
1 Finite element model of plane wave scattering by sphere
Conservation of momentum for a Hookean elastic medium is described by

�@2u/@t2=(�+2�)r (r�u)¡ �r� (r�u): (1)

The Helmholtz decomposition u=¡r	+r�A leads to wave equations for 	;A=(0; 0; A) are

	tt¡ cp2r2	=0; Att¡ cs2r2A=0: (2)

Looking for solutions of form (	; A)= ( ; a) exp(i!t) gives the Helmholtz equations

(r2+ k2) =0; (r2+ l2)a=0; k= cp/!; l= cs/!: (3)

Consider a solid body S sustaining both compressional and shear waves immersed in a �uid medium F
with negligible shear modulus such that a=0 in F . Let 
 denote the union of the �uid and solid domains,

=F +S. On @
 the displacement is therefore u=¡exp(i!t)r , and the pressure on the �uid boundary is

p= �cpu_ �n=¡i!�cp exp(i!t)
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= pi+ ps; (4)

with the incident-wave pressure is a plane wave

pi(t; z)=¡ip0 exp[i (!t¡ kz)]: (5)

The far-�eld scattered pressure is given by the asymptotic expression (Farran, 1951)

ps(t; r; �)=
¡ip0
kr

exp(i!t)
X
n=0

1

anPn(cos �); (6)

with � the azimuthal angle in the spherical coordinate system x= r sin � cos �, y= r sin � sin �, z= r cos �.
The boundary value problem for  can be stated as8>>>><>>>>:
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with k=!/cp exhibiting a jump on @S due to change of material properties. The problem is axisymmetric
with the gradient operator

r=
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e�; (8)

exhibiting a singularity at r= 0. In Cartesian coordinates the weak form obtained by multiplication with
test function v and integration over 
= [¡a; a]� [¡a; a]Z
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dl=0:

The spherical coordinate weak form is obtained by multiplication with the test functions rv (to avoid r=0
singularity) and integration over 
 Z




rv(r2 + k2 ) d
=0: (9)

Use of the Green formula Z
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'(r �n) d�; (10)

gives Z
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that is expressed in spherical coordinates asZ
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with  (r; �) de�ned on the square domain [0; R]� [¡�; �].
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