MATHG662: Krylov methods for symmetric matrices

Overview

e Lanczos iteration
e Eigenvalue problem

Orthogonal polynomials and Jacobi matrices

Gauss Quadrature



Lanczos iteration

e Consider A € R™*" symmetric positive definite (as often arises in physics)

e The reduced Hessenberg matrix H,, = Q. AQ,, is symmetric, positive definite, tridiagonal.
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Algorithm Lanczos

Given: b, A
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V=7v— Bn—l dn—-1—0n(gn
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Eigenvalue problem

Since Lanczos is a restriction of Arnoldi to s.p.d. matrices, all properties of Arnoldi localiza-

tion of eigenvalues carry over, in particular solution minne pn ||p"(A) b|| is characterisitic
polynomial of T),, = Q;, AQ.,.

Recall the definition of the Chebyshev polynomials for = € [—1, 1]
Ton(z)=cos(mb), x=cost

Lanczos iteration converges rapidly if (scaled and centered) eigenvalue distribution of A
differs substantially from that of the Chebyshev roots

xj:cosﬁj,ﬁj:%( '—%),jzl,...,m
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Analogy between vectors and functions defined on a continuum

Vectors u, v € R™ are functions, w,v: {1,...,m} — R. As m — 0o, vectors u, v can be
considered as samples from real functions u,v: R — R

A €R™*"™ encodes a linear transformation between vector spaces, A:R""—R"™, b= Ax.
As m — 00, A can be considered as an approximation (sample) of a linear operator between
function spaces

A Banach space B is a linear (vector) space endowed with a norm ||||: B— R4
A Hilbert space H is a linear (vector) space endowed with a scalar product (, ): H x H— R
The scalar product can be used to induce a 2-norm, ||u|| = (u,u)"/?

Consider H to be the space of square-integrable functions defined on [—1,1], H=L?[—1,1]

(u,v):/1 u(x)v(x)de,

—1

Introduce operator A that when sampled leads to multiplication of a vector by a diagonal
matrix



Orthogonal polynomials

e Consider the continuum generalization of a Krylov space
— Replace b € R™ by the function 1 € L*[—2, 2] with norm ||1]| = (1,1)/2=./2
— Replace Ab by aplication of operator A, e.g., (A[l])(x)=z-1, (Alz])(z)=2-=z,...
— Arrive at Krylov space span{1, z,z?, ...}

— Interpret sampling of operator relationship (Afu])(x) =xu(x) =v(x) at z; as
Au=v,v;=x;u;, A=diag(xy, ..., z,,) = AT

e Construction of an orthogonal set of (Legendre) polynomials is identical to Lanczos iteration

Algorithm Lanczos: discrete and continuum

Bo=0,90=0,q1=>b/||b] Bo=0,qo(x)=0,q:(x)=1/+2
form=1,2,... form=1,2,...
v=Aqn n=quv v(z) = Algn)(%) = 2gn(x), an = (qn,v)
v:v_ﬁn—l dn—-1—0ngn ’U(.’I}):U(.’E)—ﬁn_l n—1—0n(dn
Bn= v Bn=|v]|

qn—l—lzv/ﬁn QTL—I—lzv/ﬁn



Jacobi matrices

Properties of orthogonal polynomials can be obtained from linear algebra operations

Define Krylov matrix as the sample of the continuum Krylov space at z;=ih, h=2/(m —1)
eh=(a2f .. 2 )V Ky=(1 2 ... 2" 1)

Tridiagonal matrices T,, = Q. AQ,, from Lanczos iteration are known as Jacobi matrices
(Th)ij = (ai(2), 2¢j(2)), Qn="(q1(x) ... qu(z))

Exploit the relationship between discrete and continuum formulations by applying knowledge
of the solution to polynomial approximation problem minn¢ pn ||p"(A)b|| for A a sample
of Alu| =xwu, and b a sample of 1. Conclude that

argmin,ne pn||p™(2)| = pr,, i-€.,

solution to the polynomial minimization problem is the characteristic polynomial of T},

Vpe P™, p(2) =Cqni1(2) + Qu(2) Y, Qu="_q1(z) ... qu(x)), |Ipl|=(C%+|y|*'/?

Conclude that roots of the orthogonal polynomial ¢, 1 1(z) are the eigenvalues of T},




Gauss quadrature

e Gauss quadrature for f & L?[—1,1]

with nodes z; given by roots of Legendre polynomials.
e Find the orthogonal eigendecomposition of the Jacobi matrices T},, T;,,= VDV’
— The nodes of the Gauss quadrature are eigenvalues of T}, ;= );

— The weights of the Gauss quadrature are w; =2 [(v;)1]*, V=(v1 ... v,)
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