• Through QR-factorization system Ax = b is reduced to Rx = y, with $R \in \mathbb{C}^{m \times m}$ upper triangular. The solution is found by backward substitution

for
$$i=m$$
 downto 1
$$x_i = y_i/r_{ii}$$
 for $j=1$ to $i-1$
$$y_j = y_j - r_{ij}x_i$$

Backward substitution is backward stable

Theorem. For $\mathbf{R} \in \mathbb{C}^{m \times m}$ upper triangular, $\mathbf{y} \in \mathbb{C}^m$, there exists $\delta \mathbf{R}$ with $\|\delta \mathbf{R}\| / \|\mathbf{R}\| = \mathcal{O}(\epsilon_{\mathrm{mach}})$ such that the approximate result $\tilde{\mathbf{x}}$ given by the backward substitution algorithm $(\mathbf{R}, \mathbf{y}) \to \tilde{\mathbf{f}} \tilde{\mathbf{x}}$ satisfies $(\mathbf{R} + \delta \mathbf{R}) \tilde{\mathbf{x}} = \mathbf{y}$.

• Since Householder QR-factorization and backward substitution are both backward stable, solving Ax = b through these two methods is also backward stable