MATH76110/26/2018

Lab07: Finite volume method examples

1Conservation laws

Consider the conservation law

𝒒t+𝒇(𝒒)x+𝒈(𝒒)y=0.

and the Riemann problem

𝒒(0,x,y)={ 𝒒l x<0 𝒒r x>0 . (1)

for t>0,-4πx4π.

The above problem is solved in Bearclaw for:

  1. Advection equation qt+(uq)x+(vq)y=0

  2. Burgers equation qt+(12q2)x=0

  3. Wave equation φtt-c22φ=0, transformed to system 𝒒t+𝑨𝒒x+𝑩𝒒y=𝟎, with notation (u,r,s)=(φt,φx,φy)

    𝒒=( u r s ),𝑨=-( 0 c2 0 1 0 0 0 0 0 ),𝑩=-( 0 0 c2 0 0 0 1 0 0 )
  4. Euler equations of gas dynamics

    𝒒=( ρ l m ε ),𝒇(𝒒)=( l l2ρ+p lmρ lH ),𝒈(𝒒)=( m lmρ m2ρ+p mH ),

    with l=ρu, m=ρv, ε=ρE, H=E+12(u2+v2), p=ρRT=(γ-1)(ε-l2+m2ρ).

Each of the above problems will be solved in Bearclaw using literate programming techniques. See lab07 subdirectories for each problem.