Overview

- Least squares:
 - normal equations
 - pseudo-inverse

Theorem. Given $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, $m \ge n$, $x \in \mathbb{C}^n$ minimizes the norm of the residual r = b - Ax iff $r \perp C(A)$, e.g.

$$A^* r = 0 \Leftrightarrow A^* A x = A^* b \Leftrightarrow Pb = A x$$
,

with P the orthogonal projector onto C(A). The normal equation system

 $A^*Ax = A^*b$

has $M = A^*A$ nonsingular iff rank(A) = n.

• If $\operatorname{rank}(A) = n$, then $x = (A^*A)^{-1}A^*b = A^+b$ is the solution of the least squares problem, with $A^+ = (A^*A)^{-1}A^*$ the *pseudo-inverse* of A