• Recall: to each matrix $A \in \mathbb{R}^{m \times n}$ associate four fundamental subspaces:

- 1 Column space, $C(\mathbf{A}) = \{ \mathbf{b} \in \mathbb{R}^m | \exists \mathbf{x} \in \mathbb{R}^n \text{ such that } \mathbf{b} = \mathbf{A}\mathbf{x} \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m reachable by linear combination of columns of \mathbf{A}
- 2 Left null space, $N(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{R}^m | \mathbf{A}^T \mathbf{y} = 0 \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m not reachable by linear combination of columns of \mathbf{A}
- 3 Row space, $R(\mathbf{A}) = C(\mathbf{A}^T) = \{ \mathbf{c} \in \mathbb{R}^n | \exists \mathbf{y} \in \mathbb{R}^m \text{ such that } \mathbf{c} = \mathbf{A}^T \mathbf{y} \} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^m reachable by linear combination of rows of \mathbf{A}
- 4 Null space, $N(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = 0\} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^n not reachable by linear combination of rows of \mathbf{A}

The fundamental theorem of linear algebra (FTLA) states that for $A \in \mathbb{R}^{m \times n}$, encoding a linear mapping b = f(x) = Ax, $f: \mathbb{R}^n \to \mathbb{R}^m$

 $C(\boldsymbol{A}), N(\boldsymbol{A}^{T}) \leq \mathbb{R}^{m}, C(\boldsymbol{A}) \perp N(\boldsymbol{A}^{T}), \quad C(\boldsymbol{A}) \cap N(\boldsymbol{A}^{T}) = \{\boldsymbol{0}\}, \quad C(\boldsymbol{A}) \oplus N(\boldsymbol{A}^{T}) = \mathbb{R}^{m}$ $C(\boldsymbol{A}^{T}), N(\boldsymbol{A}) \leq \mathbb{R}^{n}, C(\boldsymbol{A}^{T}) \perp N(\boldsymbol{A}), \quad C(\boldsymbol{A}^{T}) \cap N(\boldsymbol{A}) = \{\boldsymbol{0}\}, \quad C(\boldsymbol{A}^{T}) \oplus N(\boldsymbol{A}) = \mathbb{R}^{n}$

- The theorem provides an orthogonal decomposition of the domain and codomain of $\,f$
- It specifies the condition on ${m x}$ for ${m A}{m x} = {m b}$, namely ${m b} \in C({m A})$

Lemma 1. Let \mathcal{U}, \mathcal{V} , be subspaces of vector space \mathcal{W} . Then $\mathcal{W} = \mathcal{U} \oplus \mathcal{V}$ if and only if *i*. $\mathcal{W} = \mathcal{U} + \mathcal{V}$, and

ii. $\mathcal{U} \cap \mathcal{V} = \{\mathbf{0}\}.$

Lemma 2. Orthogonal complements of \mathbb{R}^m ($m \in \mathbb{N}$, finite), $\mathcal{U}, \mathcal{V} \leq \mathbb{R}^m$, $\mathcal{U} = \mathcal{V}^{\perp}$, $\mathcal{V} = \mathcal{U}^{\perp}$, form a direct sum $\mathcal{U} \oplus \mathcal{V} = \mathbb{R}^m$. (proved after discussion of Gram-Schmidt procedure)

Proof. $\mathcal{W} = \mathcal{U} \oplus \mathcal{V} \Rightarrow \mathcal{W} = \mathcal{U} + \mathcal{V}$ by definition of direct sum, sum of vector subspaces. To prove that $\mathcal{W} = \mathcal{U} \oplus \mathcal{V} \Rightarrow \mathcal{U} \cap \mathcal{V} = \{\mathbf{0}\}$, consider $w \in \mathcal{U} \cap \mathcal{V}$. Since $w \in \mathcal{U}$ and $w \in \mathcal{V}$ write

$$\boldsymbol{w} = \boldsymbol{w} + \boldsymbol{0} \quad (\boldsymbol{w} \in \mathcal{U}, \boldsymbol{0} \in \mathcal{V}), \quad \boldsymbol{w} = 0 + \boldsymbol{w} \quad (\boldsymbol{0} \in \mathcal{U}, \boldsymbol{w} \in \mathcal{V}),$$

and since expression w = u + v is unique, it results that w = 0. Now assume (i),(ii) and establish an unique decomposition. Assume there might be two decompositions of $w \in W$, $w = u_1 + v_1$, $w = u_2 + v_2$, with $u_1, u_2 \in U$, $v_1, v_2 \in V$. Obtain $u_1 + v_1 = u_2 + v_2$, or $x = u_1 - u_2 = v_2 - v_1$. Since $x \in U$ and $x \in V$ it results that x = 0, and $u_1 = u_2$, $v_1 = v_2$, i.e., the decomposition is unique.

i. $C(A) \leq \mathbb{R}^m$ (column space is vector subspace of codomain of $A: \mathbb{R}^n \to \mathbb{R}^m$)

Proof. Consider arbitrary $u, v \in C(A)$, $\alpha, \beta \in \mathbb{R}$. Verify vector subspace properties (Lesson 7 p.4):

- i. Inclusion (elements of $C(\mathbf{A})$ are in \mathbb{R}^m) $\mathbf{u} \in \mathbb{R}^m$, yes by definition of $C(\mathbf{A}) = \{\mathbf{b} \in \mathbb{R}^m | \exists \mathbf{x} \in \mathbb{R}^n \text{ such that } \mathbf{b} = \mathbf{A}\mathbf{x}\}$. (This immediately results from definitions and will not be shown explicitly in following proofs).
- ii. Closed $(\alpha u + \beta v \in C(A))$. By definition of C(A), $u, v \in C(A)$ implies existence of $x, y \in \mathbb{R}^n$ such that u = Ax, v = Ay. Compute $\alpha u + \beta v = \alpha(Ax) + \beta(Ay) = A(\alpha x + \beta y)$, and note that since $\alpha x + \beta y \in \mathbb{R}^n$, $\alpha u + \beta v \in C(A)$.

ii. $N(\mathbf{A}^T) \leq \mathbb{R}^m$ (left null space is vector subspace of domain of $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m$)

Proof. Consider arbitrary $\alpha, \beta \in \mathbb{R}, x, y \in N(A^T) \Rightarrow A^T x = 0, A^T y = 0$. Compute $A^T(\alpha x + \beta y) = \alpha(A^T x) + \beta(A^T y) = \alpha \cdot 0 + \beta \cdot 0 = 0$, hence $\alpha x + \beta y \in N(A^T)$

iii. $C(\mathbf{A}) \perp N(\mathbf{A}^T)$ (column space is orthogonal to left null space).

Proof. Consider arbitrary $\boldsymbol{u} \in C(\boldsymbol{A}), \boldsymbol{v} \in N(\boldsymbol{A}^T)$. By definition of $C(\boldsymbol{A}), \exists \boldsymbol{x} \in \mathbb{R}^n$ such that $\boldsymbol{u} = \boldsymbol{A}\boldsymbol{x}$, and by definition of $N(\boldsymbol{A}^T), \boldsymbol{A}^T\boldsymbol{v} = \boldsymbol{0}$. Compute $\boldsymbol{u}^T\boldsymbol{v} = (\boldsymbol{A}\boldsymbol{x})^T\boldsymbol{v} = \boldsymbol{x}^T\boldsymbol{A}^T\boldsymbol{v} = \boldsymbol{x}^T(\boldsymbol{A}^T\boldsymbol{v}) = \boldsymbol{x}^T \boldsymbol{0} = \boldsymbol{0}$, hence $\boldsymbol{u} \perp \boldsymbol{v}$ for arbitrary $\boldsymbol{u}, \boldsymbol{v}$, and $C(\boldsymbol{A}) \perp N(\boldsymbol{A}^T)$.

iv. $C(\mathbf{A}) \cap N(\mathbf{A}^T) = \{\mathbf{0}\}$ (0 is the only vector both in $C(\mathbf{A})$ and $N(\mathbf{A}^T)$).

Proof. (By contradiction, *reductio ad absurdum*). Assume there might be $\boldsymbol{b} \in C(\boldsymbol{A})$ and $\boldsymbol{b} \in N(\boldsymbol{A}^T)$ and $\boldsymbol{b} \neq \boldsymbol{0}$. Since $\boldsymbol{b} \in C(\boldsymbol{A})$, $\exists \boldsymbol{x} \in \mathbb{R}^n$ such that $\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x}$. Since $\boldsymbol{b} \in N(\boldsymbol{A}^T)$, $\boldsymbol{A}^T\boldsymbol{b} = \boldsymbol{A}^T(\boldsymbol{A}\boldsymbol{x}) = \boldsymbol{0}$. Note that $\boldsymbol{x} \neq 0$ since $\boldsymbol{x} = 0 \Rightarrow \boldsymbol{b} = 0$, contradicting assumptions. Multiply equality $\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0}$ on left by \boldsymbol{x}^T ,

$$\boldsymbol{x}^{T}\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0} \Rightarrow (\boldsymbol{A}\boldsymbol{x})^{T}(\boldsymbol{A}\boldsymbol{x})=\boldsymbol{b}^{T}\boldsymbol{b}=\|\boldsymbol{b}\|^{2}=\boldsymbol{0},$$

thereby obtaining b = 0, using norm property 3 (Lesson 4, p5). Contradiction.

v. $C(\mathbf{A}) \oplus N(\mathbf{A}^T) = \mathbb{R}^m$

Proof. (iii) and (iv) have established that $C(\mathbf{A}), N(\mathbf{A}^T)$ are orthogonal complements

$$C(\mathbf{A}) = N(\mathbf{A}^T)^{\perp}, N(\mathbf{A}^T) = C(\mathbf{A})^{\perp}.$$

By Lemma 2 it results that $C(\mathbf{A}) \oplus N(\mathbf{A}^T) = \mathbb{R}^m$. (Reminder: Proof of Lemma 2 is postponed until discussion of the Gram-Schmidt procedure).

The remainder of the FTLA is established by considering $B = A^T$, e.g., since it has been established in (v) that $C(B) \oplus N(A^T) = \mathbb{R}^n$, replacing $B = A^T$ yields $C(A^T) \oplus N(A) = \mathbb{R}^m$, etc.

Remark. The great widespread aplicability of linear algebra results in large part due to the complete characterization of the possible solutions to A x = b provided by the FTLA and the orthogonal decomposition of the domain and codomain.