
MATH662: Numerical linear algebra April 4, 2021

Test 2 Solution

Solve the following problems (6 course points each). Present a brief motivation of your method of solution.
1. Consider a computer satisfying the floating point arithmetic axiom x~ y=(x� y)(1+ �) for all x; y2F�R

(set of real floating point numbers), with machine epsilon denoted by �, ~ a floating point operation, � the
corresponding real number operation. Also consider construction of the Newton interpolating poynomial

pn(x)= y0+ [y1; y0](x−x0)+ ���+ [yn; yn−1; :::; y0](x−x0):::(x−xn−1)= a0+ a1x+ ���+ anxn

of data D=f(xk; yk); xk=kh; k=0; :::; ng, h=1/n, n2N+, with divided differences defined by [yk] = yk,

[yk; yk−1; :::; yk−l]=
[yk; yk−1; :::; yk−l+1]− [yk−1; yk−2; :::; yk−l]

xk−xk−l
=
[yk; yk−1; :::; yk−l+1]− [yk−1; yk−2; :::; yk−l]

lh
:

a) What is the condition number of the problem D!f an?
b) Estimate the error �an produced by error �yj in jth data measurement, i.e., yj~ = yj+ �yj.
c) What is the condition number of the problem h!g an?
d) Is the evaluation of g(h)=an(h) well-conditioned, ill-conditioned or ill-posed? Consider limiting values

of the sampling step size h.
Solution.
a) Note that an=[yn; yn−1; :::; y0]= f(D), and is linear in y, hence an=Fy, with F 2R1�(n+1) the matrix

encoding the linear mapping f . The condition number of the problem is �f = �(F ). (Full credit, the
question asks: �do you recognize linear dependence and recall the condition number of matrix-vector
multiplication?�).

Note. The standard procedure to find the matrix encoding a linear mapping is to apply the mapping
to the standard basis vectors e0;e1; :::;en, i.e.,

F = [ f(e0) f(e1) ::: f(en) ]:

Let an;i= f(ei). When y=ei, pn;i(x) is the interpolating polynomial with roots xj= jh, for j=0; :::;
n but j=/ i, hence has form

pn;i(x)= an;i
Y

j=0;i=/ j

n

(x− jh):

Evaluation at xi gives

pn;i(ih)= an;ih
n

Y
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35−1:
The smallest value of the product is (−1)n/2(n/2)2 , and arises at i=n/2, hence

max jan;ij=4nn−2= kF k:
b) j�anj6�f j�yj j6�(F ) j�yj j.
c) From divided difference recurrence formula, deduce

an=A
nn

n!
=G(n);

with A some coefficient, and an= g(h) =G(1/h) differentiable, hence condition number is given by
derivative

�g=
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(Full credit, questions asks: �do you recognize nonlinear dependence and condition number evaluation
through Jacobian?�)

Notes.
i. The coefficient A is known from divided difference calculus

A=�ny0=

�
n
0

�
yn−

�
n
1

�
yn−1+

�
n
2

�
yn−2− ���;

�
n
k

�
=

n!
k!(n− k)! :

ii. nn/n!> 1, and can be estimated using Stirling's formula (for large n)

lnn! =�n lnn−n) ln
nn

n!
=n) n!

nn =
� en:

This gives

G0(n)=Aen=Ae1/h; �g=
jAj e1/h
h2

:

d) As h! 0, e1/hh−2 rapidly increases and the problem is ill-conditioned.
2. Let A2Rm�m denote the matrix obtained by second-order accurate, centered finite difference approxima-

tion of the Helmholtz equation r2u=−k2 u in (0; 1)� (0; 1) with periodic boundary conditions u(x+ p;
y+ q)= u(x; y), p; q 2Z, h=1/n, n2N+, m=n2, leading to the eigenvalue problem Au=−h2k2u.

(r2u)ij=�
ui+1;j+ui−1;j+ui;j+1+ ui;j−1− 4ui;j

h2
)A= diag([0; :::; 1; :::; 1;−4; 1; :::; 1; :::0])

a) Present an algorithm to reduce A to symmetric Hessenberg form H using Householder reflectors that
preserves eigenvalues of A.

b) Is the algorithm accurate in floating point arithmetic?
c) Is the algorithm forward stable?
d) Is the algorithm backward stable?

Provide either an analysis or a qualitative motivation using established theorems for answers to
(b)-(d).

Solution.
a) Eigenvalues are preserved by similarity transformations A� TAT −1, or A� QAQT for A with

real elements. Start from the standard similarity reduction to Hessenberg form through Householder
reflectors.

Input: A2Rm�m

Output:
for k=1 to m− 2
x=Ak+1:m;k2Rm−k

vk= sign(x1) kxk2e1+x
vk=vk/kvkk
Ak+1:m;k:m=Ak+1:m;k:m− 2vk (vkTAk+1:m;k:m)

A1:m;k+1:m=A1:m;k+1:m− 2 (A1:m;k+1:mvk)vk
T

Note that A is symmetric and banded with semi-bandwidth n, and eliminating redundant multiplica-
tions with zero gives

Input: A2Rm�m

Output:
for k=1 to m− 2
p=min (k+n;m)
x1:n=Ak+1:p;k

vk= sign(x1) kxk2e1+x (or vk=e1−x)



vk=vk/kvkk
Ak+1:p;k:p=Ak+1:p;k:p− 2vk (vkTAk+1:p;k:p)

A1:m;k+1:p=A1:m;k+1:p− 2 (Ak+1:m;k:mvk)vk
T

b) An algorithm f~ to solve problem f is accurate if the relative error is of order machine epsilon �

kf~(x)− f(x)k
kf(x)k =O(�):

The problem is to reduce A to Hessenberg form through an orthogonal similarity transformation

A!!!!!!!!f (Q;H);A=QHQT :

The algorithm constructs an approximation Q through Householder reflectors, Q~ =Q1Q2 �Qm−2, and
is accurate if it is backward stable, with error estimate (cf. Theorem 15.1)

kf~(x)− f(x)k
kf(x)k =O(�(x)�);

where � is the condition number of the problem.
c) Forward stability is defined as

kf~(x)− f(x~)k
kf(x~)k =O(�) for somex~ such that

kx~−xk
kxk =O(�):

Note thatA is symmetric hence unitarily diagonalizable, and the singular values of A are the absolute
values of the eigenvalues �i= j�ij, with j�1j> ���> j�mj. The condition number of A is �(A)= j�1/�mj.
From Au=−h2k2 u note that k = 0, u= 1 is a solution of the eigenvalue problem, hence �m= 0,

implying �(A)!1, the problem is ill-conditioned and the algorithm A !!!!!!!!f
~

(Q~ ;H~ ) is not forward
stable

d) Backward stability is defined as

f~(x)= f(x~) for somex~ such that
kx~−xk
kxk =O(�):

As in Householder triangularization, reduction to symmetric Hessenberg form is backward stable in
the sense that

Q~ H~ Q~ T =QHQT =A~ ; for someA~ such that kA~−Ak=O(�):


