽∈ℝ, s(𝒂,𝛼𝒙+𝛽𝒚)=𝛼s(𝒂, 𝒙)+𝛽s(𝒂, 𝒚).

Positive definiteness. For any 𝒙∈V\{𝟎}, s(𝒙,𝒙)>0.

The inner product s(𝒂,𝒙) returns the number of level sets of the functional labeled by 𝒂 crossed by the vector 𝒙, and this
interpretation underlies many applications in the sciences as in the gravitational field example above. Inner products
also provide a procedure to evaluate geometrical quantities and relationships.

Vector norm. In ℛm the number of level sets of the functional labeled by 𝒙 crossed by 𝒙 itself is identical to the
square of the 2-norm

s(𝒙,𝒙)=𝒙T𝒙=‖𝒙‖2
2 .

In general, the square root of s(𝒙, 𝒙) satisfies the properties of a norm, and is called the norm induced by an
inner product

‖𝒙‖= s(𝒙, 𝒙)1/2.

A real space together with the scalar product s(𝒙,𝒚)=𝒙T 𝒚 and induced norm ‖𝒙‖=s(𝒙,𝒙)1/2 defines an Euclidean
vector space ℰm.

Orientation. In ℰ2 the point specified by polar coordinates (r, 𝜃) has the Cartesian coordinates x1 = r cos 𝜃,
x2= r sin𝜃, and position vector 𝒙=[ x1 x2 ]T . The inner product

𝒆1
T 𝒙=[ 1 0 ] [ x1

x2
]=1 ⋅x1+0⋅ x2= r cos𝜃,

is seen to contain information on the relative orientation of 𝒙 with respect to 𝒆1. In general, the angle 𝜃 between
two vectors 𝒙, 𝒚 with any vector space with a scalar product can be defined by

cos𝜃= s(𝒙, 𝒚)
[s(𝒙,𝒙) s(𝒚, 𝒚)]1/2 = s(𝒙, 𝒚)

‖𝒙‖ ‖𝒚‖ ,

which becomes

cos𝜃= 𝒙T 𝒚
‖𝒙‖ ‖𝒚‖ ,

in a Euclidean space, 𝒙, 𝒚∈ℝm.

Orthogonality. In ℰ2 two vectors are orthogonal if the angle between them is such that cos 𝜃 = 0, and this can
be extended to an arbitrary vector space 𝒱 = (V , ℝ, +, ⋅) with a scalar product by stating that 𝒙, 𝒚 ∈ V are
orthogonal if s(𝒙, 𝒚)=0. In ℰm vectors 𝒙, 𝒚∈ℝm are orthogonal if 𝒙T 𝒚=0.

3. Linear mapping composition

3.1. Matrix-matrix product

From two functions f : A→B and g:B→C, a composite function, h=g∘ f , h: A→C is defined by

h(x)=g( f (x)).
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Consider linear mappings between Euclidean spaces 𝒇 : ℝn → ℝm, 𝒈: ℝm → ℝp. Recall that linear mappings between
Euclidean spaces are expressed as matrix vector multiplication

𝒇 (𝒙)=𝑨𝒙,𝒈(𝒚)=𝑩𝒚,𝑨∈ℝm×n,𝑩∈ℝp×m.

The composite function 𝒉=𝒈∘ 𝒇 is 𝒉:ℝn →ℝp, defined by

𝒉(𝒙)=𝒈(𝒇 (𝒙))=𝒈(𝑨𝒙)=𝑩𝑨𝒙.

Note that the intemediate vector 𝒖=𝑨𝒙 is subsequently multiplied by the matrix 𝑩. The composite function 𝒉 is itself
a linear mapping

𝒉(a𝒙+b𝒚)=𝑩𝑨(a𝒙+b𝒚)=𝑩(a𝑨𝒙+b𝑨 𝒚)=𝑩(a𝒖+b𝒗)=a𝑩𝒖+b𝑩𝒗=a𝑩𝑨𝒙+b𝑩𝑨𝒚=a𝒉(𝒙)+b𝒉(𝒚),

so it also can be expressed a matrix-vector multiplication

𝒉(𝒙)=𝑪𝒙=𝑩𝑨𝒙. (6)

Using the above, 𝑪 is defined as the product of matrix 𝑩 with matrix 𝑨

𝑪=𝑩𝑨.

The columns of 𝑪 can be determined from those of 𝑨 by considering the action of 𝒉 on the the column vectors of the
identity matrix 𝑰 =[ 𝒆1 𝒆2 . . . 𝒆n ]∈ℝn×n. First, note that

𝑨𝒆j =[ 𝒂1 𝒂2 . . . 𝒂n ]

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[

[

[ 1
0
⋅⋅⋅
⋅⋅⋅
0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]

]

]
=𝒂1, . . . , 𝑨𝒆j =[ 𝒂1 𝒂2 . . . 𝒂n ]

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[

[

[ 0
⋅⋅⋅
1
⋅⋅⋅
0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]

]

]
=𝒂j,𝑨𝒆n =[ 𝒂1 𝒂2 . . . 𝒂n ]

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[

[

[ 0
⋅⋅⋅
⋅⋅⋅
0
1 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]

]

]
=𝒂n. (7)

The above can be repeated for the matrix 𝑪=[ 𝒄1 𝒄2 . . . 𝒄n ] giving

𝒉(𝒆1)=𝑪𝒆1 =𝒄1, . . . , 𝒉(𝒆j)=𝑪𝒆j =𝒄j, . . . , 𝒉(𝒆n)=𝑪𝒆n =𝒄n. (8)

Combining the above equations leads to 𝒄j =𝑩𝒂j, or

𝑪=[ 𝒄1 𝒄2 . . . 𝒄n ]=𝑩[ 𝒂1 𝒂2 . . . 𝒂n ].

From the above the matrix-matrix product 𝑪 = 𝑩𝑨 is seen to simply be a grouping of all the products of 𝑩 with the
column vectors of 𝑨,

𝑪=[ 𝒄1 𝒄2 . . . 𝒄n ]=[𝑩 𝒂1 𝑩𝒂2 . . . 𝑩𝒂n ]

Matrix-vector and matrix-matrix products are implemented in Octave, the above results can readily be verified.

octave] a1=[1; 2]; a2=[3; 4]; A=[a1 a2]

A =

1 3
2 4

octave] b1=[-1; 1; 3]; b2=[2; -2; 3]; B=[b1 b2]

B =

-1 2
1 -2
3 3



octave] C=B*A

C =

3 5
-3 -5
9 21

octave] c1=B*a1; c2=B*a2; [c1 c2]

ans =

3 5
-3 -5
9 21

octave]
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