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SUMMARY

The random walk method (RWM) is developed here for solving the Laplace, Poisson, and Helmholtz
equations in two and three dimensions. The RWM is a local method, i.e. the solution at an arbitrary
point can be determined without having to obtain the complete field solution. The method is based on
the properties of diffusion processes, the 1t6 formula, the Dynkin formula, the Feynman—Kac functional,
and Monte Carlo simulation. Simplicity, stability, accuracy, and generality are the main features of the
proposed method. The RWK is inherently parallel and this fact has been fully exploited in this paper.
Extensive numerical results have been presented in order to understand the various parameters involved
in the method. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Global and local methods

Global methods providing values of the stress, displacement, and other response functions at
all or a finite number of points are generally used to solve mechanics, elasticity, physics, and
other engineering problems. These methods can be based on analytical or numerical algorithms.
Analytical methods have limited value because few practical problems admit closed-form solu-
tions. The finite element, boundary element and finite difference methods are generally applied
to solve practical problems. Some of the possible limitations of these numerical methods are:
(1) the computer codes used for solution of boundary value problems are relatively complex
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1134 M. K. CHATI ET AL.

and can involve extensive preprocessing to formulate a particular problem in the required for-
mat, (2) the numerical algorithms may become unstable in some cases, (3) the order of the
errors caused by the discretization of the continuum and the numerical integration methods
used in analysis cannot always be bounded and (4) the field solution must be calculated even
if the solution is needed at a single point.

A major objective of the present work is to demonstrate the easy implementation of alterna-
tive techniques to the traditional numerical methods, referred to collectively as local methods,
that provide efficient solutions for relevant problems in mechanics. The local methods give
the solution of a partial differential equation at an arbitrary point in the domain directly, rather
than extracting the response value at this point from the field solution. These methods are
based on probabilistic interpretations of certain partial differential equations. The development
of the local method presented in the paper is based on the mean value theorem for differential
equations, the Ito calculus, properties of 1t6 diffusion processes, and Monte Carlo simulation.
The theoretical considerations supporting the proposed local method are relatively complex
and involve concepts of elasticity, applied mathematics, random processes, and stochastic in-
tegrals. Some of the details are presented in this paper, but for an elaborate explanation see
References [1-4]. The local method discussed in this paper has been used to solve the 1-D
Schrodinger equation in Reference [5].

In spite of the mathematical complexity associated with the proposed local method, however,
the numerical algorithms have attractive features, such as

e Simple to program: The computer codes are extremely simple and are presented in this
paper for some of the numerical examples considered.

e Always stable: The method is stable irrespective of the input parameters chosen to obtain
the numerical results.

e Accurate: By appropriate choice of parameters the desired accuracy can be obtained.

e Local: The field solution can be calculated only at a desired point, for example, at a point
of stress concentration, without having to obtain the global solution by solving a system of
linear equations.

e No meshing: There is absolutely NO discretization of the domain or the bounding surface
required in this method.

e Ideal for parallel computation: The method is inherently parallel. This fact has been fully
exploited in this paper and extensive parallel computations have been carried out.

The salient features of the local methods are briefly compared below with two popular
methods in computational mechanics, namely, the finite element method (FEM) (see Reference
[6]) and the boundary element method (BEM) (see Reference [7]).

As is well known, the starting point of the FEM is a weak form (usually obtained from a
variational formulation or from weighted residuals) of the governing differential equations of
a problem. The weak form is typically an integral defined over the domain of the body. The
entire domain is discretized into finite elements, and a piecewise interpolation of the unknown
function is carried out over the elements. Upon inserting the interpolants into the weak form,
and carrying out the necessary local integrations of the shape functions, one obtains a system
of linear algebraic equations of the form

Ax=b (1)
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Table I. Comparison of FEM, BEM and LM.
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FEM

BEM

LM

Locality

Mesh

Ax=Db

Versatility

Parallelization

Programming effort

Exterior problems

None
(Domain method)

Complicated
(Needs domain mesh)

A is large, sparse
and symmetric

Very general

Possible but needs
effort

Reasonable

Needs work

Better
(surface method)

Simpler
(Needs surface mesh)

A is smaller, dense
and non-symmetric

Less general

Easier but still needs
effort

Reasonable

Works well

Strictly local

No mesh at all

No linear system

Less general

Already parallel

Extremely trivial

Very easy

The vector x contains the nodal values of the unknown function throughout the body and
the vector b is usually obtained from the boundary conditions and non-homogeneous terms,
if any. Equation (1) provides the solution at the nodal values and then the solution at any
other point can be obtained from the interpolating functions.

The starting point of the BEM is an integral equation defined on the boundary on the
body, typically obtained from a mathematical identity such as one due to Green (for potential
problems) or Somigliana (for elasticity problems). For linear problems, the BEM requires
discretization of the bounding surface of the body into boundary elements, and piecewise
interpolation of the unknown function is carried out over these elements. Upon inserting the
interpolates into the integral equation, one obtains a system of linear equations of the same
generic form as Equation (1).

A comparison between the conventional FEM and BEM with the local methods is presented
in Table I.

1.2. Brief literature survey

There is a rich literature on the use of local methods to solve deterministic parabolic and
elliptic partial differential equations. A brief (and by no means comprehensive) survey of this
work is presented below.

The relationship between stochastic processes and parabolic and elliptic differential equa-
tions was demonstrated a long time ago by Lord Rayleigh [8] and Courant [9], respectively.
Haji-Sheikh and Sparrow [10] developed a floating random walk method and applied it to
obtain solutions to steady-state and transient heat equations. This method, also known as the
walk on sphere method, is the most important of the more general walk inside the domain
methods. Other walks, namely walk on ellipsoids, squares, cones and half-spaces also have
been developed (see Reference [11]). Another probabilistic method known as the walk on
boundary [11] or the surface density technique [12] also exits. Chorin [13] has also used a
probabilistic method to solve the diffusion equation as a part of the solution to the vorticity
transport equation. Another local method, called the random walk method, is the method of
choice in the present paper. This method is briefly described in Section 1.3.3.
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1.3. Walk on sphere, boundary walk and random walk methods

Table II summarizes the salient features of the local methods.

1.3.1. Walk on sphere method (WSM). The WSM has been applied to solve the Laplace
and Poisson equations in ¢ with Dirichlet and/or Neumann boundary conditions. The solution
is based on the integral representation

w0 = [ k) uw) doty) @)
ad Js(x,r)

of the unknown function u, where a;=2n%?r?"1/I'(d/2) denotes the surface area of the

sphere S(x,r)={yeR¢:|ly — x| < r} C D of radius »>0 centred at x€D, D is an open

bounded domain in R¢, and the kernel k£ depends on the particular form of the differential

operator. An equivalent form of Equation (2) is

u(x)=Elk(x,Y)u(Y)], xeD 3)

where Y is uniformly distributed on S(x,7) and the expectation is performed relative to
this random variable. This observation is used to develop an algorithm for estimating u(x).
Suppose, for example, that u is the solution of a Dirichlet boundary value problem defined
in an open bounded set D C R? satisfying the boundary condition u(x)=¢&(x), x € dD. The
objective is to find an estimate of the value of u at an arbitrary point x € D. Let Xg=x and
S(x0,7(Xo)) be the largest sphere centred at Xy that can be inscribed in D. Let x;(w) be a
randomly selected point on S(Xg,7(Xo)) from the uniform distribution on this sphere (Equation
(3)) and S(xi(w),7(x1(w))) the largest sphere centred at x;(w) that can be inscribed in D.
Select a random uniformly distributed point x,(w) on S(x;(@),r(X1(®))) and continue as
in the previous step. This algorithm generates a sequence of points {Xo,X;(®),Xz(w),...},
referred to as a spherical process, that converges to a point y(w) of dD. The value of u at
this limit point is known and equal to &(y(w)) from the boundary conditions, so that

N(w)
u(Xo, ) = [Il k(xi—1(@),xi(@))| E(y(@)) 4

where N(w)+ 1 denotes the number of steps of the spherical process till it reaches 0D along
sample path . Then u(x() can be estimated by the average value

n

i(x0) = 1 3 u(xa,0) 5)

w=1

over n independent sample paths of the spherical process.

1.3.2. Boundary walk method (BWM ). The walk on sphere and walk on boundary methods
are similar in the sense that both are based on integral representations of the solution of a
boundary value problem. However, the representations corresponding to these methods differ
significantly. The integral representation for the WSM is an equivalent statement of the mean
value theorem and is defined on subsets of the domain of definition D, while the integral
representation for the BWM constitutes the Fredholm integral associated with the boundary
value problem under consideration, and is defined on the entire domain of definition D.
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Table II. Comparison of RWM WSM and BWM.

Methods Features Advantages Limitations
RWM Based on random Very easy to Currently for operators
walks program given by Equation (6)
WSM Based on local Easy to program Currently for operators
integral equation given by Equation (6)
representation
and spherical
processes
BWM Based on global Versatile, simple Currently Neumann
integral equations probabilistic interpretation series diverges but
representation on of kernels for Laplace it can be regularized
physical boundaries Poisson equations
and Neumann series Can be applied to solve

linear elasticity problems

1.3.3. Random walk method (RWM). The RWM can be applied to find the local solution
of second-order partial differential equations of the form

au(x 0 i%( )8u(1; 1) i 5@?_(2;f_)+q(x,t)u(x,t)+ p(x,1) (6)
i—1 i = e

where o, f; are real-valued functions defined on 9, d >1 is an integer, and g, p denote
real-valued functions defined on R x [0,00). The domain of definition of Equation (6) is
D x (0,00), where D C R is an open bounded set. The solution u:D x (0,00) — R depends
on the initial and boundary conditions that need to be specified. The operator of Equation (6)
includes a large number of interesting special cases; for example, parabolic, hyperbolic, elliptic
partial differential equations in R? correspond to the steady—state version of Equation (6) with
d =2 and f12(x) f12(x) — f11(X) f22(x) =0; >0; <0, respectively. Therefore, for example, the
Laplace, Poisson and Helmholtz equations are special cases of Equation (6).

The RWM method can be applied to find the local solution of Equation (6) with Dirichlet
and/or Neumann boundary conditions. The solution by this method involves three steps. First,
a diffusion process X with generator coinciding with the differential operator of Equation (6)
has to be constructed. Second, a relationship needs to be established between the value of
the unknown function u at (x,7) €D x (0,00), the boundary conditions, and an expectation
depending on the sample paths of X. Properties of diffusion processes, features of stochastic
integrals, and It6’s formula can be used to obtain this relationship. Third, a Monte Carlo
algorithm needs to be developed to estimate the expectation giving u(X,1).

1.4. Outline of this paper

The main contribution in this work is the efficient application of the RWM to solve problems in
Laplace, Poisson and Helmholtz’s equations in two or three dimensions, and elliptic/parabolic
differential equations which are special cases of Equation (6). The emphasis here is to demon-
strate the ease of using the RWM for solving this class of problems and to carry out parallel
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1138 M. K. CHATI ET AL.

implementations of this method for several examples. The RWM is already transparently
parallel and it is shown that parallel codes based on this method are extremely efficient.

Another important class of problems is linear elasticity. The RWM is not well suited for
this class of problems since it has not been yet possible to find a diffusion process whose
generator matches the Navier—Stokes operator for linear elasticity. The stress function approach
also does not lend itself to the RWM since it involves a fourth-order elliptic partial differential
equation. The BWM appears to be best suited for elasticity problems as demonstrated by Shia
and Hui [14]. Further work on elasticity problems, using the BWM, is currently in progress.

This paper is organized as follows. Section 2 presents some technical details of the RWM.
Section 3 describes the procedure for obtaining local solutions for the Laplace, Poisson and
Helmholtz equations using the RWM. Section 4 briefly describes the procedure for obtaining
local solutions of the more general Equation (6). Section 5 presents numerical results for se-
lected example problems governed by the Laplace, Poisson, Helmholtz equations respectively;
and for an elliptic PDE with varying coefficients. Finally, some conclusions are drawn in
Section 6.

2. TECHNICAL DETAILS OF THE RWM

The It6 formula gives a method for calculating the increment of functions of diffusion pro-
cesses during a given time interval. For our discussion, it is sufficient to consider a special
case of diffusion processes called the Brownian motion process. Let {B(#),# > 0} be a Brow-
nian motion process taking values in $". The process starts at an arbitrary point x € R”
and is characterized by stationary independent increments, that is, the increments of B over
non-overlapping time intervals are independent and their statistics depend only on the du-
ration of the time increment. Specifically, (1) the increment B(z) — B(s) of B during the
time interval (s,t), s<t, is an R"-valued Gaussian vector with mean zero and covariance
matrix I(z —s), where I denotes the identity matrix and (2) the increments B(¢) — B(v) and
B(u) — B(s), s<u < v<t, are independent.

Consider a function g:R¢ — R with continuous partial second derivatives. It can be shown
that the average rate of change of g(B(¢)) at =0 given that B(0)=x is

E'g(B(1))] — g(x) _ |1
t =5 Ag(x) @)

Ag(X) = ltlirgl

where A=3"" 0%/0x? is the Laplace operator. The operator .« defined by Equation (7) is
called the generator of B. Here, E*[ ]=E[|B(0)=x].

Taking the expectation of the Itd formula applied to the function g(B(s)), conditional on
B(0)=x, gives

ELaBO - 900=3 £ | [ Bg(Bn o] ®)

This formula can be generalized by replacing ¢ with a random time. For example, let D be a
bounded open subset of " and suppose that the Brownian motion B starts at x € D. Define

T = inf{t > 0: B(¢t) ¢ D,B(0)=x €D} )
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RANDOM WALK METHOD 1139

to be the first time when B, starting at x € D, leaves this set. The time T is a random variable
because its value depends on the particular sample of the Brownian motion. The averaged It6
formula with ¢ replaced by 7' becomes

T
ELaBIN 000 =5 2| [ Ag(Bsn o] (10)

This equation is essential for obtaining local solutions of the Laplace and Poisson’s equation.
The generalized version of Equation (10) is given by

T
ETg(X(T))] - g(x) = E* [ / wg(X(s))ds] (1)

Here {X(¢#)€R",t > 0} is a Ito diffusion given by
dX(#)=b(X(¢))dt + o(X(2))dB(?) (12)

where the drift b and the diffusion ¢ are (n,1) and (n,m) matrices and B is an m-dimensional
standard Brownian motion. In Equation (11) .eZg is the generator of the diffusion process (12)
and is given by

_ dg 1 T 829
Also, T in Equation (11) is defined as
T=inf{t > 0: X(¢) ¢ D,X(0)=x€D} (14)

and E*[ |=E[ |X(0)=x]. Equation (11) is referred to as Dynkin’s formula. It can be observed
that Equation (11) reduces to Equation (10) for b=0 and o =1, where I, is an n-dimensional
identity matrix.

3. LOCAL SOLUTIONS OF LAPLACE, POISSON, AND HELMHOLTZ
EQUATIONS BY THE RWM

Let u:R" — R be the solution of the Poisson equation
Au(x)+ p(x)=0, xeD (15)
satisfying the Dirichlet boundary conditions
u(x)=£&x), xe€dD (16)

where p and ¢ are specified functions.

Suppose that the objective is to find the local solution of Equations (15) and (16) at an
arbitrary point x of the domain of definition D. Because u has continuous second-order partial
derivatives, Equation (10) applies and gives

T
BB - 1) = 38| [ B an
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because u(B(7))€ dD so that it is equal to the boundary value &(B(7)) and B(s)e D for
s€(0,7T) so that Au(B(s))=— p(B(s)) by Equation (15). Hence, the value of the unknown
function u at x€ D is

T
) =E BT + 52 | [ p(Bis)| a8)

The right-hand side of Equation (18) depends on expectations of known functions, the func-
tions ¢ and p, and samples of the Brownian motion B in the time interval (0, 7). Generally,
these expectations cannot be obtained analytically. However, they can be estimated by Monte
Carlo simulation as demonstrated in the following sections.

If p=0 in Equation (15), the equation considered for solution is a Laplace equation and
the local solution of this equation is given by

u(x) = E*[E(B(T))] (19)
that is, Equation (18) with p=0.
Suppose now that u: R — R is the solution of the Helmholtz equation
1Au(x) + g(x)u(x) + p(x)=0, x€D (20)

with the Dirichlet boundary conditions given by Equation (16). The local solution is less
simple in this case because the term ¢(x)u(x) does not appear in the generator of the Brow-
nian motion. In order to obtain this solution, it is necessary to augment the Brownian motion
process B with an additional state Z defined by

dZ(t)=q(B(t)) Z(t)dt (21)
with the initial condition Z(0)=1 so that
2 =exp | [ atBs)s] (22)

This integral is known as the Feynman—Kac functional. Equation (10) can be extended to
functions u(B(¢)) Z(t) of the process (B,Z) and takes the form

T
BB ) - w0 20) =" | [ 20)( 5 ButB) + aB)uBsn ) | 23)
This formula can be simplified because Z(0)=1, u(B(7))=¢&(B(T)) by the boundary con-

ditions, %Au(B(s)) +q(B(s))u(B(s))=— p(B(s)) by Equation (20), and the observation that
B(s)e D for s€(0,T). The new version of Equation (23) is

) =5 |8 exp( | Tq(B(s))ds)] v | Texp( | atianda) pibisy as| 24

This formula relates the value of the unknown function u at x €D to some expectations
depending on known functions, the functions g and p, and samples of the Brownian motion
process B. These expectations can be estimated by Monte Carlo simulation. If ¢ is a constant,
the formula of Equation (24) simplifies to

T
u(x)=E"[E(B(T))e’"] + E* [/ e"“'p(B(S))dS} (25)
0

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:1133-1156



RANDOM WALK METHOD 1141

The above discussion, related to Dirichlet boundary conditions, can be extended to Neumann
boundary conditions by ‘reflecting” the Brownian motion at a Neumann boundary. Details are
available in References [1, 15]. Please see a numerical example in Section 5.1.5.

4. LOCAL SOLUTIONS OF MORE GENERAL PARABOLIC/ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS BY THE RWM

Let u:R" — R be the steady-state solution of Equation (6) satisfying the prescribed Dirichlet
conditions. Then Equation (6) can be written as

Lu(x) + g(xX)u(x) + p(x)=0, xe€D (26)
satisfying the boundary conditions
u(x)=¢4(x), xedD (27)

where p, g and ¢ are specified functions and L is a parabolic/elliptic differential operator
defined on twice continuously differential functions and is of the form

82

ja)
8x,-0xj

0 1
L—Zj:aiafxi+§§ﬁi,j (28)

For simplicity, let g(x)=0. It can be seen the operator given in Equation (28) can be made
identical to the generator given in Equation (13) if b and ¢ are chosen appropriately, i.e.
if b=a and oc" =p. Then, making use of Equation (26), the boundary condition (27) and
Dynkin’s formula (Equation (11)), one has

T
u(x) = EEX(TY)] + E* [ / p(X(s»ds] (29)

The expectations can now be obtained using Monte Carlo simulations.
To solve for transient solutions or for the cases where g(x,¢) # 0, the 1to diffusion X needs
to be modified by making use of the Feynman—Kac functional [15].

5. NUMERICAL RESULTS AND DISCUSSION

Numerical results using the random walk method (RWM) have been obtained for two- and
three-dimensional problems governed by Laplace, Poisson or Helmholtz equation and for
an elliptic partial differential equation with variable coefficients. A study of the parameters
involved in the method has been carried out. The two important parameters that influence the
performance of the method are:

e time step (At?),
e number of samples (7).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:1133-1156
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Also, issues such as imposing of Neumann boundary conditions and the effect of the chosen
random number generator on the numerical results obtained, are studied in the following
sections.

One of the major drawbacks of the RWM proposed herein is that it can take a long time
to solve a problem on a large domain, the reason being that the Brownian motion or the
Ito diffusion originating at a point (inside the body) may not go directly to the boundary
because the direction of advancement is chosen at random. However, the better side of this
disadvantage is that the method is very easily amenable for parallel computation. This fact
has been fully exploited in this paper and an extensive comparison between serial and parallel
codes is carried out.

Unlike the conventional finite difference, finite element or boundary element methods, the
final computer program for obtaining the solution at a point can be extremely simple. In fact,
MATLAB codes for solving some problems are presented in this paper.

As a measure of the performance of the method, an L, error norm is constructed as

100 |
= — n _ \Jye)2 o
£ \/N,Zl(qj We)2 % (30)

where W° is the exact solution, U" is the numerical solution and N is the number of randomly
chosen points in the domain where the unknown function W is evaluated.

Numerical solutions using the RWM for the various governing equations are presented be-
low. Section 5.1 describes the application of the RWM to problems governed by Laplace’s
equation. Section 5.2 describes the solution of various problems governed by Poisson’s equa-
tion. The solution to Helmholtz’s equation using the RWM is presented in Section 5.3. An
elliptic partial differential equation with variable coefficients is solved in Section 5.4.

5.1. Laplace’s equation

Laplace’s equation in n-dimensions can be written as

- 8x1-8x1- o

AT i=1,2,....n (31)

where ¥ is the potential. The RWM can be used to solve Laplace’s equation in more than
three dimensions, however in this paper it is used to solve only two- and three-dimensional
problems.

The numerical results presented in this section are organized as follows. In Section 5.1.1 the
RWM is used to solve for the potential (¥) at various points in a two-dimensional multiply
connected domain. The two important parameters of the RWM, namely, the time step (A¢) and
the number of samples of the Brownian motion (n), are studied very carefully for a Dirichlet
problem on a rectangle in Section 5.1.2. The RWM is applied to a physical problem of flow
over a semi-circular bump in Section 5.1.3. Section 5.1.4 presents numerical results obtained
by applying the RWM to the problem of an infinite domain with an internal cavity subject
to Dirichlet boundary conditions. The RWM for problems with mixed boundary conditions
involves the reflection of the Brownian motion at the Neumann boundary. This idea is used
to solve a problem with mixed boundary conditions on a cube in Section 5.1.5.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:1133-1156
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Figure 1. Laplace’s equation solved on a Figure 2. Potential (V) computed along a cir-
multiply connected domain with Dirichlet cle of radius ry=0.75 for a two-dimensional
boundary conditions. multiply connected domain.

5.1.1. Multiply connected domain. Laplace’s equation is solved on a two-dimensional multi-
ply connected domain as shown in Figure 1. The problem consists of obtaining the potential
within the domain for prescribed potentials on the inner and outer circle. The numerical solu-
tion has been obtained by using R=1.0, » =0.25, and for the boundary conditions shown in
Figure 1. The exact solution can be easily obtained using conformal mapping (see Reference
[16]) and is given as

_ 1 (xfa)z—ﬁ—y2
Werser =50 [1 " 2mp ™ {(ax— 7 +a?)? (32)

where a=b=2 +/3.

The RWM is used to compute the potential along a circle of radius o =0.75, centred at the
origin. Figure 2 shows a comparison between the numerical solution (using Equation (19))
and the exact solution, using two sets of parameter values of the Brownian motion, namely,
At=0.01, n=100 and Ar=0.0001, »=75000. Figure 2 also shows that the accuracy of the
solution improves upon decreasing the time step (At) and increasing the number of samples

An important aspect of any new numerical method is the computational burden associated
with it. The proposed numerical method is quite computer intensive. However, it is very
easily amenable for parallel computation. The basic idea behind the parallel program is to
send a sample of the Brownian motion to each slave node. Once a Brownian motion, say at
slave node i, reaches the boundary, the value of the potential at the boundary is reported by
that slave node i to the Master node. Then the next sample of Brownian motion is given to
this slave node 7, and so on, until the total number of samples are exhausted. This algorithm
is repeated at all the points in D at which the solution is desired. It can be clearly seen
that communication between the processors is minimal in the parallel implementation of the
RWM.

The parallel RWM code is run on multiple processors using the message passing interface
(MPI) standard on the IBM SP2 (R6000 architecture, 120 MHz P2SC Processor). A comparison

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:1133-1156
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Table III. Comparison of wall-clock times between serial and parallel computer
codes for obtaining the solution at n, points along a circle of radius ro=0.75
(Ar=0.0001, n=5000).

Number of Serial Parallel code

points, n, code 4 Procs 8 Procs 12 Procs
15 14min 27 s 4min 55s 2min 28s 1 min 42s
20 19min 17s 6min 29s 2min 49s 1min 56s
30 28 min 58s 9min 44s 4min 38s 2min 56s

Y 5
I AP=0
T i 10;30’5 10° 107 107 10
| a | X 10g (s
Figure 3. Dirichlet problem on a rectangle. Figure 4. Convergence in the L, error for the

Dirichlet problem on a rectangle using a cubic
exact solution.

of the running times for different number of points along the circle, of radius ro=0.75,
(centred at the origin) is shown in Table III. It can be clearly seen from Table III that order
of magnitude gains are possible by using a parallel version of the serial program.

5.1.2. Dirichlet problem on a rectangle. The RWM is used to solve a Dirichlet problem on
a rectangle (Figure 3). The main idea behind choosing such a simple problem is to study two
important parameters of the RWM namely, the time step (A¢) and the number of samples
(n) of the Brownian motion.

First, a linear exact solution is imposed on the boundary of a square (a=5=1.0). The
exact solution is given as

\Ilexact =X+ y (33)

Table IV shows a comparison in the L, error (¢) (from Equation (39)) for various values
of the parameters At and n. The L, error (&) is computed using N =50, 100, 500, and 1000
points, respectively, randomly chosen within the domain. It can be seen from Table IV that
choosing even 100 points gives a good estimate of the performance of the method. Also, an
important observation is that the L, error decreases by increasing the number of samples (7)
and decreasing the time step (At). In fact, a parameter equivalent to the mesh size (%) in the

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:1133-1156



RANDOM WALK METHOD 1145

Table IV. L, error in ¥ for a Dirichlet problem on a rectangle using a linear exact solution.

Ly error (%)

RWM parameters N =50 N =100 N =500 N =1000
At=0.1, n=10 16.9370 17.2344 13.2835 12.9526
Ar=0.01, n=100 3.0246 1.9061 2.6849 2.4661
At=10.001, n=1000 0.7253 0.6947 0.6751 0.6610
At =0.0005, n= 5000 0.2771 0.2759 0.2776 0.2765
Atr=0.0001, n= 10000 0.1829 0.1924 0.2087 0.1995

Table V. Comparison of wall-clock times for Dirichlet problem on a rectangle using
At =0.0005, n=5000 for various number of points in the domain.

Number of Serial Parallel code

points, N code 4 Procs 8 Procs 16 Procs
50 3min 24.3s 2min 6.6s 56.0s 29.8s
100 6 min 46.6s 3min 53s 1 min 44.9s 50.7s
500 33min 10.8s 17min 14.4s 7min 29.5s 3min 34.3s
1000 1h 6min 13.8s 34 min 32.7s 14 min 50.9s 7 min

conventional FEM is proposed here. It can be written as

At
hRWM - 7 (34)

It can be seen from Table IV that the L, error decreases with decreasing values of /rwm.
However, the proposed parameter Arwy needs to be calculated using reasonable values of the
time step (At¢) and number of samples (n) i.e. for hAgwy = 10"% using Ar=10"* and n=1
would certainly give meaningless results!

The RWM is also tested using a cubic function which satisfies the Laplace’s equation. The
exact solution, imposed on the boundary of the unit square, is

Uornet =X° + y3 - 3x2y - 3xy2 (35)

Figure 4 shows the convergence in the L, error with respect to the proposed parameter /Zrwm.
Again, it can be seen from Figure 4 that there is hardly any difference in the L, error for
various numbers of randomly chosen points (V) in the domain.

As mentioned previously, the computational cost associated with a numerical method needs
to be computed. The computational burden associated with measuring the performance of the
method, i.e. computation of the L, error, is tabulated next. Table V shows a comparison of
wall-clock times between a serial code and a parallel code run on 4, 8, and 16 Processors
for the parameter values A¢z=0.0005, n=15000. It can be seen that order of magnitude gains
are possible by carrying out a parallel implementation of the serial code.

One of the main features of the proposed local method is the simplicity of the computer
program involved for obtaining the solution at a point. To further illustrate this fact, the
MATLAB program for obtaining a local solution using the RWM is shown in Table VI.
Equations (19) and (33) are used in line 8 of the MATLAB program. The simplicity of the
computer program speaks for itself.
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Table VI. MATLAB program for obtaining a local solution
for the Dirichlet problem on a rectangle
for a linear exact solution.

1 function psi=prect (x, y, dt, n, a, b, nseed);

2 randn( ‘seed’,nseed); psi=0;

3 for k=1:n,

4 Xe=X; ye=Yy;

5 while xe>0 & xe < a& ye > 0 & ye < b,

6 xe=xe+sqrt(dt)*randn; ye=ye + sqrt(dt)*randn;

7 end

8 psi=psi+(xe + ye);

9 end

10 psi=psi/n;
G by F T
%7% h sl ... - RWM solution
9/ ‘ ——: Exact solution

A
=
R -
A B D E X ‘ ‘ ‘ . ‘ . ‘
| b | -15 -1 -05 0 05 1 15
Figure 5. Schematic of fluid flow over a semi- Figure 6. Streamlines for the problem of flow
circular bump. over a semicircular bump.

5.1.3. Flow over a semi-circular bump. An application of the RWM to a physical example is
considered here. Figure 5 shows a schematic of the streamlines (¥ = constant) of an inviscid,
incompressible fluid over a semi-circular bump. The problem consists of determining the
stream function ¥ and the components of the velocity at various points near the semi-circular
bump.

The exact solution for the stream function, again imposed on the boundary ABCDEFGA,
is given as (see Reference [16])

2
U(x, y)=Uyy {1 — 1:2} , rr=xt+y? (36)

where Uj is the x-component of the upstream velocity and R is the radius of the semi-circular
bump. The value of the stream function (¥) is computed at various points using the RWM
(Equation (19)). Figure 6 compares the numerically generated contour plot of the streamlines
with the exact solution. Figure 6 shows a good agreement between the RWM solution and
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+ + At=0.001,n=1000,Ay=0.05
* * At=0.0005n=5000Ay=0.1

Exact solution V4
T 10 10
8
2 10
o
5
5
g15r Y
S = y
x 1 T
11 12 14 1j6 18 2 X
y
Figure 7. x-component of the velocity (vy) along Figure 8. Geometry of the Dirichlet problem of
the y-axis. an infinite domain with a spherical cavity.

the exact solution. The following non-dimensional parameters have been used for this problem:
Upy=10, R=b=1.0, h=20.

The components of the velocity can be obtained from the stream function using the well-
known relations (see Reference [17])

ov ov
=T n=g (37)

The RWM can be directly used only to get only the values of U at various points, and not
the velocities. However, in order to obtain the components of the velocity, one could employ
a central difference scheme. The central difference formula used to obtain the results can be
written as

0(y)= — 35y (38)

where Ay is chosen through numerical experiments. The x-component of the velocity (vy)
along the y-axis is shown in Figure 7. It can be clearly seen from Figure 7 that the results
are not very accurate for the velocity. It is felt that better techniques need to be developed
in order to obtain the components of the velocity i.e. gradient of the potential ().

5.1.4. Dirichlet problem in an infinite domain (in three dimensions) with a spherical cavity.
A three-dimensional example of solving a Laplace problem with Dirichlet boundary condi-
tions with the RWM, is presented next. Consider a three-dimensional problem of finding the
temperature distribution is an infinite domain with a spherical cavity subject to a uniform
temperature distribution on the surface of the cavity.

The exact solution is given as (see Reference [18])

a
T(r)=T, (;) (39)
where T, is the temperature of the cavity wall and a is the radius of the cavity.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:1133-1156



1148 M. K. CHATI ET AL.

y
D
B
7
£7
N P
N
D A
B I
: RN
4 L |
40 X |
R— s R
a0l 2 | 1
20 ' A
— . e s/
YT s 4 s r s 7 5 9 i 25b
Figure 9. Variation of temperature T with radius r. Figure 10. ‘Reflection’ of the Brownian

motion at the Neumann boundary.

The infinite domain with the cavity is modelled as a cube having a cavity at the centre
(see Figure 8). The dimension of the cube is taken to be much larger than the radius of the
cavity. To be specific, the side of the cube is taken to be 10 units while the radius of the
cavity is taken to be 1 unit. A uniform temperature of 100°C is imposed on the cavity surface
and a temperature of 10°C is imposed on the sides of the cube.

The RWM is used with Ar=0.01 and n=1000. Since the problem is spherically symmetric,
100 random points are selected on the surface of spheres of pre-determined radii (>1) and
the temperature at a particular radius is reported as an average of the temperatures of the
100 points on that sphere. Figure 9 shows the comparison of the numerical solution with the
analytical one. The numerical solution is found to match the analytical solution quite closely
inspite of using a large step size.

5.1.5. Mixed problem on a cube. The RWM is used to solve Laplace’s equation in a cube,
with mixed boundary conditions. In order to solve problems with mixed boundary conditions
using the RWM, one needs to ‘reflect’ the Brownian motion at the Neumann boundary, i.e. the
boundary where the flux ¢ = du/dn is prescribed. The details of this procedure can be found
in References [1, 15]. However, a simple explanation of the reflection procedure follows.
Figure 10 shows a schematic demonstrating the idea of reflection of the Brownian motion.
The main idea is to prevent the Brownian motion, originating inside the domain, from escaping
the part of the boundary on which the flux is prescribed. Consider the boundary crossing of
the Brownian motion to the point R;, as shown in Figure 10. Now, the Brownian motion
is first reflected (across the boundary AB) to the point R, and then continued from there.
Now, suppose that the Brownian motion crosses the boundary again to the point R3. It is
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Table VII. L, error in ¥ for a problem with mixed boundary
conditions on a cube for Atr=0.001, »=1000.

L, error (%)

Op N =50 N =100 N =500
0.1 3.336 3.575 3.515
0.05 3.335 3.586 3.534
0.01 3.332 3.597 3.543
0.001 3314 3.584 3.548

reflected back to R4 and so on. Eventually, the Brownian motion reaches a Dirichlet part of
the boundary and escapes. This value of the prescribed function, at the boundary crossing
point, is recorded as usual.

The importance of the ‘boundary layer’, of specified thickness Jy, is that the time spent by
the Brownian motion trapped in this boundary layer region is accumulated and is used in the
formula for computing the value of ¥ at an internal point (see Reference [1]).

The reflection procedure described above is implemented by employing the following har-
monic function:

Wexact =X + 2y + 3z (40)

Dirichlet boundary conditions (corresponding to Equation (40)) are prescribed on the y,z=+1
faces and Neumann conditions (corresponding to Equation (40)) are prescribed on the x = +1
faces of the cube.

First, the effect of the boundary layer oy is investigated by computing the L, error in ¥ at
50, 100, and 500 points in D, for various values of d,. Table VII shows that the numerical
method is quite insensitive to the boundary layer thickness d, chosen to obtain the numerical
results.

A convergence study is carried out with respect to the proposed parameter /irwy for the
problem with mixed boundary conditions. Figure 11 shows the numerical results obtained. A
convergence rate of 0.52 is observed. It is noted in Figure 11 that for Ar=107%, n=10°, the
parallel RWM code takes 2min to run to completion on 64 Processors, in order to compute
the L, error for N =100 random points.

5.2. Poisson’s equation

Poisson’s equation governs a wide range of problems in engineering and physics. Poisson’s
equation in n-dimensions can be written as

v

A‘I’:m:f,

i=1,2,...,n (41)
where f is a given function of the co-ordinates. The following three examples are considered.
Section 5.2.1 describes the solution of Poisson’s equation on an ellipsoid. Section 5.2.2 solves
a physical problem of torsion of a shaft with a triangular cross-section. Section 5.2.3 obtains
the results for a shaft with a circular cross-section with a groove.
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Figure 11. Convergence results for the mixed Figure 12. Convergence study for the solution to
problem on a cube (N =100). Poisson’s equation on an ellipsoid using N =50

random points.

5.2.1. Poisson’s problem on an ellipsoid. The RWM is used to solve Poisson’s equation (with
Dirichlet boundary conditions) on an ellipsoid. The equation of the ellipsoid can be written
as

2o 2

) + =+ 2= 1 (42)
The numerical results have been obtained (using Equation (18)) by imposing a quadratic exact
solution, given as

\Ijexact :X2 + yz + Zz (43)

on the surface of the ellipsoid. Thus, for the quadratic solution imposed, =6 in Equation
(41). Figure 12 shows the convergence in the L, error with respect to the parameter /igwy.
A convergence rate of 0.31 is observed.

As mentioned before, the computer programs involved for obtaining the local solution using
the RWM can be very simple. Table VIII shows the MATLAB program that can be used to
obtain a local solution (to Poisson’s equation) using the RWM. Equations (18) and (43) are
used in line 11 of the MATLAB program. It can be clearly seen from Table VIII that the
program is extremely easy to read, write and debug! Again, one of the main strengths of the
present method is the simplicity of the computer programs involved.

5.2.2. Torsion of a shaft with a triangular cross-section. The problem of torsion of a shaft
is governed by Poisson’s equation. The governing equation can be written as (see Reference

[191)

*;v 0PV

W—I—a—yz:f2G0, U=0 on dD (44)
where VU is the stress function, G is the shear modulus and 6 is the angle of twist per unit
length. This Poisson’s equation is solved on a triangular cross-section shown in Figure 13.
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Table VIII. MATLAB program for obtaining a local solution for the Poisson’s equation
on an ellipsoid for an exact solution in Equation (43).

1 psi=function pellip (X, y, z, dt, n, q, a, b, c, nseed)
2 randn(‘seed’,1); psi = 0;
3 for k=1:n,
4 xe=Xx; ye=y; ze=z; time=0;
5 rcomp=sqrt(xe*xe/(a*a) + ye*ye/(b*b) + ze*ze/(c*c));
6 while rcomp <1,
7 xe=xe + sqrt(dt)"randn; ye=ye + sqrt(dt)“randn; ze=ze + sqrt(dt)*randn;
8 rcomp=sqrt(xe*xe/(a*a) + ye*ye/(b*b) + ze*ze/(c*c));
9 time=time + dt;
10 end
11 psi=psi + (xe*xe + ye"ye + ze*ze)-3."time;
12 end
13 psi=psi/n;
05
- o \i
| o~
oO— >~ e
X
-05
o At=0.001,n=1000
* * At=0.0001, n=5000
\ Exact solution
vy ¥Y=0
a/3 A
‘ <_»l -1 05 o oS 1 15
Figure 13. Torsion of a prismatic bar with the Figure 14. Shearing stress along the x-axis for the
cross-section as an equilateral triangle. torsion problem on an equilateral triangle using

Ax=0.05.

The exact solution, for the cross-section shown in Figure 13, can be written as (see Reference

[191)
VUeaet = — GO l(x2+y2)—i(x3—3xy2)—3az (45)
exact 2 2a 27
U =0 is imposed on the boundary of the triangle (Dirichlet boundary conditions). The im-

portant physical quantity, the shearing stress, can be obtained from the stress function as

ov 0T
= = - o (46)

Since the RWM provides only the values of W at certain points, a central difference scheme is
used to obtain the shearing stress. The shearing stress (t,.) is computed along the x-axis
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Figure 15. Elastic torsion of a circular shaft with Figure 16. Comparison of W along the
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(Ar=10.0005, n=15000).

using the central difference formula written as

U(x 4+ Ax,0) — U(x — Ax,0)

Tyz(x70): 2Ax

(47)

Figure 14 shows a comparison between the numerical results and the exact solution in the
shearing stress (t,.) along the x-axis. Figure 14 shows that acceptably accurate results can be
obtained for the shearing stress in spite of using a central difference scheme in conjunction
with the RWM.

5.2.3. Torsion of a circular shaft with a groove. The governing equation for torsion is given
in Equation (44). In this section, the torsion problem is solved for a circular shaft with a
grove. Figure 15 shows a schematic of the circular cross-section with a grove. The exact
solution for ¥ can be written as (see Reference [19])

2
Wexact = — %(l”2 —b)+a (r - l;) cosO, =0 on dD (48)

where (r,0) are the usual polar co-ordinates. Again, ¥ =0 is prescribed on the boundary of
the region shown in Figure 15.

Since the proposed numerical method, the RWM, is based on random numbers, a careful
study of the random number generator, used to obtain the numerical results, is in order.
The computer programs presented in Numerical Recipes [20, chapter 7] are used to generate
the random numbers. The book proposes various random number generators as a source of
uniform deviates ran0, ran1, ran2, ran3. Each of these uniform deviates can be used to
generate a normally distributed deviate with zero mean and unit variance. A careful study of
the various random number generators, referred to as gasdev0, gasdevl, gasdev2, gasdev3
is carried out.
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Table IX. Comparison of wall-clock times between serial and parallel computer codes for
obtaining the solution at 7, points along the x-axis (At =0.0005, n=15000).

Number of Serial Parallel code

points, n, code 4 Procs 8 Procs 12 Procs
15 3min 35.9s Imin 11.9s 32.2s 22.2s
20 4min 43.5s 1min 34.2s 4245 29.2s
30 7 min 2min 19.1 sec 1 min 40.3s

Figure 16 shows a comparison of ¥ along the x-axis for various random number generators.
It can be clearly seen that the RWM is insensitive to the random number generator used to
obtain the numerical results. Table IX presents a comparison of wall-clock times between
serial and parallel codes for obtaining the solution at varying number of points along the
x-axis. It is seen that significant gains are obtained by parallelization.

5.3. Helmholtz’s equation

The Helmholtz equation in n-dimensions can be written as
v
ﬁx,ﬁxi
The Helmbholtz equation is solved on a three-dimensional problem using the RWM. The idea
behind choosing this example is to study the variable ¢ appearing in Equation (49). The

RWM is used to solve a Dirichlet problem on a unit sphere for various values of g. The
exact solution for ¢ >0 and for ¢ <0 can be written as

AT+ g0 = +qU=0, i=1,2,...,n (49)

U(x, y,z) = cos(ax)cos(ay)cos(az) for g>0 (50)
U(x, y,z) =exp(ax)exp(ay)exp(az) for g<0 (51)

The constant @ in the exact solution (Equations (50) and (51)) is chosen so as to satisfy
the Helmholtz Equation (49). As before, ¥ from Equation (50) or (51) is prescribed on the
surface of the unit sphere.

Figure 17 shows a comparison between the exact solution and the RWM solution (using
Equation (25)) obtained at the origin of the sphere for various values of ¢. Now, since
¥(0,0,0)=1.0, for g <0 and ¢ >0, one can evaluate the performance of the numerical method
for changing values of ¢ by calculating the value of W at the origin. It can be seen from
Figure 17 that the results deteriorate for /large values of ¢>0. Figure 17 also shows that the
numerical results for ¢ >0 do not improve upon decreasing the time step (A¢) and increasing
the number of samples (n).

The observation made in Figure 17 can be easily explained by looking at the computer
code used to obtain the numerical results. Table X presents the MATLAB code used to
obtain the numerical results for this example (for ¢ >0). In order to compute the value of
U at a point inside the domain, the value of ¥ at the boundary where the Brownian motion
exits the domain is multiplied by the term exp(g¢). In particular, Equation (25) is used in
conjunction with Equation (50) in line 11 of the MATLAB program. Now, for large values of

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:1133-1156



1154 M. K. CHATI ET AL.

2 :
|
|
|
15) G<0 | >0
1 .
oC I °
1 3x5 x xgég‘) *‘w# By % e* =
o] h o o) *
! N
— ! ©
o
g osf 3 .
| s
of ! |
i
e o At=0.001,n=1000
“037x  x At=0.0005, n =5000
Exact solution o
_1 3
-5 0 5
q

Figure 17. Dirichlet problem on a sphere: Solution to the Helmholtz equation at the origin.

Table X. MATLAB program for obtaining a local solution for the Helmholtz’s
equation on a sphere (¢>0).

1 function psi=psphere (X, y, z, radius, dt, n, q, nseed);

2 a=sqrt(2"¢/3); randn(‘seed’,nseed); psi = 0;

3 for k=1mn,

4 xe=X; ye=y; ze=z; time=0;

5 rcomp=sqrt(xe*xe + ye*ye + ze* ze);

6 while rcomp < radius,

7 xe=xe + sqrt(dt)“randn; ye=ye + sqrt(dt)*randn; ze=ze + sqrt(dt) randn;
8 rcomp=sqrt(xe*xe + ye*ye + ze* ze);

9 time = time + dt;
10 end
11 psi= psi+exp(q*time)* cos(a*xe)* cos(a“ye)” cos(a*ze) ;
12 end
13 psi=mean(psi);

q >0, this term (exp(g?)) can be unbounded. And that is precisely the reason for the failure
of the method for large values of ¢>0. However, this situation does not arise when g <0
and accurate numerical results are obtained (see Figure 17).

5.4. Elliptic PDE with variable coefficients

Consider the following non-homogeneous elliptic partial differential equation:

0*g
xz@ 42

7y
0y?
which is a special case of Equation (6). This equation is solved in the domain 1<x<2,
1 < y<2 subject to Dirichlet conditions on x=1,2 and y=1,2. The exact solution is given by

=2x%)? (52)

g(x,y)=1x*y?
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Table XI. L, error in g(x,y) for the problem
defined by Equation (52).

L, error
RWM parameters N =500
At=0.01, n=1000 0.9413%
At=10.001, n=1000 0.6729%

First, an Ito diffusion whose generator coincides with the operator

is chosen. It can be observed from Equation (13) that the required process is obtained by
setting b=0 and ¢ =diag(x, y). Here diag(x, y) is a 2 x 2 diagonal matrix with x and y being
the diagonal entries. Next Equation (12) is solved. For the case considered, the diffusion

process can be explicitly found as
X(0)exp{Bi(1) - ét}]

[X([)} B
Y(t) | | Y(0)exp{Ba(t) — Lt}

Here B;(¢) and B,(t) are one-dimensional standard independent Brownian motions. Using
Equations (53), (29) and Monte Carlo simulations, the solution to (52) is obtained. The
results are shown in Table XI.

As seen from Table XI, the results obtained from RWM are quite accurate.

(53)

6. CONCLUSIONS

A local method, the random walk method (RWM), has been developed and implemented in
this paper for the solution of the Laplace, Poisson, and Helmholtz equations in two- and
three-dimensions as well as for an elliptic partial differential equations with variable coeffi-
cients. Extending this approach to n-dimensions, n >3, is straightforward. Considerable insight
has been gained into the various parameters involved in the method. The comments below
summarize the numerical results:

e The two main parameters are the time step (Af¢) and number of samples (n). It has been
observed through numerical experiments that decreasing the time step (At) and increasing
the number of samples (n) improves the overall accuracy of the numerical results.

e For problems with mixed boundary conditions, the parameter Jy,, which controls the ‘bound-
ary layer’, has a marginal effect on the numerical solution.

e The numerical results tend to deteriorate when the derivative of ¥ is computed through a
central difference scheme. An alternative technique for the evaluation of gradient needs to
be looked into. This is planned for the future.

e The variable ¢ in Helmholtz’s equation plays an important role in the numerical solution.
It is observed that very poor numerical results are obtained for /arge values of ¢>0. This
is a generic problem for the Helmholtz’s equation, irrespective of the numerical method
being used.
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e Since the proposed numerical method is inherently parallel, significant gains in wall-clock
times have been achieved by parallelizing the serial computer codes.

Overall, the random walk method (RWM) is an ideal choice for problems that can be solved
by this method, especially in the early stages of the design where the solution is desired only
at a few selected points.
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