Test 1

Solve the following problems (4 course points each). Present a brief motivation of your method of solution.

1. Let $\mathbf{A}^+(x)$ denote the pseudoinverse of $\mathbf{A}(x) \in \mathbb{R}^{2 \times 2}$ defined as

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & x \end{bmatrix}, x \in \mathbb{R}.$$

- a) Is $A^+(x)$ continuous at x = 0?
- b) Estimate the error $e = \|\mathbf{A}^+(\varepsilon) \mathbf{A}^+(0)\|_2$ for small ε .
- c) Comment on floating-point computational implications of your results from (a) and (b).
- 2. Find the singular value decomposition of

$$\mathbf{A} = \left[\begin{array}{cc} -4 & -6 \\ 3 & -8 \end{array} \right],$$

showing all intermediate steps.

3. Let A^+ denote the pseudoinverse of $A \in \mathbb{C}^{m \times n}$. Express the four fundamental vector subspaces of A^+ in terms of those of A.