Test 1

Solve the following problems (4 course points each). Present a brief motivation of your method of solution. 1. Let $\boldsymbol{A}^{+}(x)$ denote the pseudoinverse of $\boldsymbol{A}(x) \in \mathbb{R}^{2 \times 2}$ defined as

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & x
\end{array}\right], x \in \mathbb{R} .
$$

a) Is $\boldsymbol{A}^{+}(x)$ continuous at $x=0$?

Solution. The SVD of $\boldsymbol{A}(x)=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ differs for $0 \leqslant x<1$, and $-1<x<0$

$$
\begin{array}{ll}
0<x<1 & \boldsymbol{A}_{+}(x)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & x
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \\
-1<x<0 & \boldsymbol{A}_{-}(x)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & -x
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right] .
\end{array}
$$

The corresponding pseudoinverses $\boldsymbol{A}^{+}(x)=\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T}$ are

$$
\begin{array}{ll}
0<x<1 & \boldsymbol{A}_{+}^{+}(x)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & x^{-1}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & x^{-1}
\end{array}\right], \\
x=0 & \boldsymbol{A}_{0}^{+}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
-1<x<0 & \boldsymbol{A}_{-}^{+}(x)=\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & -x^{-1}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & x^{-1}
\end{array}\right] .
\end{array}
$$

Note that

$$
\lim _{x \rightarrow 0, x>0} \boldsymbol{A}_{+}^{+}(x)=\left[\begin{array}{ll}
1 & 0 \\
0 & \infty
\end{array}\right] \neq \lim _{x \rightarrow 0, x<0} \boldsymbol{A}_{-}^{+}(x)=\left[\begin{array}{ll}
1 & 0 \\
0 & -\infty
\end{array}\right] \neq \boldsymbol{A}_{0}^{+}(0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

hence $\boldsymbol{A}^{+}(x)$ is not continuous at $x=0$.
b) Estimate the error $e=\left\|\boldsymbol{A}^{+}(\varepsilon)-\boldsymbol{A}^{+}(0)\right\|_{2}$ for small ε.

Solution. Using above expressions,

$$
e=\left\|\left[\begin{array}{ll}
1 & 0 \\
0 & \varepsilon^{-1}
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right\|_{2}=\left\|\left[\begin{array}{ll}
0 & 0 \\
0 & \varepsilon^{-1}
\end{array}\right]\right\|_{2},
$$

and by properties of the SVD $e=\varepsilon^{-1}$.
c) Comment on floating-point computational implications of your results from (a) and (b).

Solution. The discontinuity of $\boldsymbol{A}^{+}(x)$ indicates unbounded amplification of floating point representation errors in expressions such $\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}$ to compute the (generalized) solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, and more stable numerical procedures are needed than the explicit computation of the pseudoinverse.
2. Find the singular value decomposition of

$$
\boldsymbol{A}=\left[\begin{array}{ll}
-4 & -6 \\
3 & -8
\end{array}\right]
$$

showing all intermediate steps.
Solution. From $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$, deduce that $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \boldsymbol{U}^{T}$, and $\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{V}^{T} \boldsymbol{\Sigma}^{2} \boldsymbol{V}$

$$
\begin{gathered}
\boldsymbol{A} \boldsymbol{A}^{T}=\left[\begin{array}{ll}
-4 & -6 \\
3 & -8
\end{array}\right]\left[\begin{array}{ll}
-4 & 3 \\
-6 & -8
\end{array}\right]=\left[\begin{array}{ll}
52 & 36 \\
36 & 73
\end{array}\right], \\
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ll}
-4 & 3 \\
-6 & -8
\end{array}\right]\left[\begin{array}{ll}
-4 & -6 \\
3 & -8
\end{array}\right]=\left[\begin{array}{ll}
25 & 0 \\
0 & 100
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
100 & 0 \\
0 & 25
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
\end{gathered}
$$

Deduce that the singular values are $\sigma_{1}=10, \sigma_{2}=5$, and the singular vectors are $\boldsymbol{V}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \boldsymbol{U}=\boldsymbol{A} \boldsymbol{V} \boldsymbol{\Sigma}^{-1}=\left[\begin{array}{ll}-4 & -6 \\ 3 & -8\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 / 10 & 0 \\ 0 & 1 / 5\end{array}\right]=\left[\begin{array}{ll}-6 & -4 \\ -8 & 3\end{array}\right]\left[\begin{array}{ll}1 / 10 & 0 \\ 0 & 1 / 5\end{array}\right]=\left[\begin{array}{ll}-.6 & -.8 \\ -.8 & .6\end{array}\right]$.
3. Let \boldsymbol{A}^{+}denote the pseudoinverse of $\boldsymbol{A} \in \mathbb{C}^{m \times n}$. Express the four fundamental vector subspaces of \boldsymbol{A}^{+}in terms of those of \boldsymbol{A}.

Solution. Let $r=\operatorname{rank}(\boldsymbol{A})$ and write the block form of the SVD of \boldsymbol{A} and \boldsymbol{A}^{+}

$$
\boldsymbol{A}=\left[\begin{array}{ll}
\boldsymbol{U}_{1} & \boldsymbol{U}_{2}
\end{array}\right] \boldsymbol{\Sigma}\left[\begin{array}{c}
\boldsymbol{V}_{1}^{*} \\
\boldsymbol{V}_{2}^{*}
\end{array}\right], \boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T}=\left[\begin{array}{ll}
\boldsymbol{V}_{1} & \boldsymbol{V}_{2}
\end{array}\right] \boldsymbol{\Sigma}^{+}\left[\begin{array}{c}
\boldsymbol{U}_{1}^{*} \\
\boldsymbol{U}_{2}^{*}
\end{array}\right]
$$

with $\boldsymbol{U}_{1} \in \mathbb{C}^{m \times r}, \boldsymbol{U}_{2} \in \mathbb{C}^{m \times(m-r)}, \boldsymbol{V}_{1} \in \mathbb{C}^{n \times r}, \boldsymbol{V}_{2} \in \mathbb{C}^{n \times(n-r)}$. The four fundamental spaces of \boldsymbol{A} are

$$
C(\boldsymbol{A})=C\left(\boldsymbol{U}_{1}\right), N\left(\boldsymbol{A}^{*}\right)=C\left(\boldsymbol{U}_{2}\right), C\left(\boldsymbol{A}^{*}\right)=C\left(\boldsymbol{V}_{1}\right), N(\boldsymbol{A})=C\left(\boldsymbol{V}_{2}\right)
$$

The four fundamental spaces of \boldsymbol{A}^{+}are

$$
C\left(\boldsymbol{A}^{+}\right)=C\left(\boldsymbol{V}_{1}\right), N\left(\boldsymbol{A}^{+*}\right)=C\left(\boldsymbol{V}_{2}\right), C\left(\boldsymbol{A}^{+*}\right)=C\left(\boldsymbol{U}_{1}^{*}\right), N\left(\boldsymbol{A}^{+}\right)=C\left(\boldsymbol{U}_{2}^{*}\right)
$$

Deduce that

$$
C\left(\boldsymbol{A}^{+}\right)=C\left(\boldsymbol{A}^{*}\right), N\left(\boldsymbol{A}^{+*}\right)=N(\boldsymbol{A}), C\left(\boldsymbol{A}^{+*}\right)=C(\boldsymbol{A}), N\left(\boldsymbol{A}^{+}\right)=N\left(\boldsymbol{A}^{*}\right)
$$

