- Recall: to each matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ associate four fundamental subspaces:

1 Column space, $C(\boldsymbol{A})=\left\{\boldsymbol{b} \in \mathbb{R}^{m} \mid \exists \boldsymbol{x} \in \mathbb{R}^{n}\right.$ such that $\left.\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}\right\} \subseteq \mathbb{R}^{m}$, the part of \mathbb{R}^{m} reachable by linear combination of columns of \boldsymbol{A}

2 Left null space, $N\left(\boldsymbol{A}^{T}\right)=\left\{\boldsymbol{y} \in \mathbb{R}^{m} \mid \boldsymbol{A}^{T} \boldsymbol{y}=0\right\} \subseteq \mathbb{R}^{m}$, the part of \mathbb{R}^{m} not reachable by linear combination of columns of \boldsymbol{A}

3 Row space, $R(\boldsymbol{A})=C\left(\boldsymbol{A}^{T}\right)=\left\{\boldsymbol{c} \in \mathbb{R}^{n} \mid \exists \boldsymbol{y} \in \mathbb{R}^{m}\right.$ such that $\left.\boldsymbol{c}=\boldsymbol{A}^{T} \boldsymbol{y}\right\} \subseteq \mathbb{R}^{n}$, the part of \mathbb{R}^{m} reachable by linear combination of rows of \boldsymbol{A}

4 Null space, $N(\boldsymbol{A})=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x}=0\right\} \subseteq \mathbb{R}^{n}$, the part of \mathbb{R}^{n} not reachable by linear combination of rows of \boldsymbol{A}

The fundamental theorem of linear algebra (FTLA) states that for $A \in \mathbb{R}^{m \times n}$, encoding a linear mapping $\boldsymbol{b}=\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}, \boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\begin{aligned}
C(\boldsymbol{A}), N\left(\boldsymbol{A}^{T}\right) \leq \mathbb{R}^{m}, C(\boldsymbol{A}) \perp N\left(\boldsymbol{A}^{T}\right), & C(\boldsymbol{A}) \cap N\left(\boldsymbol{A}^{T}\right)=\{\mathbf{0}\}, & C(\boldsymbol{A}) \oplus N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{m} \\
C\left(\boldsymbol{A}^{T}\right), N(\boldsymbol{A}) \leq \mathbb{R}^{n}, C\left(\boldsymbol{A}^{T}\right) \perp N(\boldsymbol{A}), & C\left(\boldsymbol{A}^{T}\right) \cap N(\boldsymbol{A})=\{\mathbf{0}\}, & C\left(\boldsymbol{A}^{T}\right) \oplus N(\boldsymbol{A})=\mathbb{R}^{n}
\end{aligned}
$$

- The theorem provides an orthogonal decomposition of the domain and codomain of f
- It specifies the condition on \boldsymbol{x} for $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, namely $\boldsymbol{b} \in C(\boldsymbol{A})$

Lemma 1. Let \mathcal{U}, \mathcal{V}, be subspaces of vector space \mathcal{W}. Then $\mathcal{W}=\mathcal{U} \oplus \mathcal{V}$ if and only if
i. $\mathcal{W}=\mathcal{U}+\mathcal{V}$, and
ii. $\mathcal{U} \cap \mathcal{V}=\{0\}$.

Lemma 2. Orthogonal complements of \mathbb{R}^{m} ($m \in \mathbb{N}$, finite), $\mathcal{U}, \mathcal{V} \leq \mathbb{R}^{m}, \mathcal{U}=\mathcal{V}^{\perp}, \mathcal{V}=\mathcal{U}^{\perp}$, form a direct $\operatorname{sum} \mathcal{U} \oplus \mathcal{V}=\mathbb{R}^{m}$. (proved after discussion of Gram-Schmidt procedure)

Proof. $\mathcal{W}=\mathcal{U} \oplus \mathcal{V} \Rightarrow \mathcal{W}=\mathcal{U}+\mathcal{V}$ by definition of direct sum, sum of vector subspaces. To prove that $\mathcal{W}=\mathcal{U} \oplus \mathcal{V} \Rightarrow \mathcal{U} \cap \mathcal{V}=\{0\}$, consider $\boldsymbol{w} \in \mathcal{U} \cap \mathcal{V}$. Since $\boldsymbol{w} \in \mathcal{U}$ and $\boldsymbol{w} \in \mathcal{V}$ write

$$
\boldsymbol{w}=\boldsymbol{w}+\mathbf{0} \quad(\boldsymbol{w} \in \mathcal{U}, \mathbf{0} \in \mathcal{V}), \quad \boldsymbol{w}=0+\boldsymbol{w} \quad(\mathbf{0} \in \mathcal{U}, \boldsymbol{w} \in \mathcal{V})
$$

and since expression $\boldsymbol{w}=\boldsymbol{u}+\boldsymbol{v}$ is unique, it results that $\boldsymbol{w}=\mathbf{0}$. Now assume (i),(ii) and establish an unique decomposition. Assume there might be two decompositions of $\boldsymbol{w} \in \mathcal{W}, \boldsymbol{w}=\boldsymbol{u}_{1}+\boldsymbol{v}_{1}$, $\boldsymbol{w}=\boldsymbol{u}_{2}+\boldsymbol{v}_{2}$, with $\boldsymbol{u}_{1}, \boldsymbol{u}_{2} \in \mathcal{U}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathcal{V}$. Obtain $\boldsymbol{u}_{1}+\boldsymbol{v}_{1}=\boldsymbol{u}_{2}+\boldsymbol{v}_{2}$, or $\boldsymbol{x}=\boldsymbol{u}_{1}-\boldsymbol{u}_{2}=\boldsymbol{v}_{2}-\boldsymbol{v}_{1}$. Since $\boldsymbol{x} \in \mathcal{U}$ and $\boldsymbol{x} \in \mathcal{V}$ it results that $\boldsymbol{x}=\mathbf{0}$, and $\boldsymbol{u}_{1}=\boldsymbol{u}_{2}, \boldsymbol{v}_{1}=\boldsymbol{v}_{2}$, i.e., the decomposition is unique.
$\boldsymbol{A} \in \mathbb{R}^{m \times n}$
$\rightarrow \mathbb{R}^{m}$
$r=\operatorname{rank}(\boldsymbol{A})$

$$
\begin{array}{rlr}
\mathbb{R}^{n}=C\left(\boldsymbol{A}^{T}\right) \oplus N(\boldsymbol{A}) & \text { usually: } m \geqslant n & \mathbb{R}^{m}= \\
C\left(\boldsymbol{A}^{T}\right) \perp N(\boldsymbol{A}) & & N\left(\boldsymbol{A}^{T}\right) \perp C(\boldsymbol{A}) \\
& & (\boldsymbol{A})
\end{array}
$$

i. $C(\boldsymbol{A}) \leq \mathbb{R}^{m}$ (column space is vector subspace of codomain of $\boldsymbol{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$)

Proof. Consider arbitrary $\boldsymbol{u}, \boldsymbol{v} \in C(\boldsymbol{A}), \alpha, \beta \in \mathbb{R}$. Verify vector subspace properties (Lesson 7 p.4):
i. Inclusion (elements of $C(\boldsymbol{A})$ are in \mathbb{R}^{m}) $\boldsymbol{u} \in \mathbb{R}^{m}$, yes by definition of $C(\boldsymbol{A})=\{\boldsymbol{b} \in$ $\mathbb{R}^{m} \mid \exists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\left.\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}\right\}$. (This immediately results from definitions and will not be shown explicitly in following proofs).
ii. Closed ($\alpha \boldsymbol{u}+\beta \boldsymbol{v} \in C(\boldsymbol{A})$). By definition of $C(\boldsymbol{A}), \boldsymbol{u}, \boldsymbol{v} \in C(\boldsymbol{A})$ implies existence of $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ such that $\boldsymbol{u}=\boldsymbol{A} \boldsymbol{x}, \boldsymbol{v}=\boldsymbol{A} \boldsymbol{y}$. Compute $\alpha \boldsymbol{u}+\beta \boldsymbol{v}=\alpha(\boldsymbol{A} \boldsymbol{x})+\beta(\boldsymbol{A} \boldsymbol{y})=$ $\boldsymbol{A}(\alpha \boldsymbol{x}+\beta \boldsymbol{y})$, and note that since $\alpha \boldsymbol{x}+\beta \boldsymbol{y} \in \mathbb{R}^{n}, \alpha \boldsymbol{u}+\beta \boldsymbol{v} \in C(\boldsymbol{A})$.
ii. $N\left(\boldsymbol{A}^{T}\right) \leq \mathbb{R}^{m}$ (left null space is vector subspace of domain of $\boldsymbol{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$)

Proof. Consider arbitrary $\alpha, \beta \in \mathbb{R}, \boldsymbol{x}, \boldsymbol{y} \in N\left(\boldsymbol{A}^{T}\right) \Rightarrow \boldsymbol{A}^{T} \boldsymbol{x}=0, \boldsymbol{A}^{T} \boldsymbol{y}=0$. Compute $\boldsymbol{A}^{T}(\alpha \boldsymbol{x}+\beta \boldsymbol{y})=\alpha\left(\boldsymbol{A}^{T} \boldsymbol{x}\right)+\beta\left(\boldsymbol{A}^{T} \boldsymbol{y}\right)=\alpha \cdot \mathbf{0}+\beta \cdot \mathbf{0}=\mathbf{0}$, hence $\alpha \boldsymbol{x}+\beta \boldsymbol{y} \in N\left(\boldsymbol{A}^{T}\right)$
iii. $C(\boldsymbol{A}) \perp N\left(\boldsymbol{A}^{T}\right)$ (column space is orthogonal to left null space).

Proof. Consider arbitrary $\boldsymbol{u} \in C(\boldsymbol{A}), \boldsymbol{v} \in N\left(\boldsymbol{A}^{T}\right)$. By definition of $C(\boldsymbol{A}), \exists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{u}=\boldsymbol{A} \boldsymbol{x}$, and by definition of $N\left(\boldsymbol{A}^{T}\right), \boldsymbol{A}^{T} \boldsymbol{v}=\mathbf{0}$. Compute $\boldsymbol{u}^{T} \boldsymbol{v}=(\boldsymbol{A} \boldsymbol{x})^{T} \boldsymbol{v}=\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{v}=$ $\boldsymbol{x}^{T}\left(\boldsymbol{A}^{T} \boldsymbol{v}\right)=\boldsymbol{x}^{T} \mathbf{0}=\mathbf{0}$, hence $\boldsymbol{u} \perp \boldsymbol{v}$ for arbitrary $\boldsymbol{u}, \boldsymbol{v}$, and $C(\boldsymbol{A}) \perp N\left(\boldsymbol{A}^{T}\right)$.
iv. $C(\boldsymbol{A}) \cap N\left(\boldsymbol{A}^{T}\right)=\{0\}$ (0 is the only vector both in $C(\boldsymbol{A})$ and $N\left(\boldsymbol{A}^{T}\right)$).

Proof. (By contradiction, reductio ad absurdum). Assume there might be $b \in C(\boldsymbol{A})$ and $b \in N\left(\boldsymbol{A}^{T}\right)$ and $\boldsymbol{b} \neq \mathbf{0}$. Since $\boldsymbol{b} \in C(\boldsymbol{A}), \exists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}$. Since $\boldsymbol{b} \in N\left(\boldsymbol{A}^{T}\right)$, $\boldsymbol{A}^{T} \boldsymbol{b}=\boldsymbol{A}^{T}(\boldsymbol{A} \boldsymbol{x})=\mathbf{0}$. Note that $\boldsymbol{x} \neq 0$ since $\boldsymbol{x}=0 \Rightarrow \boldsymbol{b}=0$, contradicting assumptions. Multiply equality $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=0$ on left by \boldsymbol{x}^{T},

$$
\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \Rightarrow(\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{A} \boldsymbol{x})=\boldsymbol{b}^{T} \boldsymbol{b}=\|\boldsymbol{b}\|^{2}=\mathbf{0}
$$

thereby obtaining $b=0$, using norm property 3 (Lesson 4, p5). Contradiction.
v. $C(\boldsymbol{A}) \oplus N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{m}$

Proof. (iii) and (iv) have established that $C(\boldsymbol{A}), N\left(\boldsymbol{A}^{T}\right)$ are orthogonal complements

$$
C(\boldsymbol{A})=N\left(\boldsymbol{A}^{T}\right)^{\perp}, N\left(\boldsymbol{A}^{T}\right)=C(\boldsymbol{A})^{\perp} .
$$

By Lemma 2 it results that $C(\boldsymbol{A}) \oplus N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{m}$. (Reminder: Proof of Lemma 2 is postponed until discussion of the Gram-Schmidt procedure).

The remainder of the FTLA is established by considering $B=\boldsymbol{A}^{T}$, e.g., since it has been established in (v) that $C(\boldsymbol{B}) \oplus N\left(\boldsymbol{A}^{T}\right)=\mathbb{R}^{n}$, replacing $\boldsymbol{B}=\boldsymbol{A}^{T}$ yields $C\left(\boldsymbol{A}^{T}\right) \oplus N(\boldsymbol{A})=\mathbb{R}^{m}$, etc.

Remark. The great widespread aplicability of linear algebra results in large part due to the complete characterization of the possible solutions to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ provided by the FTLA and the orthogonal decomposition of the domain and codomain.

