Overview

Log Least squares, normal equations, pseudo-inverse

Overview

Overview
\qquad
Q
\qquad

-

MATH662: L09 Least squares, normal equations, pseudo-inverse D
\qquad

Lions

Least squares:

- normal aqua
- pseudo-inver
- normal equations

Least squares:

- normal equations
- pseudo-inverse
Least squares:
- normal equations
- pseudo-inverse (
- Least squares:
-

\qquad
\qquad
\qquad
\qquad

- pseudo-inverse

seudo-inverse
$+$
\square正 - \qquad

ırmal eq
\qquad
\square
\qquad

- normal equation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\qquad$$\square$
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \square (2)

\qquad

\qquad
2
-

\qquad
\longrightarrow
\square
lic^{2}
$\rightarrow+$
$+2$

\qquad
\qquad
\qquad
\qquad

- \qquad
\qquad
\qquad
\qquad
\qquad -
\qquad

Abstract

\square

Theorem. Given $\boldsymbol{A} \in \mathbb{C}^{m \times n}, \boldsymbol{b} \in \mathbb{C}^{m}, m \geqslant n, x \in \mathbb{C}^{n}$ minimizes the norm of the residual $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}$ iff $\boldsymbol{r} \perp C(\boldsymbol{A})$, e.g.

$$
\boldsymbol{A}^{*} \boldsymbol{r}=0 \Leftrightarrow \boldsymbol{A}^{*} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{*} \boldsymbol{b} \Leftrightarrow \boldsymbol{P b}=\boldsymbol{A} \boldsymbol{x}
$$

with \boldsymbol{P} the orthogonal projector onto $C(\boldsymbol{A})$. The normal equation system

$$
\boldsymbol{A}^{*} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{*} \boldsymbol{b}
$$

has $\boldsymbol{M}=\boldsymbol{A}^{*} \boldsymbol{A}$ nonsingular iff $\operatorname{rank}(\boldsymbol{A})=n$.

```
－If \(\operatorname{rank}(\boldsymbol{A})=n\) ，then \(\boldsymbol{x}=\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{*} \boldsymbol{b}=\boldsymbol{A}^{+} \boldsymbol{b}\) is the solution of the least squares problem， －If \(\operatorname{rank}(\boldsymbol{A})=n\) ，then \(\boldsymbol{x}=\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{*} \boldsymbol{b}=\boldsymbol{A}^{+} \boldsymbol{b}\) is
with \(\boldsymbol{A}^{+}=\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{*}\) the pseudo－inverse of \(\boldsymbol{A}\)
```


\qquad都
 the solution of the least squares problem，
 III

保 solution of the least squares problem
.

\begin{abstract}

Abstract

\end{abstract}

－Pseduo－inverse

$-\quad-2+2+2-2$

解
（
\square

$$
0
$$

$$
0
$$

\square
\square
\square
\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
（

（
\square
－
\qquad

