

Overview

- Polynomial approximation
- Eigenvalue approximation
- Arnoldi lemniscates
- GMRES
- Applications:
 - the Harwell-Boeing Matrix Collection
 - JupyterLab, Fortran, f2py, FortranMagic

• $x \in \mathcal{K}_n \Rightarrow x = c_0 b + c_1 A b + \dots + c_{n-1} A^{n-1} b$, Introduce $q(z) = c_0 + c_1 z + \dots + c_n z^{n-1}$

$$\boldsymbol{x} = q(\boldsymbol{A}) \boldsymbol{b} = \boldsymbol{K}_n \boldsymbol{c} = (\boldsymbol{b} \ \boldsymbol{A} \boldsymbol{b} \ \dots \ \boldsymbol{A}^{n-1} \boldsymbol{b}) \boldsymbol{c}$$

• Q_n is an orthonormal basis for \mathcal{K}_n , $Q_n R_n = K_n$ is constructed by Arnoldi iteration, and $H_n = Q_n^* A Q_n$ is the restriction of operator \mathcal{A} encoded by matrix A to \mathcal{K}_n . Let -y denote coordinates of x in Q_n , $K_n c = -Q_n y = Ix$. Note that -y is a representation of q(z).

Theorem. Let $A \in \mathbb{C}^{m \times m}$, $b \in \mathbb{C}^m$, and P^n denote the space of monic polynomials of degree n. If $K_n = (b \ Ab \ ... \ A^{n-1}b)$ is of full rank, the solution of

$$\min_{p^n \in P^n} \|p^n(\boldsymbol{A}) \boldsymbol{b}\|$$

is the characteristic polynomial

$$p_{\boldsymbol{H}_n}(z) = \det(z\boldsymbol{I} - \boldsymbol{H}_n)$$

of $H_n = Q_n^* A Q_n$, with $Q_n = (q_1 \dots q_n)$ constructed by Arnoldi iteration, i.e.,

$$p_{\boldsymbol{H}_n} = \arg\min_{\boldsymbol{p}^n \in P^n} \| \boldsymbol{p}^n(\boldsymbol{A}) \boldsymbol{b} \|.$$

Proof. Consider some $p \in P^n$, i.e., some monic polynomial of degree n,

$$p^{n}(z) = z^{n} + c_{n-1}z^{n-1} + \dots + c_{1}z + c_{0} = z^{n} + q(z) \Rightarrow p^{n}(A)b = A^{n}b - Q_{n}y,$$

and the polynomial approximation problem $\min_{p^n \in P^n} \|p^n(A) b\|$ can be restated as

$$\min_{oldsymbol{y}} \|oldsymbol{A}^n oldsymbol{b} - oldsymbol{Q}_n oldsymbol{y} \|,$$

a least-squares problem, with $K_n c = -Q_n y = Ix = q(A)b$. Recall that $(QHQ^*)^n = QH^nQ^*$.

$$p^n(A)b = A^nb - Q_ny \perp \mathcal{K}_n \Rightarrow \qquad Q_n^* \, p^n(A)b = \mathbf{0}_n.$$

$$A = QHQ^*, \ Q = (\ Q_n \ \ U\) \qquad H = \begin{pmatrix} H_n \ \times \\ \times \ \times \end{pmatrix}$$

$$Q_n^*p^n(A)b = Q_n^*p^n(QHQ^*)b = \qquad Q_n^*Qp^n(H)Q^*b$$

$$Q^*b = (\ q_1 \ \dots \ q_n \ \dots \ q_m\)b = \qquad \|b\| \ e_1$$

$$Q_n^*Q = \left(\ I_n \ \ \mathbf{0}_{n,m-n} \ \right)$$

$$\left(\ I_n \ \ \mathbf{0}_{n,m-n} \ \right)p^n(H)e_1 = \mathbf{0}_n \Rightarrow \qquad (p^n(H))_{1:n,1} = 0$$

$$(p^n(H))_{1:n,1} = (p^n(H_n))_{:,1} = 0$$
Cayley-Hamilton $\Rightarrow \qquad p^n = p_{H_n}$

- Solution of $\min_{p^n \in P^n} \|p^n(A)b\|$ is characteristic polynomial of $H_n = Q_n^* A Q_n \Rightarrow$ the eigenvalues of H_n are useful approximations of eigenvalues of A
- Eigenvalues of H_n are denoted $\{\theta_j\}$ j=1,...,n, and called the Ritz (Arnoldi) values (The Rayleigh quotient is also known as a Rayleigh-Ritz approximation)
- Invariance properties:

$$-A \rightarrow A + \sigma I \Rightarrow \theta_j \rightarrow \theta_j + \sigma$$

$$-A \rightarrow \sigma A \Rightarrow \theta_i \rightarrow \sigma \theta_i$$

$$-A \rightarrow UAU^*$$
 and $b \rightarrow Ub \Rightarrow \theta_i \rightarrow \theta_i$

- Lemniscate is curve in $\mathbb C$ for which |p(z)| = C
- Arnoldi iteration lemniscate

$$C = \frac{\|p^n(\mathbf{A})\mathbf{b}\|}{\|\mathbf{b}\|} = \frac{\|p_{\mathbf{H}_n}(\mathbf{A})\mathbf{b}\|}{\|\mathbf{b}\|}$$

- ullet Arnoldi iteration can also be used to solve linear systems, $m{A}m{x} = m{b}$, $\mathcal{N}(m{A}) = \{m{0}\}$, $m{x}_* = m{A}^{-1}m{b}$
- GMRES: $x_n = \arg\min_{z \in \mathcal{K}_n} \|b Az\|$. The following problems are all equivalent:

$$egin{aligned} \min_{oldsymbol{z} \in \mathcal{K}_n} \|oldsymbol{b} - oldsymbol{A} oldsymbol{z} \| & \min_{oldsymbol{z} \in \mathbb{C}^n} \|oldsymbol{A} K_n oldsymbol{c} - oldsymbol{b} \| & \min_{oldsymbol{y} \in \mathbb{C}^n} \|oldsymbol{A} Q_n oldsymbol{y} - oldsymbol{b} \| & \min_{oldsymbol{y} \in \mathbb{C}^n} \|oldsymbol{A} Q_{n+1} ilde{oldsymbol{H}}_n oldsymbol{y} - oldsymbol{b} \| oldsymbol{e}_1 \| & \sum_{oldsymbol{A} oldsymbol{Q}_n oldsymbol{y}} oldsymbol{A} oldsymbol{A} oldsymbol{Q}_n oldsymbol{y} & \\ & \min_{oldsymbol{y} \in \mathbb{C}^n} \|oldsymbol{A} oldsymbol{Q}_{n+1} ilde{oldsymbol{H}}_n oldsymbol{y} - \|oldsymbol{b} \| oldsymbol{e}_1 \| & \sum_{oldsymbol{A} oldsymbol{Q}_n oldsymbol{y}} oldsymbol{A} oldsymbol{Q}_n oldsymbol{y} & \\ & A oldsymbol{Q}_n oldsymbol{y} & A oldsymbol{Q}_n oldsymbol$$

• GMRES solves the least squares problem $\min_{\boldsymbol{y} \in \mathbb{C}^n} \|\hat{\boldsymbol{H}}_n \, \boldsymbol{y} - \|\boldsymbol{b}\| \, \boldsymbol{e}_1\|$ at each Arnoldi iteration, and furnishes the approximation

$$oldsymbol{x}_n = oldsymbol{Q}_n \, oldsymbol{y}$$

to
$$x_* = A^{-1} b$$
.

•
$$P_n = \{c_n z^n + c_{n-1} z^{n-1} + \dots + c_1 z + 1, c \in \mathbb{C}^n\}$$

•
$$x_n = Q_n y = K_n c = (b Ab ... A^{n-1}b)c = q(A)b (q \text{ of degree } n-1)$$

•
$$r_n = b - Ax_n = (I - Aq(A))b$$

- Define polynomial $p_n(z) = 1 zq(z)$ of degree $n \Rightarrow r_n = p_n(A) b$
- GMRES is therefore equivalent to polynomial approximation problem

$$\min_{p_n \in P_n} \|p_n(\boldsymbol{A})\boldsymbol{b}\|$$

- Invariance properties: $A \rightarrow \sigma A, b \rightarrow \sigma b \Rightarrow r_n \rightarrow \sigma r_n$, $A \rightarrow UAU^*, b \rightarrow Ub \Rightarrow r_n \rightarrow U^*r_n$
- Convergence of GMRES determined by $||p_n(A)||$

$$\frac{\|\boldsymbol{r}_n\|}{\|\boldsymbol{b}\|} \leqslant \inf_{p_n \in P_n} \|p_n(\boldsymbol{A})\|$$

• Convergence rate bounds: $AX = X\Lambda$, $||p||_{\Lambda(A)} = \sup_{z \in \Lambda(A)} |p(z)|$

$$\frac{\|\boldsymbol{r}_n\|}{\|\boldsymbol{b}\|} \leqslant \inf_{p_n \in P_n} \|p_n(\boldsymbol{A})\| \leqslant \kappa(\boldsymbol{X}) \inf_{p_n \in P_n} \|p_n\|_{\Lambda(\boldsymbol{A})}$$