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Many of the recently developed high-resolution schemes for hyperbolic conservation laws
are based on upwind differencing. The building block of these schemes is the averaging of an
approximate Godunov solver; its time consuming part involves the field-by-field decomposi-
tion which is required in order to identify the “direction of the wind.” Instead, we propose to
use as a building block the more robust Lax—Friedrichs (LxF) solver. The main advantage is
simplicity: no Riemann problems are solved and hence field-by-field decompositions are
avoided. The main disadvantage is the excessive numerical viscosity typical to the LxF solver.
We compensate for it by using high-resolution MUSCL-type interpolants. Numerical
experiments show that the quality of the results obtained by such convenient central
differencing is comparable with those of the upwind schemes.  © 1990 Academic Press, Inc.

INTRODUCTION

In this paper we present a family of non-oscillatory, second-order, central
difference approximations to non-linear systems of hyperbolic conservation laws.
These approximations can be viewed as natural extensions of the first-order
Lax—Friedrichs (LxF) scheme. In particular, total-variation and entropy estimates
are provided in the scalar case, and unlike the upwind framework, no Riemann
problems need to be solved in the case of systems of conservation laws. The use of
second-order piecewise-linear approximants instead of the first-order piecewise-
constant ones, compensates for the excessive LxF viscosity, and results in second-
order resolution Riemann-solver-free family of centrai difference schemes.

The paper is organized as follows. In Section 2, we derive our family of high
resolution central differencing schemes, using the LxF solver together with
MUSCL-type interpolants. Thus, at each time-level we reconstruct from the
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piecewise constant numerical data, a nonoscillatory piecewise linear approximation
of second-order accuracy. We then follow the evolving solution to the next time
level and end up by projecting it back to a piecewise constant solution. The result
is a family of schemes which takes an easily implemented predictor-corrector form.
The resolution of our method hinges upon the choice of certain local numerical
derivatives with which one reconstructs the piecewise-linear MUSCL-type inter-
polants from the piecewise-constant data.

In Section 3, we concentrate on the scalar conservation law. We discuss a variety
of choices for numerical derivatives and prove that the resulting scalar family of
schemes, under the appropriate CFL limitation, satisfies both the total variation
diminishing (TVD) property and a cell entropy inequality. These properties guaran-
tee the convergence to the unique entropy solution, at least in the genuinely
non-linear scalar case.

In Section 4, we describe several ways to extend our scalar family of central
differencing schemes to systems of conservation laws. The main issue lies again in
the choice of vectors of numerical derivatives. First, we describe a component-wise
extension for the definition of these vectors, which share the simplicity of the scalar
family of schemes. Next, we demonstrate the flexibility of our central differencing
framework, which enables us to incorporate characteristic information, whenever
available, into the definition of numerical derivatives. We continue, by using this
characteristic-wise framework to isolate the contact wave where the artificial com-
pression method (ACM) is employed, while treating the more robust scund waves
using the less expensive component-wise approach. We end up by presenting a
corrective type ACM, which is implemented in a component-wise manner. This
both improves the contact resolution and retains the simplicity of the Riemann-
solver-free scalar approach.

Finally, in Section 5 we present numerical experiments with our high-resolution
non-oscillatory central difference schemes and compare the results with the corre-
sponding upwind-based ones.

Both the gquantitative and qualitative results for a representative sample of
compressible flow problems governed by the Euler equations, are found to be in
complete agreement with the resolution expected by the scalar analysis. Taking into
account the ease of implementation, robustness, and time performance, these results
compare favorably with the results obtained by the corresponding upwind-based
schemes.

2. A FaMmiLy oF HiGH-RESOLUTION CENTRAL DIFFERENCING METHODS

Many of the recently developed high-resolution schemes, which approximate the
one-dimensional system of conservation laws
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are based on upwind differencing. The prototype of such upwind approximations is
the Godunov scheme [4]; it computes a piecewise constant approximate solution
over cells of width Ax=Xx;, ;, —X;_,,, which is of the form,

i(x, 1) =v,(1), X, 1 pSX<Xi,m- (2.2)

To proceed in time, the Godunov scheme first evolves the piecewise constant
solution, o(x, ¢), for a sufficiently small time step A¢. Initiated with #(x, ¢), Eq. (2.1)
consists of a successive sequence of non-interacting Riemann problems. Their
resulting solution at time level 7+ 4¢, can be expressed in terms of the Riemann
solver, R(x/t; w;, w,),

X—X;
u(x,t+At)=R<———le;vf(l), u,-H(l)), X< X< Xy (2.3)

This solution is then projected back into the space of piecewise constant gridfunc-
tions, see Fig. 2.1,

Xp+12
o, (1 + 41) = i(x, z+Az)_—f’ BAHANdy, X, 1 S<X<X,in (24)
172

Integration of (2.1) over a typical cell [x; 1, X;4 1] % [4, t + At] yields
vt + A1) =v,(2)
+ALARO 50,1 (2), v,(2)) = FIRO V5 0;(0), vy ((2))], A= 41/dx. (2.5)
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This shows the upwind property of the Godunov scheme. Namely, if the
characteristic speeds throughout the relevant neighbouring cells, [x; ,x,,,],
are all positive (resp. negative), then (2.5) is simplified into v,(1+41)=
0,0 = A0S0, (D)~ f(w, ()] (resp. v,(t+ A1) =v,(6) - AL f(w, (1))~ f(w,() ).
However, a more complex situation occurs when there is a mixture of both rightgo-
ing and leftgoing waves. In this case, the computation of Godunov’s numerical fiux
in (2.5} requires us to identify the “direction of the wind,” i¢., to distinguish
between the left- and rightgoing waves inside the Riemann fan. The exact {or
appreximate) solution of the Riemann fan may be an intricate task, and in this
context, we mention the field-by-field decomposition proposed by Roe [197], which
intends to simphify this task.

Instead, in this section we propose a high resolution approximation of (2.1},
which is based on the staggered form of the Lax—Friedrichs (LxF) scheme,

vaplt+ 40 =11o;+0,0 01— ALy, (1) = flo, ()] (2.6}

The LxF scheme, [13], is a prototype of a central difference approximation,
which offers a great simplicity over the upwind Godunov scheme {2.5). We observe
that (2.6) can also be interpreted as a piecewise constant projection of successive
non-interacting Riemann problems, which are integrated over a staggered grid, see
Fig. 2.2,

U, bt F Ay =0(x, t + Af)
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The robustness of the LxF scheme, (2.7), stems from the fact that unlike the
Godunov case, here we integrate over the entire Riemann fan, taking into account
both the left- and rightgoing waves. This enables us to ignore any detailed
knowledge about the exact (or approximate) Riemann solver R(-;-,-). Unfor-
tunately, the LxF staggered solver, (2.7), which results in the simple recipe (2.6),
suffers from excessive numerical viscosity, which is evident from the viscous form
[23] v, p() =0, (2) —v,(2)

vt Ar)=v, (1) =5 AL, (1) = fo;_ (1))]
+3 LQ;4 12404 12(1) — Q) 1pdv;_ 1 5(1)]. (2.8)

Indeed, the class of upwind schemes is characterized by a numerical viscosity coef-
ficient matrix Q7 |, ~A|4;. 5|, (here A, ), refers to an approximate average of
the Jacobian of f(v(x, 1)) over the cell [x;, x;, ] x [t t+4t], e.g, [22]). By the
CFL limitation, this amount of numerical viscosity is always less than the amount
of numerical viscosity present in the central LxF scheme, whose non-staggered form
corresponds to Q™*F = I. Consequently, the upwind Godunov-like approximations
have better resolution than the central LxF approximation, though they both
belong to the same class of first-order accurate schemes. This is one of the main
motivations for using upwind schemes as building blocks for the modern shock
capturing methods of higher (than first-order) resolution, e.g., [7, 17, 24].

Alternatively, our proposed method will use the simpler central LxF solver as the
building block for a family of high-resolution schemes. In this manner we shall
retain the LxF main advantage of simplicity: no Riemann problems are solved and
hence field-by-field decompositions are avoided. The main disadvantage of excessive
numerical viscosity will be compensated by using high-resolution MUSCL inter-
polants, [24], instead of the first-order piecewise constant ones in (2.2).

To this end, at each time level we first reconstruct from (2.2) a piecewise linear
approximation of the form

1
L;(x, t):vj(t)+(x—xj)2'—xvj’-, X pSX<Xjyq- (2.9a)

This form retains conservation, ie. (here the overbar denotes the [x;, x,, ;J-cell
average),

Li(x, t)=d(x, t)=v,(1);
second-order accuracy is guaranteed if the so-called vector of numerical derivative,
(1/4x) v}, which is yet to be determined, satisfies

t , @
U= v(x = x;, 1) + O(4x). (2.9b)
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Next, we continue with a second stage, similar to the construction of the centrai
LxF recipe: we evolve the piecewise linear interpolant, (2.9), which is governed by
the solution of successive sequences of noninteracting generalized Riemann (GR)
problems, [17, see Fig. 2.3,

v(x, 14+ 4t)=GR(x, 1+ 4t; L;(x, 1), L, (X, 1}}, X, E<X<X, .

Finally, the resulting solution is projected back into the space of staggered
piecewise-constant gridfunctions

1 ot
u,H/z(zMz):ﬁ(x,z+m)zz—j’ oy, + A dy,  x,<x<x;,,. (2.10)

in view of the conservation law (2.1), the last integral equals

1 Xy +1,2 Y+l
U,H/Z(H—At):E':J. L,(x,t)dx+j L/H(x,z)dx]
X X2

1
Ax

pt+ A4t
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The first two linear integrands on the right of (2.11), L;(x, ¢} and L, \(x, ), are
given by (2.9a) and can be integrated exactly. Moreover, if the CFL condition

4+ max p(A(v(x, D)) <3 {2.12)

XXX 4

Xj Xj+ § Xj+ |

FIGURE 2.3
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is met, then the last two integrands on the right of (2.11), f(v(x;, 7)) and
Sf((x;,,,7)), are smooth functions of t; hence they can be integrated
approximately by the midpoint rule at the expense of O(4t)* local truncation error.
Thus we arrive at

1 1
Uj+1/2(t+At):§ Lo, (1) +v;44(2)] +§ [vj—vj.4]

) O |

By Taylor expansion and the conservation law (2.1),

At 1

v| X t+— ) =v;(1) =z Af, (2.14)
2 2

may serve as our approximate midvalue, v(x;, t+ 4¢/2), within the permissible

second-order accuracy requirement. Here, (1/4x) f; stands for an approximate

numerical derivative of the flux f(v(x = x;, 1)),

1 0
Z;fj/:é;f(v(x:xj, 1)) + O(4x), (2.15)

which is yet to be specified.

We should emphasize that while using the central type LxF solver, we integrated
over the entire Riemann fan, see v(x, ¢+ 4¢) in (2.10), which consists of both the
left- and rightgoing waves. On the one hand, this enabled us to ignore any detailed
knowledge about the exact (or approximate) generalized Riemann solver
GR(-; -, -); on the other hand, this enables us to accurately compute the numerical
flux, {124 f(v(x, 7)) dr, whose values are extracted from the smooth interface of two
non-interacting Riemann problems.

In summary, our family of central differencing schemes takes the easily
implemented predictor-corrector form,

uj(tw‘—ézf):vj(t)—%/lf}, (2.16a)

1 1
Uj+1/2(t+At)=§ [v; () +v;14(2)] +§ [v;—v;, 1]

Ao Ao}

Here the numerical derivatives of both gridfunctions, {v;} and {f;}, should obey
the accuracy constraints (2.9b) and (2.15). In this manner the second-order
accurate corrector step (2.16b) augments the first-order accurate predictor step
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(2.16a) and resuits in a high-resolution second-order central difference approxima-
tion of (2.1).

Remarks. 1. The choice (1/4x)vj=(1/4x)f;=0 in (2.16), recovers the
original first-order accurate LxF scheme (2.6).

2. 1If instead of (2.6) we use the non-staggered version of the LxF scheme,
1 A
o, (t+d0)=5 [y, (1) +1;4(1)] -3 L (D))= flo, ()], (247)

and repeat the reconstruction, evolution, and projection steps described above, then
the resulting high resolution central differencing approximation amounts te

P
N
oy
o0
o

e’

At 1
uj<z+7>=vj(t)—§/1fj’,

1 1
Uj(t+At)=5 [Uj+1([)+vj——1(t)] +E [U}»i _U]/"i'l]

= OO O I

To guarantee the desired nonoscillatory property of these approximations, the
two free ingredients at our disposal, the numerical derivatives (1/4x)9v; and
(1/4x) f;, should be carefully chosen. This issue will be discussed in the next two
sections.

3. THE SCALAR PROBLEM

In this section, we are concerned with non-oscillatory high-resolution central
differencing approximations of the scalar conservation law

ou 0

5;+a(f(u))=0-

e,
o
M i
i

Our family of high-resolution central differencing schemes (2.16) can be rewritten
in the form

Vit + Aty =5 [o;()+o, (D] - g1~ g1 (3.2a)

where the so-called modified numerical flux, g, [18], is given by

an) | 1 1 1, ]
gj-:f(vj(t-{—*‘z—))-{—gv}, v_,.<z+7)=uj(z)—§xfj. (3.2b)
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Here, (1/4x) v} is an approximate slope at the grid point x;,

1, 0
P Uj_:?;c v(x=x;, 1)+ O(4x), (3.3a)

and (1/4x) f7} is the numerical derivative of the gridfunction {f;},

Vo0 e
=== folx=x,, 1)) + O(x). (3.3b)

The constraints (3.3) with smooth (= Lipschitz continuous) first-order perturba-
tions on their right, guarantee the second-order accuracy of the central differencing
schemes (3.2). In order to ensure that these schemes are also non-oscillatory in the
sense to be described below, our numerical derivatives, (1/4x) w;, should satisfy for
every gridfunction w= {w,},

0<w;-sgn(dw;, ,,) < Const-[Min Mod{4w,, ,,, Aw, ;}|. (3.4a)

Here, the Min Mod{-, -} stands for the usual limiter,
MM({x, y} = Min Mod{x, y} =3 [sgn(x) + sgn(y}] - Min(|x|, | y[), (3.4b)

and can be similarly extended to include more (than two) variables. The constraint
(3.4) is required in order to guarantee the total variation dimishing (TVD) property
for the family of central differencing schemes (3.2). We recall that TVD is a
desirable property in the current setup, for it implies no spurious oscillations in our
approximate solution v(x, f) [7].

However, it is well known, e.g., [7, 18], that one cannot satisfy both the accuracy
requirement, (3.3), and the TVD requirement, (3.4), at the non-sonic critical
gridvalues, v;, where Av;, ;- Av;_,<0%#a(v;), a(v;)=df(v)/dv, -, Therefore,
the second-order accuracy requirement, (3.3), must be given up at these critical
gridvalues. Difference schemes with (formal) second-order accuracy at all but these
critical grid values may be classified as having second-order resolution in the sense
that the local truncation error is almost everywhere O(4x)®, and the overall
second-order accuracy does not seem to be degraded in such cases, at least in the

Li-porm. We shall verify the TVD property of the central differencing schemes,
(3.2), with the help of

LEMMA 3.1.  The scheme (3.2a) is TVD, if its modified numerical flux, g;, satisfies
the following gernieralized CFL condition,

1

<‘2‘, Ag, 0 1p=851— & (3.5)

1 Agj+1/2

Av; 1
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Indeed, by (3.2a), the difference v;, ;,(f + 4t)— v, ;{1 + 41) equals

v, aplt+ 4ty —v, (8 + A1)

1 N Ag*+1/2 1 Ag'~1/2
:Avjﬂ/z(-z——/hh +AU]71/2 E—f—)uz!—vjj‘; .
J+1/ 17— 1/

Condition (3.5) tells us that the terms inside the parenthesis are positive and TVD
follows along the lines of [7],

-

TV(0(t+ AD) =Y [0, 2 1ot + A8) — v, 15(2 + AD)] < TV(0(2)). (3.6)

i
Equipped with Lemma 3.1 we turn to
THEOREM 3.2.  Let the numerical derivatives (1/4x)v; and (1/4x) f} in (3.3} be
chosen such that the TVD requirement (3.4) holds, say,
0<v}-sgn(4v;,,,) < Const, - [IMM{4v; 1, 4V, 1}, Const,=«, (3.7a)

0Sf}'sgn(AUjiK/Z)SCOnSt/-- lMM{AU/-+1/2, AUJ_IQH. (37%)}
Assume that the following CFL condition is satisfied
Const, 1 5 .
. <8, = <= 4o — o> —2). 38
Pmaxla@) <, p=igotl<y (SR (8)

Then the family of high-resolution central differencing schemes (3.2), (3.3) is TVD.
Proof. By (3.2b) we have:

PR </:!f(v,url(H-4”/2))—1”(171-0‘"4”/2))‘+’i_ 4v; 4 1n
AL]Ha Av; 1 L8 [dviiip
f(v,H(t—}-Al/?_)) S, (1 + 41/2) ) v, (t+At2) — v, (Z+At/2)5
v (14 482) — v, (1 + 41/2) Av; 41y |
L EUSTL (39)
814v; 1

Our CFL condition (3.8) implies that the first term on the right of (3.9) does not
exceed

;f(vj+1 t+ At/2)) — flv;(t + 4t/2))

v,y (E+A12)— v (1 + A1/2) {éﬂ (3.10)

Using the midvalue v;(1 4+ 4%/2) in (3.2b), we can estimate the second term on the
right of (3.9),

Af}+ 1/2
Av, 1)

v, (t+482)—v,(t + At/z)l
Av;

s Af/,'+1/’25f1,'+1”‘f]"5 {3.11a)
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where in view of (3.7b) and (3.8),

Af j 1
Av;4 )

f;

Av; 1

Sis

Av; 4 1

>

1
émax< ><Constf:—iaﬁ. (3.11b)

Finally, the TVD requirement, (3.7a), gives us an upper bound for the third term
on the right of (3.9),

Av] v; v}
121 < max e I L (3.12)
Av; 4 1y Av; 1) | AV p

Using (3.10), (3.11), and (3.12), we find that (3.9) boils down to the quadratic
inequality

p(l+5ap)+5as<y,
whose solution yields the CFL limitation (3.8).
Remarks. 1. The values o which permit a positive solution of (3.8), >0, are

0<a<4.

2. The TVD constraints (3.7) with « =0 yields v;= f7 =0, which recovers the
staggered LxF scheme (2.6) with the corresponding CFL condition f < 31.

3. The CFL restriction (3.5) is a sufficient but not necessary condition for the
TVD property. In practice one may use higher values of f, up to < 1.

4. A similar analysis carried out for the non-staggered form, (2.18), yields

ﬁSi(,/1+2a—o¢2~1)

instead of (3.8). In practice one may use <1 in this case.

We shall now discuss a few examples of numerical derivatives, which retain both
the second order resolution constraint, (3.3), and the TVD constraints, (3.7). As

our first example for the numerical derivative, v;, we choose

U}ZMM{AUJ'+1/2, ADj,I/z}. (3.133)
This choice may oversmear a strong “discontinuity,” where the order of accuracy

is less significant. A preferable second choice, which allows for a steeper slope near
such discontinuities and yet retains higher accuracy in smooth regions, is given by

v;=MM{adv; . 15, 3 (0,01 —0;_4), 0dv; 0} (3.13b)

The limiting parameter « can range between the values « = 1, which corresponds
to the basic MinMod limiter in (3.13a), and up to o <4, which is permitted by the
CFL conditions (3.8). Similarly, the flux numerical derivative may be chosen as

Ji=MM{A 1, A2} (3.14a)
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which is a special case of

f;zMM{aAfjH/Zs%(fjﬁrl‘fj\l)’ OCAf/‘*l/z}' (3.14b)
A simpier alternative for (3.14) is given by
fi=a(v,)v, (3.15)

where v; is already computed by (3.13). We observe that this choice saves half the
computation time of the MinMod operation; yet, it requires the computation of the
Jacobian, 4(v;), when dealing with systems of conservation laws.

The numerical derivative chosen in (3.13a), (3.14a) satisfies (3.7) with x=1,
which implies the TVD property under the CFL Iimitation (3.8) with

B=1(/7-2)~032,

The numerical derivative chosen in (3.13b), (3.14b) clearly satisfies (3.7} and
consequently the TVD property, for every permissable o, 0 <o <4. We summarize
the above by stating

COROLLARY 3.3. Let the numerical derivative (1/4x) v} be chosen by
vi=MM{4v;, ;», v, |n}; (3.16a)
let the flux numerical derivative be chosen either by
fi=alv;)v, (3.16b)
or
f}=MM{A]§+1/2,AfFL,2}, {3.16¢c)

Then the family of high resolution central differencing schemes (3.2), (3.16) is TVD
under the CFL condition

A-max; ja(v)| <, B=1(/T-2)~032

Similarly, we have

COROLLARY 3.4. Let the numerical derivative {1/4x)v; be chosen by
Vi=MM {240, 1, 5 (v;11 =0, 1), 240,15 }; (3.172)
let the flux numerical derivative be chosen either by
fi=alv;)v] (3.17b)
or

Fi=MM 24,1, 5 (frn— f- 10 24f5 -1 ) (3.17¢)
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Then the family of high resolution central differencing schemes (3.2), (3.17) is TVD,
under the CFL condition,

A-max; la(v)| <B,  B=1(/2-1)~02L

Remarks. 1. We note that the CFL limitations in Corollaries 3.3 and 3.4 are
not sharp. In the first case, (3.16), where a limiter parameter o« =1 was used, the
reconstruction step is a TVD operation; replacing the exact TVD evolution
operator by the midpoint rule in (2.11) together with the final averaging step is also
TVD, under the CFL limitation B < 1. Similarly, one can argue that in the second
case, (3.17), where a limiter parameter « =2 was used, the averaging step retains
the TVD property (though not necessarily the entropy condition), as long as the
CFL condition f < 1 is met. Indeed, this CFL condition was verified as the stability
limitation, by the numerical experiments reported in Section 5.

2. Recently, non-oscillatory schemes were constructed, such that by sacri-
ficing the TVD property, they achieve higher (than second-order) resolution
including the critical grid-values, e.g., the UNO scheme in [12] and the ENO class
of approximations in [9]. To implement such ideas within our framework, one can
borrow their definition of numerical derivative. For example, instead of the TVD
choices (3.4), our central differencing scheme (3.2) may be augmented by the UNO
choice (here 4%v,=v;, —2v,+ v, ;),

vi=MM{dv, ,+iMM(L%; |, 4%)), Av;, ,— s MM(4%,, A%;, )} (3.18)

Theorem 3.2 and its corollaries 3.3 and 3.4 demonstrate high-resolution central
differencing methods which satisfy the non-oscillatory TVD property, and hence are
convergent to a limit solution u(x, r). To guarantec that this limit solution is the

" unique entropy solution of the scalar conservation law (3.1), we shall appeal to the
following cell entropy inequality, see [10],

U(v;1p(t+41)) <5 [U(v) + U, )1 = LG, — G, (3.19)

Here U(u) is a convex entropy function and G, = G(v;, , v;, v;_,) is the numerical
entropy flux which is consistent with the corresponding differential one

Glu, u, )= Fw),  Flu)=| " ) U ),

We recall that Lax has verified such cell entropy inequality for the LxF scheme,
[14]. Following Lax, we will continuously deform v, into v, ,,

v(s)=sv;,+(1—58) v, ,, v(0)=v;,,v(1) =0, (3.20a)
and, in a similar manner we will further deform v(s) into v

o(r, s)=rv(s)+(1—r)v, 4, v(0,s)=v,, (, v(1, 5) =v(s). (3.20b)

J+ 1

In the Appendix we prove
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LEmMMA 3.5. Let g(v) be a piecewise differentiable interpolant of the gridfunction
{g;}. Then the following identity holds,

U, (1p(t+4) =5 [U(v; ., + Ulp;)]
‘*J% g'(v)dv— Ry, 1 (g(v)). (3.21}

Here the residual term, R; , ,(g)= Hm( (v)), is given by,

RY (g0 = (4,10 | | sU(0(r, )

[3—Ag'(o(r, )1 - [5+ Ag'(v(s)) ] ds dr. (322)

Adding and subtracting

ij U'(u) f() duEF(viH)_F(Ui)’

by
then after integration by parts, the right-hand side of {3.21) will amount to:
U(v; 4 1p(t + 41)) =3 [U(v; 4 1) + Ulv))]
= ALF(v; ) — Flo))1 = 2U'(v) - (g(v) — foDly !
+A[ 7 U 0) (g0) — f0) do— REL | (g(0))

Consequently, the inequality
) J "(0) - (g(v) — f(v)) do— RY, o g(v)) <O (3.23)

provides us with a sufficient condition for the family of central differencing schemes
(3.2) to satisfy the cell entropy inequality, (3.19), with numerical entropy flux
G;=F(v;)+ U'(v;) - (g(v;) — f(v,)). This brings us to

Lemma 3.6. Let g(v) be the piecewise linear interpolant of the modified flux
gridfunction {g,},

Agj+1/2
A0,y

gv)=

(v—v)+ g, min(v;, v,, ) <v<max(v, v;, ). (3.24)

Assume that the central differencing schemes (3.2), satisfy the TVD constraint
{consult (3.7)),

0<v,-sgn(4v,, 1) < Const, - IMM{dv,, 1, 4v,_,,}l, Const,=a<1, (3.25a)
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where

ZVUH =40 - [1-4 (mflx S ((x)) - 4v; 0 10)" 17T (3.25b)

The entropy dissipative limiter in (3.25b), is introduced in order 1o prevent the
nonexpansive entropy violating rarefactions, consult [ 18, Section 8].

Moreover, assume that the flux numerical derivative satisfies the TVD constraint:
Const,
Const,

0< f}-sgn(dv; ;) < Const- [IMM{Av;, 5, Av,_ 5}l =f, (3.25¢)

so that te CFL condition (3.8) holds. Then the following inequality holds:

17 (0) =) do— R pe@) <0, U =4t (326)

Y

Remarks. 1. We observe that in the genuinely non-linear (GNL) case, where,
say, f">0, the entropy constraint (3.25b) becomes effective only in rarefactions
cells where Av;, 1/, >0, in agreement with [187]. It retains the second-order resolu-
tion of the central differencing schemes (3.2), except for a finite number of critical
cells which contain strong rarefactions, (4v;, ,,)" ~ 1, where it reduces (3.2, (3.3)

to the original LxF scheme.
2. Lemma 3.6 applies to choices of numerical derivatives, v}, subject to the
TVD constraint (3.7a) with 0 <« < 1. In practice, higher values, « > 1, can be used.

Lemma 3.6, which is proved in the Appendix, shows that our central differencing
TVD schemes (3.2), (3.7) fulfill the sufficient condition (3.23) and consequently the
cell entropy inequality (3.19), with respect to the quadratic entropy function
U(u)= 1 u? Thus, the limit solution of our central TVD schemes, u(x, t), satisfies

2 /1 ) “
5(5u2)+5)—c(nu»<0, Flu)= | uf"(u) du

This singles out u(x, t) as the unique entropy solution of (3.1), at least in the GNL
case [2]. We have shown

THEOREM 3.7. Consider the GNL scalar conservation law (3.1). It is
approximated by the family of high resolution central differencing schemes (3.2), (3.3)
which satisfy the TVD and entropy constraints, (3.25). Then, if the CFL condition
(3.8) holds, we have:

1. second-order resolution;
2. total variation diminishing property,
3. a consistent quadratic cell-entropy inequality;

and, as a consequence of 2 and 3:
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4. the corresponding central differencing schemes converge to the unique physi-
cally relevant solution of the GNL conservation law (3.1).

We shall close this section with some scalar numerical examples. We consider the
approximate solution of the inviscid Burgers’ equation

u+(3u’), =0, (3.27)

using several of the previously mentioned central differencing schemes. They
mclude:

1. The first-order LxF scheme in its non-staggered form (2.17).

2. The second-order non-oscillatory central differencing scheme (2.18),
{3.13a), (3.15). This is the ordinary non-staggered version of our central differencing
which will be referred to as ORD.

3. The second-order non-oscillatory central differencing scheme (3.2), (3.13a},
(3.15). This is the staggered version of our central differencing which will be referred
to as STG. :

Equation (3.27) is solved with two sets of initial conditions. In the first case, we
have the smooth 1-periodic initial data,

u(x, 0) = sin(mx). (3.28)

The well-known solution of (3.27), (3.28a), e.g., [15], develops a shock discon-
tinuity at .~ 0.31. Table I shows us the L, norm of the errors at the pre-shock
time r=10.15. It indicates the first-order accuracy of the LxF scheme in contrast to
the second-order accuracy of our central differencing, ORD and STG. In Table |
we also recorded the same L, norm of the errors at the post-shock time 1= 0.4. The
presence of a shock discontinuity in this case, reduces the global L, error to first
order. However, the central differencing STG scheme performs somewhat better
than the central differencing ORD scheme and they both have better resolution
than the first-order LxF scheme in shock-free zones.

TABLE 1

L-Norm of the Errors for Numerical Solutions of u, + wu, =0, u(x, 0) = sin{nx)

t=015 =04
N LxF ORD STG LxF ORD STG
40 0.023702 0.002620 0.000859 0.044449 0.003612 0.000849
80 0.12249 0.000667 0.000232 0.023486 0.001291 0.000277
160 0.006246 0.000169 0.000061 0.011383 0.000498 0.000098

320 0.003158 0.000043 0.000016 0.005235 0.000209 0.000038
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This behavior is amplified in the case of solving Burgers’ equation (3.27), with
Riemann initial data

u(x, 0)={1’ x<0 (3.28b)

0, x=20.

In this case the steady shock solution is resolved by the numerical schemes as a
viscous profile shown in Fig. 3.1. Figure 3.1 iliustrates the over-smearing of the LxF
profile, when compared with those of the ORD and STG schemes. Once more, we
observe that the STG scheme has somewhat better resolution than its non-
staggered counterpart ORD. Yet, the CFL limitation is the non-staggered form,
B <1, results in a better time preformance than the STG scheme which is subject
to the CFL limitation B<i. (We recall that the sufficient TVD constraint in
Theorem 3.2 is more restrictive than the usual CFL limitation; indeed, we note
that the numerical solution by the ORD version of our scheme is TVD under CFL
limitation B<0.75, yet its variation siglhtly increases with f=0.95.) In either case,
these easily implemented non-oscillatory central differencing outperform the first-
order LxF one.

4. SYSTEMS OF CONSERVATION LAWS

In this section, we describe how to extend our family of scalar central differencing
schemes to the one-dimensional system of conservation laws,

T4 (f)=0. @1)

Here u(x, t) is the unknown N-vector of the form
u=(u,(x, t), us(x, 1), ..., up(x, 1)),
and f(u) is the flux vector,
@)= (f1(), fo(t), o fu))T,

with an N x N Jacobian matrix,

of,
A, (uy, ..., uN)=<é;’i>, p,q=1,.,N.
q

Our approximate solution at the gridpoint x; is given by the N-vector,

U—( 15 jZa'avj,N)Ta

and the corresponding vector of differences, Av,,,,=v;,;—v;, consists of
N-components denoted by Av; | 1, =04 16— U; 4
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Equipped with these notations, our family of high-resolution central differencing
schemes (3.2), (3.3), takes the form,

U4 10(t+ At) =3 Lo () 4o, (D)]—Alg 1 — g1, {4.22)

where the modified numerical flux, g;, is given by

At | At L, ., A
gj:f<v, (H——z—)) +§7,vj’ v; (t-i—;) :v,(t)—z/vf]. {4.2b)

As before, the computation of g; and v;(z + 4¢/2) requires the numerical derivatives
of the gridfunctions {v;} and {f;}. This time we have to choose two N-vectors of

numerical derivatives,
1

! ’ 12 ’ T { .
T (V15 V)25 o DjN) S {4.38)

1
= U s e ) (4.3b)
X

In the rest of this section, we shall describe the pros and cons of several choices for
these vectors of numerical derivatives.

QOur first choice is a component-wise extension of the scalar definition in
Section 3. To this end we may use either (4.4a),

Ve =MM{4v,, 14, 40, 154}, k=1,..,N, {(44a)
or the more general (4.4b),

Vi =MM{aAV; 1 5 (010 — Vi 049,12 )s k=1,., N, (44b)

g
or nstead, use the UNO-like numerical derivative in {3.18),
U =MM{dv;, ,,,+3iMM(4%,_, ,4°v,,),
AV, — 3 MM(A%0,,, 470, 4 4) ), k=1,.,N. {(4.4¢)
A possible choice for the vector of numerical flux derivative may be
fi=A,)v;. (4.5}

This approach involves multiplication of the Jacobian matrix by the vector of
derivatives, vj. This multiplication may be avoided if we use a component-wise
definition for the vector of numerical flux derivatives, f;, in analogy to (3.14). For
example, we may use

Fia=MM{4f; 1w Af5 1) (4.6a)
or, alternatively,

Fie=MM{adf; 1p ks o= fioid 2df, i it (4.6b)

581/87/2-13
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We observe that the Jacobian free form (JFF), (4.4), (4.6) avoids the use of the
Jacobian matrix A(v) required by (4.4), (4.5), at the expense of carrying out the
MinMod operation twice.

The resulting central differencing schemes, (4.2), which are based upon the
component-wise definition of the numerical derivatives in (4.4)-(4.6), share the
simplicity of the scalar framework. Namely, no Riemann problems are solved and
consequently characteristic decompositions, required in order to distinguish
between the left- and rightgoing waves inside the Riemann fan, are avoided. At the
same time, our central differencing approach is flexible enough so that it enables us
to incorporate characteristic information, whenever available, in order to achieve
improved resolution.

Our next choice shows how to incorporate the characteristic information into the
definition of the numerical derivatives. To this end we shall employ a Roe matrix,
4, i+1p=A(v;,v;, (), namely, an averaged Jacobian, A i11p, satisfying, e.g,
[11,19],

f(Uj+1) f(U) A]+1/2 (]+1 Uj)a (4.7)

and having complete real eigensystem {d; ., . R, L1 c1, k=1,.., N. Let us pro-
ject the vector of differences 4v,, ;, onto {R, w12} 1€, we use the characteristic
decomposition

+1/2—Z i+ 12,0k j+1/2k’ k=1,..,N, (4.8a)

where
dj+1/2,k_L+1/2k AV, 1, L;-R;=6,, k=1,..,N. (4.8b)

Then the corresponding projection of the flux vector of differences is given by

Afj+l/2:Z&j+1/2,kdj+ 1/2,kRj+1/2,k- (4-9)
k

Now, a possible characteristic-wise choice for the numerical derivatives in analogy
with (4.4), may be (here R, is denotes the averaged eigenvector centered at x = Xx;),

Uik = > MM {4 1015 & 10,0} Rk (4.10)
k
and the numerical flux derivatives can be calculated as

[i=4;4100; (4.11)

Once again we can use the JFF and avoid the multiplication of Roe’s matrix by the
vector of numerical derivatives, if instead of (4.11) we employ, consult (4.9),

]",k = Z MM{&qu 1/2,kéj+ 1/2,k> O’C‘j-‘ 1/2,kdj— l/2,k} Rj,k' (412)
k



NON-OSCILLATORY CENTRAL DIFFERENCING 429

As an example, let us consider the Euler equations,

1
= m |+ pu’ =0, p:("/—})-<E~§pu2>. (4.13)
u(E+ p)

Here p,u,m=pu, p and E are respectively the density, velocity, momentum,
pressure, and total energy. The correspondmg Roe matrix, A( v;, 1), 1s associated
with the eigensystem {@, 5, R, +12.4 §» Where the elgenvalues a, + 12,4 r€ given by

~ - A " ~ Ay
A ina =Y~ G ;127 Uy a;+1,23—u +1/2+C,+1/2> (4.14)

and the right eigenvectors are given by

1 i P
Riiip =] 4=¢ ) Rivip.=| @ ) R 1ps=) t+¢
3 A 1 A2 3 an L
H—ué],,1p U djv1p HA+at §; 0

The average quantities on the right of (4.14)-(4.15) given in [197 are

_Gewy s e HD
> W 416)

= oD@, H=L

where {w) =% (w,+w,, ) denotes the usual arithmetic mean. This brings us to the
characteristic decompos1t10n (4.8), where the characteristic projections,

OA‘;‘H/z,):%(’h_’?z)s djﬂ/z,z:AP/H/z"ha ﬁjJrl/l %(771'!”72) {4.17a)

are expressed in terms of 4y, #,, which are given by [19], {7]

m=4p,12/87 1 (4.17b)
’72—(47’7 +1/2_AP]+1/212/+1/2)/5/+1/2- (4.17c)

We note that the second contact field associated with ﬁ] +1/2.2 1s independent of
the square root which is required only in the computation of the mean value sound
speed ¢;, . Since this field is a linearly degenerate, it lacks the strong entropy
enforcement typical to the other two genuinely non-iinear field, and therefore, is
usually smeared by numerical schemes. In our next choice of numerical derivatives,
we incorporate only partial characteristic information. Namely, we isolate the less
expensive (i.e., square root-free) characteristic projection on the contact field and
use the component-wise approach for the other two fields.
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Thus, we first separate the contact field,

Apj i1 Ap;.p 1
Ay gp | = Amypip | —Gpapa-| @ ) (4.18)
AE1+1/2 AE/’+1/2 %ﬁz j+172
and then define the vector of numerical derivative as
P," L Aﬁj-{» 1/2s Aﬁ;; 1/2
mi |=MM{d; 12,8 1p2}-| <G> | —MM | dit; 1, A,y | (4.19)
E; sa*) |,

AEj+1/2: AE‘j~l/2

Similarly, computing the numerical flux derivative with a characteristic approach
applied only to the isolated contact wave,

Af; 101 Af; 4121 1
Aj?;ur 12,2 | = Afj+ 1722 | — Aj+ 1/2,2 'dj+ 1/2,2° i s (4.20)
Afj+ 1/2,3 Afj+ 1/2,3 %ﬁz J+1/2
amounts to
i L
fiz |= MM(&j+1/2,2dj+l/2,27 & 102G 1p2) | U
Sis Gaty

AJ7j+ 1/2,12 A,7;~1/2,1
- MM Af;+ 1/2,25 A];‘— 1/2,2 (4-21)
Aj}+1/2,3, 42—1/2,3

The latter approach enables us to use effectively the artificial compression

method (ACM) on the isolated contact field, e.g.,, [6, 7]. To this end, the contact
wave isolated in (4.19) is modified by

pj l
m; :[MM{dj+l/2,25dj—1/2,2}+9jrj]' i)
E; 3@ 15
APj g1y, APj 1y
—MM | 4y g, A1y |, (4.22a)
AEj+1/2= AEjfl/Z i

where 0; and r; are given by

9 = lozj+1/2,2_ Aj~l/2,2|
FAE” 5 ’
iaj,+ 1/2,2? + ioc~, 1/2,2i

(4.22b)
r;= MM {3} (1 — My 1)? @y 12,2 s(1—4a,_ 12)? @122} (4.22¢)
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Finally, we shall mention an alternative approach to the characteristic implemen-
tation of the ACM in (4.22). To this end, the artificial compression is implemented
as a further corrector step to the component-wise approach presented in
{4.2a}-(4.2b). This corrective type ACM takes the form,

Uﬁ([‘%‘At)=UJ(I+AI)"“8(W]-+1/2_ijl/z): 0<8<1 (4233_}

Here, the compression coefficient, ¢, and W), are given by

w Aw; i Av; >0,

D MO L
W/+1/z~{

w;=MM{ 4o, Dri> AU, 1]
' i—1/22 YRL> + 12 )
Wit Aw; (Ao, <0,

J

(4.23b)

where v g, is related to subcell resolution information (Harten, private communica-
tion, [8]),

Ve =0 ((t+At)—v; ((t+At)—4x;, (8,1 +0; 1),

(4.23¢)
5] = MM{AUJ- 1/2s Av]+ 1/2}'

The result is the central differencing scheme (4.2), appended by the component-
wise definitions of numerical derivatives in (4.4)-(4.6), and complemented by the
ACM corrector step (4.23). This scheme, unlike the characteristic-wise implementa-
tion of the ACM in (4.22), enjoys the simplicity of the component-wise approach,
and at the same time, enables us to deal effectively with the delicate contact wave.
We remark that one should be careful not to overcompress discontinuities using
such corrective type artificial compression: it should be implemented after the
rarefaction waves have evolved using an appropriately chosen compression coef-
ficient e.

5. NUMERICAL EXAMPLES

In this section, we will present numerical examples which demonstrate the perfor-
mance of our family of high resolution central differencing schemes for systems of
conservation laws. We consider the approximate solution of the Euler equations of
gasdynamics, see Section 4,

0 i 0 " 1

—_— — 2 =3 = — . —_—— 2 == 3

Ey m +6x pu 0, p=(y—1) (E Zpu ), m=pu. {51}
E u(E+p)

We experiment with the following members from our family of high-resclution
central differencing schemes:
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1. The central differencing scheme (4.2), (4.4a), (4.5). This is the component-
wise extension of the scalar STG scheme presented in Section 3 and is therefore
referred to by the same abbreviation.

2. The central differencing scheme (4.2), (4.4b), (4.5) with a limiter value
oo = 2. This scheme is referred to as STG2.

3. The component-wise UNO-type version of our scheme, (4.2), (4.4c), (4.5).
It is referred to as STGU.

4. The scheme STG with the addition of the corrective type ACM described
by (4.23) is referred to as STGC.

All the above examples use component-wise definitions for the vectors of numerical
derivatives, and are based on the staggered grid formulation. Our last example is
based on non-staggered LxF scheme, namely,

5. The central differencing scheme (2.18), (4.4a), (4.5). This is the component-
wise extension of the scalar ORD scheme presented in Section 3 and is therefore
reffered to by the same abbreviation.

For the purpose of performance comparison we include here the results of several
well-known upwind and central schemes as well. These schemes include:

1. The first-order central non-staggered LxF scheme, (2.17) [13].
2. The first-order accurate Godunov-type scheme of Roe, e.g. [7].
3. Harten’s second-order accurate upwind ULT1 scheme, [7].

4. Harten’s second-order accurate upwind ULT1C scheme, [ 7], where artifi-
cial compression is added to ULT1 in the linearily degenerate contact field. It is
referred to as ULTC.

We solve the system (5.1) with three sets of initial conditions. Our first example is
the Riemann problem proposed by Sod [21] (abbreviated hereafter as RIM1),
which consists of initial data

v, x<0,v,=(1,0,2.5)T

52
U,, x>0,v,=(0.125,0,025)". (5:2)

vix,0)= {

Table I shows the time performance of the various schemes. All the schemes have
time performances of order O(NX)? where NX is the number of spatial cells.
Table III shows the L, norm of the errors. Though the results are field dependent,
the “quatitative picture” is favourable with the central differencing schemes. Figures
5.1--5.3 include a comparison between the numerical solution and the exact solution
(shown by the solid line), e.g., [ 3, 207, at 7 =0.1644. As expected, the overall resolu-
tion of the first order schemes is outperformed by the second order schemes.

We observe that our second-order staggered schemes, STG, STG2, and STGU,
and similarily, the second-order upwind ULT1 scheme, smear the shock discon-
tinuity over two cells. The contact discontinuity, however, is more delicate: here we



TABLE II

Computation Time of Riemann Problems, Results at 1=1.0

ULT1/C STG ROE ORD LxF STGC STGU  STG2 NX

RIM1
1.23 1.23 0.74 0.69 022 1.43 1.47 1.37 50
493 4.75 292 27 0.85 5.67 5.88 543 100
19.81 19.32 11.68 10.71 337 22.74 2349 21.66 200

RIM2
2.87 2.74 1.72 1.55 0.48 3.24 335 3.07 50
11.54 10.93 6.83 6.16 1.90 12.88 13.30 12.22 100

46.34 43.50 2727 24.40 7.52 51.46 53.20 48.83 200

Notes. 1. Due to our method of implementation, ULT! and ULTC have the same computation
time. In fact, ULT! is somewhat faster then ULTC.
2. All the above schemes use a CFL number of 0.95, except for the versions, STG*, which use a
CFL number of 0.475.

TABLE 1II

Riemann Problems, L; Norm Errors

Density Velocity Pressure

Nx 50 100 200 50 100 200 50 100 200

Scheme
Riemann Problem—RIM1, t=0.1644

LxF 003121 002460 0.01769 0.06651 004583 002814 0.03602 0.02458 0.01582
ROE 001918 001308 0.00836 003224 002090 001145 001762 001108 0.00666
ORD 001868 0.01026 0.00578 0.03315 001807 000959 0.61630 0.00861 0.00460
STG 001495 0.00741 0.00409 002812 0.01105 0.00550 001232 0.00581 0.00294
ULT1 001338 0.00806 0.00437 0.02933 001177 000820 0.01285 000736 ©.00362
STG2 01241 0.00619 0.00297 0.02449 001132 000494 0.01019 0.00487 (.00228
STGU 001146 000544 0.00291 0.02300 0.00816¢ 000403 0.00961 0.00432 0.00216
STGC 000982 0.00322 0.00172 0.01994 0.00481 0.00276¢ 0.00705 0.00270 0.00153
ULTC 001269 000715 0.00361 002923 001761 000804 0.01283 0.00735 0.00362

Riemann Problem—RIM2, t=0.16

LxF 0.12162 0.09044 0.06165 0.13523 0.09294 0.05557 0.15860 0.10767 0.06537
ROE 006630 004334 0.02827 0.07397 0.04144 002192 0.08399 0.04826 0.02655
ORD 006791 0.03824 002231 007158 003623 0.01709 007836 0.04056 001995
STG  0.04972 002903 0.01776 0.04392 0.02416 0.01307 005118 002669 001426
ULT{  0.04518 0.03572 001477 0.05570 0.02603 001094 0.06075 0.02841 0.01206
STG2 003473 002129 001151 003369 001655 0.00849 0.03956 0.02037 0€.00988
STGU 003668 002152 001302 0.03323 0.01657 001046 003907 0.02031 001121
STGC 002764 0.01291 0.00647 0.02285 0.01356 000836 0.02355 001409 0.00873
ULTC 00300t 001566 000872 0.05504 002545 001074 005997 002784 0.01183

Notes. 1. All the above schemes use CFL number of 0.95, except for the staggered versions, STG*,
which use a CFL number of 0.475.
2. The underlined results indicate the smallest L, norm errors in every columan.
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observe smearing of about 5-6 cells by the second-order schemes, both in the cen-
tral and upwind cases. We can also observe the over- and undershoots generated
by both the upwind ULT1 and central STG2. These unsatisfactory results suggest
to introduce ACM in the contact field. For this purpose we present the upwind
ULTC scheme and the central component-wise STGC scheme in Fig. 5.3. We note
that the ACM is applied in STGC only at the last 10% of the time steps with the
compression coefficient &=10.625. This results in two cells resolution of the contact
wave and somewhat better resolution in the other waves as well. Yet, small over-
and undershoots which are due to overcompression, still remain.

Our second Riemann test problem (abbreviated hereafter as RIM2) is the one
proposed by Lax [13]. It is initiated with,

v, = (0445, 0.311,8.928)T, v, =(0.5,0, 1.4275)7, (5.3)

and the results at ¢ =0.16 can be found in Figs. 5.4-5.6. The density profile in RIM2
lacks the monotonicity we had in RIM1, and therefore, it is more difficult for “nen-
oscillatory” numerical schemes to recover the contact wave and the intermediate
“plateau” which follows. Consequently, the upwind schemes perform here some-
what better than the central schemes: ULTC resolution is better than STGC which
has more over- and undershoots than before. We note that STG2 has better resolu-
tion and L, errors than STGU in all fields. This is due to the fact that STG2 has
steeper slope near discontinuities, consult Section 2. For comparison purposes, we
also included, in Fig. 5.5, the results of the nonstaggered central difference scheme
ORD for the RIM2 problem. We recall that the CFL limitation in the staggered
case, f <3, is now doubled to be f < 1, consult Section 3. Moreover, a component-
wise reconstruction of the vector of numerical derivatives, enabled us to avoid any
Riemann solver in this nonstaggered case. Consequently, the ORD scheme is two
times faster than the staggered central versions based on STG, as well as the
upwind scheme ULT1 which necessitates the (approximate) solution of a Riemann
problem at each cell. However, the resolution of this nonstaggered version, ORD,
deteriorates when compared to the staggered versions and the upwind methods.
Finally, we note that the upgrade from the first-order LxF to either STG or ORD
versions, results in a substantial improvement in resolution.

Our third problem, discussed by Woodward and Collela in [257, consists of
initial-data,

v, 0<x<0.1,
u(x,0)=<v,, 0.1<x<09, (5.4}
v,, 09<x<1,

where p,=p,,=p, =1, m;=m,=m,=0, p,=100, p,, =001, p, = 100. A solid wall
boundary conditions (reflection) is applied to both ends. We present the results of
STG2 and ULT! with 400 cells in Figs. 5.7-5.8 at t =0.03 and r =0.038 respectively.
We observe that STG2 compares favourably with the second-order upwind ULT!
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scheme. The evolution of the Woodward—Collela problem (5.4) is governed by a
complicated series of wave interactions [25]. Therefore, the numerical results of the
STG2 scheme in Figs. 5.7-5.8 are particularly instructive, since they are based on
a simple component-wise reconstruction and do not involve any field-by-field
decomposition.

In summary, we may conclude that when strong discontinuities are present,
STG2 seems to offer the best results, STGC can be tuned to obtain sharp resolution
at the expense of overcompression, and the ORD version was found to be the most
economical. Further extensive numerical experiments done along these lines are
reported in [16].

APPENDINX: ON A CELL ENTROPY INEQUALITY

In this section, we provide the promised proofs for Lemmatta 3.5 and 3.6, which
verify the cell entropy inequality for our family of scalar high-resolution central
difference methods.

We begin with a proof of Lemma 3.5. Let R, ,(g) denote the difference,

Ry yal8) =4 LU, )+ U= 2 [ U'(0) £'(0) do— Ulo, . yalt +4D)). (A1)

Y+l
Y

We now continuously deform v,(s) = v(s) =sv,+ (1 —s) v, ,, between v,=v(0) and
v; . =v(l), see (3.20a). With this in mind, the RHS of (A.1) becomes a function of
the continuation parameter s, and R, ,(g) may be rewritten in the form

L d
Rycip(g)=] = [RHS] ds (A2)

From (3.2a) we may find the dependence of v,, (7 + 47) on the continuation
parameter s (for simplicity we omit the explicit dependence on time):

Uy 1pfs) = 3 [o(s) +v; 1] —ALg o1 — glols)], {A.3)
which in view of
d
;l;v(s)z —Av, 4 4y, (A4}
yields
d , 1 ,
:i; U(Uj+1/2(5')): -U (Uj+1/2(5)) E‘f‘ig (v(s)) 'AU;'H/z- (A.5)

In a similar manner, we have

d !
7 J(s)) = —U'(v(s) - 4010, (A6}

581/87,2-15



460 NESSYAHU AND TADMOR

and Leibnitz rule gives us
d ! !
i U@ |= U ) 80N Aoyia (AT)

Substitution of (A.5), (A.6), and (A.7) into (A.2) yields

1ri
R, 1/2(g) = —Av;, 1/2 L [5“" Ag’(U(S):l LU (v(s))— U,(U/+1/2(S))] ds. (A.8)

Next, we use the continuation v(r, s)=rv(s)+ (1 —r)v,,, in (3.20b) in order to
express the last difference on the right as

U6 = U0, o) = 5 U0y alr ) . (A9)
This equality comes about as follows: in view of (3.20b), (3.2a), v;, ,5(r, 5) is given

by
Vi 12(r, 8) = 3[0(s) +v(r, )] — AL g(o((r, 5)) — g(v(s))]; (A.10)

hence, v, 15(1, 8) = v(s), v;4 1,,(0, s) =1, 15(5) and (A.9) follows.
Noting that

d
J;v(r,s)z ~AV; 208, (A.11)

then by carrying out the differentiation on the RHS of (A.9), we obtain
d 14 " 1 14
E U (Uj+1/2(’, s))=-U (Uf+1/z(”, 5))- E—/lg (v(r, 5)) 'SAUj+1/2- (A.12)

Substituting (A.9), (A.11), and (A.12) into (A.8), we will end up with the desired
identity (3.22). |

We close this section with the proof of Lemma 3.6. The piecewise linear inter-
polant of the grid function, {g;}, chosen in (3.24),

Ag.
g(v) =———Ag’“/2 (v—v))+g (A.13)
Vit 12
has a fixed slope at each cell:
! ’ Ag
g'(v(r, s)) = g'(v(s)) ZZI—HM' (A.14)
Uit

From (A.14) and (3.22) we obtain that, in the case of quadratic entropy function
where U" =1,

1 1 Ag. 2
Rj+1/2(g):‘2‘(AUj+1/2)2 [Z_(A M) :I (A.15)

Al?/+1/2
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Moreover, the difference g(v) — f(v) between two neighbouring values v; and ¢,
covers an area of size

TR /1 /B!
H @ =) d =S g+ g1y p— 2] fo)ds  (AL6)

v 4

Thus, in view of (A.15) and (A.16), the desired inequality, (3.26), boils down to

2 e 1/ dg. o\ 1
i[g/+1+g/]‘AUj+1/z_ﬂj. f(”)dv+2< Z‘jiﬁ> "§(4U1+1/2)2<0= (A.17)

v Vi1

To verify the inequality (A.17), we recall that by (3.2a), (3.2b) we have
[ At 1 1
_ , 2 oy = — =j, Al
f(bm!\H—z)) SJU f( fm> Lm, m=j j+1, (A.18)
and Taylor’s expansion yields
=fmtg vl —4p N0, 1n),  B=lalv. (1)) (A.19)
This enables us to write the first two terms on the left of {(A.17) as

AN, . Tr+1
E[gj+1+gj]'dv/+l/2_’tj Sfv)dv

v

v+ ,
ZJTH—J> (Av,, 1)+ 04y, 1), {(A.20)
Vit

é(l—w)-(

Consider now the third term on the left of (A.17): by (A.19) we have

14
Aviy i)
Av; . 1/2)

inserting Adf,, = fd4v;, 1+ O(4v, ) into (A2la), squaring the result, and
rearranging, we obtain

Ay (A21a)

e+ 1/’2;

1
/LAg,+1/z—/1Af+1/2+ 1“4ﬂ2)'<

1. B’ ﬁ Av;y yp
5(/vAgj+l/2)2: ) (AU/+1/2) —8—(1—45 ) (Avj+1«2 (AUJ+1/’2)2

Av! 2
+@(1—4ﬁ2) <ﬁ> (A, 1)+ 04y, 1n)°. (A21D)
Jj+

We note that the cubic term on the right of (A.20), (A.21b), consists of the error
in the trapezodial rule

LU0 0+ S By | 1@ do= 5 £ (A0,

o
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as well as additional contributions which are of the same order of magnitude

O(dv; 1) <2-Lf"(0(%))]- (v, 1), (A22)
Inserting (A.20), (A.21b), and (A.22) into the inequality (A.17) gives us

1—4f R A0y 1—4B2 (A1), 0\
-——'B—(Ale/z)z.[U_Jili&_l_‘_B UJ+1/2+ p ( U;+1/2> ]
8 ’ 2AUj+1/2 AUj+1/2 16 AUj+1/2

+ 4 -max [f"((x))]- (v, 1,,)* <O. (A.23)

The expression inside the left brackets can be upper bounded by

[_,,]<[<v;+l+v;+ 0= )_1
240, 1y | 24054 10
+<3_l> AV, 1 +1—4/32 (Au;+1/z>2]_ (A24)
2/ 4v;44p 16 Av; 41y

By the CFL limitation, f <31, the sum of the last two terms is nonpositive, and
since v; and v}, , agree in sign with Av,, ,,, we are left with the inequality

l:max (—“f—— iil—) - 1J +4-max [f"(s(x))] - 4v,, 1, <0,

>
AV AV

which is met by the choice of entropy satisfying limiter in (3.25a), (3.25b).
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