MATH662：L10 Conditioning and stability
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Mew MATH662：L10 Conditioning and stability
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Mew MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial） MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial） MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial） MATH662：L10 Conditioning and stability
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man
都 MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial） MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der

（（D
\qquad
\square
 MAT．MA662：L10 Conditioning and stability
Overview
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－
－
－ MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MAT．MA662：L10 Conditioning and stability
Overview
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－
－
－
\square Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial） MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der
 MAT．MA662：L10 Conditioning and stability
Overview
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－
－
－ $+$ \square MAT．MA662：L10 Conditioning and stability
Overview
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－
－
－
[

\qquad
\square

7
\qquad
.
\square

Abstract

- or scaling, sudstraction

Overview
－Conditioning：
－problem cond
－of scaling，sub MATH662：L10 Conditioning and stability
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man
 MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）

 －

 MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der

$$
5
$$

． MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der
\qquad
\qquad MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der
 MATH662：L10 Conditioning and stability
Overview
－Conditioning：
－problem condition number
－of scaling，substraction
－polynomial root finding（Wilkinson polynomial）
－Man der

\qquad左
\qquad
\qquad
\qquad
\square
\qquad

\square

- A problem is some function between normed vector spaces $f: X \rightarrow Y$, with f
typically continuous, nonlinear: typically continuous, nonlinear:
- Find primitive $y(t)=\int x(t) \mathrm{d} t, f: \mathcal{L}_{2}(\mathbb{R}) \rightarrow \mathcal{L}_{2}(\mathbb{R}), y=f(x)$
- Find derivative $y(t)=x^{\prime}, f: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), y=f(x)$
- For given basis set $A \in \mathbb{R}^{m \times n}$, find best linear approximant of $\boldsymbol{x} \in \mathbb{R}^{m}$, $\boldsymbol{y}=\arg \min _{\boldsymbol{u} \in \mathbb{R}^{n}}\|\boldsymbol{x}-\boldsymbol{A} \boldsymbol{u}\|, \boldsymbol{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} . \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$.
- All physical phenomena and floating point computations are affected by per-
turbations (quantum fluctuations, thermal background, floating point error)
- All physical phenomena and floating point computations are affected by per-
turbations (quantum fluctuations, thermal background, floating point error)
- A problem is well conditioned if $\delta f=f(x+\delta x)-f(x)$ small for δx small
- A problem is ill conditioned if $\delta f=f(x+\delta x)-f(x)$ large for δx small
- Define absolute condition number $\hat{\kappa}=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\|_{X} \leqslant \delta}\|\delta f\|_{Y} /\|\delta x\|_{X}$者

 －Relate perturbations to a reference quantity，define relative condition number

$$
\kappa=\lim \sup \frac{\|\delta f\|_{Y}}{\| f\left(x \|_{Y}\right.} \cdot \frac{\|x\|_{X}}{\| \delta x}=\sup \frac{\|\delta f\|_{Y}}{\left\|\int(x)\right\|_{Y}} \frac{\|\delta x\|_{X}}{\|x\|_{X}}
$$

$$
\kappa=\lim _{\delta \rightarrow 0} \sup _{\|\delta x\|_{X} \leqslant \delta} \frac{\|\delta f\|_{Y}}{\|f(x)\|_{Y}} \cdot \frac{\|x\|_{X}}{\|\delta x\|_{X}}=\sup _{\delta x} \frac{\|\delta f\|_{Y}}{\|f(x)\|_{Y}} / \frac{\|\delta x\|_{X}}{\|x\|_{X}}
$$

－When f is differentiable（ordinary or Gateaux derivative）$\delta f=J \delta x$

$$
\hat{\kappa}=\|J\|, \kappa=\frac{\|J\|}{\|f(x)\| /\|x\|}
$$

－Examples：
－$f: x \rightarrow x / 2$ is differentiable，$J=1 / 2, \kappa=1$ ，well conditioned
$-f:\left(x_{1}, x_{2}\right) \rightarrow x_{1}-x_{2}$ is differentiable， $\boldsymbol{J}=\left[\begin{array}{ll}1 & -1\end{array}\right]$ ．Use inf－norm

$$
\kappa=\frac{\|J\|_{\infty}}{\|f(x)\|_{\infty} /\|x\|_{\infty}}=\frac{2 \max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)}{\left|x_{1}-x_{2}\right|} \rightarrow \infty \text { for } x_{1} \cong x_{2}
$$

Relative condition number，Jacobian都

$$
8
$$

\qquad

都
\qquad

> .
． －
[
\qquad
\qquad
\qquad
路

．

$$
1
$$

.
.

[^0]0
．
\[

$$
\begin{align*}
& \begin{array}{l}
\text { Wilkinson polynomial } \\
\text { - Let } p_{n}(x)=\prod_{i=1}^{n}(x-i)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \text {. Vietá relations: } \\
-\sum_{i} i=-a_{n-1}, \sum_{i<j} i j=a_{n-2}, \sum_{i<j<k} i j k=-a_{n-3}, \ldots \\
\text { - Define problem to find } j^{\text {th }} \text { root } f: \mathbb{R}^{n} \rightarrow \mathbb{C}, r_{j}=j=f(\boldsymbol{a}) \\
- \text { Condition number } \\
\qquad \boldsymbol{J}=\left[\frac{\partial r_{j}}{\partial a_{0}} \frac{\partial r_{j}}{\partial a_{1}} \cdots \frac{\partial r_{j}}{\partial a_{n-1}}\right] \Rightarrow \kappa=\frac{\|\boldsymbol{J}\|}{\left|r_{j}\right| /\|\boldsymbol{a}\|} \\
- \text { Consider perturbation of just } \delta a_{i} \\
\kappa=\frac{\left|a_{i} r_{j}^{i-1}\right|}{\left|p^{\prime}\left(r_{j}\right)\right|} \approx 10^{13} \text { for } j=15
\end{array} \\
& \text { 正 } \\
& \text { 都 }
\end{align*}
$$
\]

[^0]: .

