
MATH662: Krylov methods for symmetric matrices

Overview

� Lanczos iteration

� Eigenvalue problem

� Orthogonal polynomials and Jacobi matrices

� Gauss Quadrature



Lanczos iteration

� Consider A2Rm�m symmetric positive definite (as often arises in physics)

� The reduced Hessenberg matrix Hn=Qn
TAQn is symmetric, positive definite, tridiagonal .
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Algorithm Lanczos

Given: b;A
�0=0; q0=0; q1= b/kbk
for n=1; 2; :::
v=Aqn, �n= qn

Tv
v=v−�n−1 qn−1−�nqn
�n= kvk
qn+1=v/�n



Eigenvalue problem

� Since Lanczos is a restriction of Arnoldi to s.p.d. matrices, all properties of Arnoldi localiza-
tion of eigenvalues carry over, in particular solution minpn2Pn kpn(A) bk is characterisitic
polynomial of Tn=Qn

� AQn.

� Recall the definition of the Chebyshev polynomials for x2 [−1; 1]

Tm(x)= cos(m�); x= cos �

� Lanczos iteration converges rapidly if (scaled and centered) eigenvalue distribution of A
differs substantially from that of the Chebyshev roots

xj= cos �j ; �j=
�
m
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j − 1
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; j=1; :::;m
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Analogy between vectors and functions defined on a continuum

� Vectors u; v 2Rm are functions, u; v: f1; :::; mg!R. As m!1, vectors u; v can be
considered as samples from real functions u; v:R!R

� A2Rm�m encodes a linear transformation between vector spaces, A:Rm!Rm, b=Ax.
As m!1, A can be considered as an approximation (sample) of a linear operator between
function spaces

� A Banach space B is a linear (vector) space endowed with a norm kk:B!R+

� A Hilbert space H is a linear (vector) space endowed with a scalar product (; ):H�H!R

� The scalar product can be used to induce a 2-norm, kuk=(u; u)1/2

� Consider H to be the space of square-integrable functions defined on [−1;1], H=L2[−1;1]

(u; v)=

Z
−1

1

u(x) v(x) dx;

� Introduce operator A that when sampled leads to multiplication of a vector by a diagonal
matrix

(A [u])(x)=xu(x)= v(x)



Orthogonal polynomials

� Consider the continuum generalization of a Krylov space

− Replace b2Rm by the function 12L2[−2; 2] with norm k1k=(1; 1)1/2= 2
p

− Replace Ab by aplication of operator A, e.g., (A [1])(x)=x � 1, (A [x])(x)=x �x, . . .

− Arrive at Krylov space spanf1; x; x2; :::g

− Interpret sampling of operator relationship (A[u])(x)=xu(x)= v(x) at xi as

Au=v ; vi=xiui;A= diag(x1; :::; xm)=AT

� Construction of an orthogonal set of (Legendre) polynomials is identical to Lanczos iteration

Algorithm Lanczos: discrete and continuum

�0=0; q0=0; q1= b/kbk
for n=1; 2; :::
v=Aqn, �n= qn

Tv
v=v−�n−1 qn−1−�nqn
�n= kvk
qn+1=v/�n

�0=0; q0(x)= 0; q1(x)= 1/ 2
p

for n=1; 2; :::
v(x)=A[qn](x)=xqn(x), �n=(qn; v)
v(x)= v(x)−�n−1 qn−1−�n qn
�n= kvk
qn+1= v/�n



Jacobi matrices

� Properties of orthogonal polynomials can be obtained from linear algebra operations

� Define Krylov matrix as the sample of the continuum Krylov space at xi= ih, h=2/(m−1)

xk=
(
x1
k ::: xm

k
�
T ;Kn=

(
1 x ::: xn−1

�
� Tridiagonal matrices Tn=Qn

TAQn from Lanczos iteration are known as Jacobi matrices

(Tn)ij=(qi(x); xqj(x));Qn=( q1(x) ::: qn(x) )

� Exploit the relationship between discrete and continuum formulations by applying knowledge
of the solution to polynomial approximation problem minpn2Pn kpn(A)bk for A a sample
of A[u] =xu, and b a sample of 1. Conclude that

argminpn2Pnkpn(x)k= pTn; i:e:;

solution to the polynomial minimization problem is the characteristic polynomial of Tn

� 8p2P n, p(x)=Cqn+1(x)+Qn(x) y, Qn=( q1(x) ::: qn(x) ), kpk=(C2+kyk2)1/2

� Conclude that roots of the orthogonal polynomial qn+1(x) are the eigenvalues of Tn



Gauss quadrature

� Gauss quadrature for f 2L2[−1; 1]
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with nodes xj given by roots of Legendre polynomials.

� Find the orthogonal eigendecomposition of the Jacobi matrices Tn, Tn=VDV T

− The nodes of the Gauss quadrature are eigenvalues of Tn, xj=�j

− The weights of the Gauss quadrature are wj=2 [(vj)1]
2, V =( v1 ::: vn )
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