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Abstract

Incompressible viscoelastic fluids cannot sustain longitudinal wave
modes. The incompressibility condition imparts an overall elliptic con-
straint on the system of partial differential equations describing the
flow. To avoid the computational expense of simultaneously solving
for fluid velocities and stresses, splitting procedures are widely used in
numerical simulations. A common approach is to enforce the elliptic
constraint at the end of a computational time step through a projec-

tion method. The polymeric stress equation is typically advanced in



time before the constraint is applied. The numerical discretization
of the polymeric stress equation can introduce spurious longitudinal
modes. The longitudinal modes appear as a spurious excitation of
the velocity field when used in the momentum update. To eliminate
the spurious modes a double projection method is introduced in the
context of a splitting procedure for the Oldroyd-B model. The hy-
perbolic subsystem capturing shear wave propagation and convective
effects is first advanced in time using a wave propagation algorithm,
thus obtaining interim velocity and stress values. The stress field is
decomposed into divergence-free and force-carrying parts. The defor-
mation field producing the forces is computed. A first projection step
is applied to the deformation field to render it divergence-free. The
velocity and stress fields are subsequently corrected to remove spuri-
ous longitudinal modes. A Helmholtz decomposition is applied to the
velocity field and a second projection step is applied to enforce the
incompressibility constraint. Though presented for Oldroyd-B fluids,
the procedure is general in nature and the correction of interim values
of viscoelastic stress can be incorporated in other algorithms used for
simulation of incompressible viscoelastic fluids with differential con-
stitutive laws. Example computations are presented for a cavity flow.
The spurious forces observed in the interim step of the splitting pro-

cedure are shown.
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1 Introduction

We present a description of possible numerical artefacts in the numerical
computation of incompressible viscoelastic fluids described by differential
constitutive laws, and introduce a procedure to eliminate spurious effects.
The system of partial differential equations (PDEs) describing such flows
is subject to an elliptic constraint due to the incompressibility condition.
The incompressibility condition implies a divergence-free velocity field. The
situation is reminiscent of the case of incompressible Newtonian flow and
the projection method of Chorin [3] and Temam [I7] is commonly applied,
e.g. [18]. However, the situation for viscoelastic fluids is different from that
for Newtonian fluids. In a Newtonian fluid the incompressibility constraint
prohibits propagating pressure waves. The pressure appears as a scalar La-
grangian multiplier for the equations, and the incompressibility constraint
can be enforced by solving a single scalar equation. In a viscoelastic fluid the
longitudinal modes involve both the pressure and the additional viscoelastic
stress. It would be fortuitous for the correction of a stress field to enforce
incompressibility to be accomplished by a single scalar function. Indeed, we
show below that this is not the case and a vector correction is needed.

The paper is organized as follows. The equations describing the Oldroyd-
B physical model are presented in Section 2. We also briefly recall the equa-
tions pertaining to Newtonian fluids and Hookean solids. The equations are

presented in both a global, fixed Eulerian frame of reference suitable for



numerical modeling and also in a Lagrangian frame of reference with coordi-
nates following the material’s deformation as initially suggested by Hencky
[6]. The link between the two formulations is provided by the Oldroyd the-
orem [I3] and is useful in understanding the physical constraints that must
be satisfied by the evolution in time of the viscoelastic fluid. In Section [ a
numerical method is introduced for the Oldroyd-B system. In common with
a number of approaches (e.g. [7],[I8], p. 156 of [15]) a splitting procedure
is used to avoid the computational expense of simultaneously solving for the
pressure, velocity and stress field. The hyperbolic subsystem formed from the
momentum equations with no pressure term and the viscoelastic stress trans-
port equation is advanced in time using the wave propagation algorithm of
LeVeque [§]. We show that the provisional stress field obtained at this stage
contains spurious longitudinal modes which act as a nonphysical force on
the system. Furthermore we show that the standard projection approach of
correcting the velocity field does not eliminate the spurious forces. In Sect.
@ the Double Projection Method (DPM) is presented. A decomposition of
the stress tensor is introduced and the deformation field producing the stress
is computed. The deformation field is projected onto a divergence-free sub-
space. This allows a correction of the interim velocity and stress fields that
eliminates any spurious longitudinal wavemodes. A second projection follows
the original Chorin [3] procedure and enforces the divergence-free condition
on the velocity. We present sample computations for cavity flows in Sect.

and compare DPM predictions with those from the standard projection



approach. In particular, numerical experiments show that the double pro-
jection procedure stabilizes computations at high Weissenberg numbers for
which the standard projection method fails. We close with remarks on the

general validity of the procedure for other classes of viscoelastic liquids.

2 Physical model

The modeling of general viscoelastic flows is qualitatively different from the
limiting cases of Newtonian fluids and Hookean solids in that the stress-strain
relationship is not necessarily instantaneous in time. In general, an integral
relation links the time history of the viscoelastic deformation to the stress
in the material. A common model exhibiting this dependence is the linear

Lodge [9] model,

(y, t')at’, (1)

! O,
)= [ G-t

expressed here in a simple one-dimensional setting with v,(y,t) a velocity
component of the fluid and 7,,(y, t) the shear stress. Note that for G(t—t') =

i 6(t —t") one obtains the Newtonian fluid model

Toy(y, 1) = u%—?(y,t) : (2)

In this simple case the stress can be deduced from the velocity field at a

single time. A key observation is that for general Green’s functions G(t) the



time history of the flow would appear. The time history dependence can be

modeled either through integro-differential or differential equations.

2.1 Lagrangian and Eulerian descriptions

Rheology seeks to study the behavior of specific viscoelastic flow models [11].
It is typically much easier to derive viscoelastic models that capture some de-
sired real material behavior in a Lagrangian system of coordinates that moves
and deforms with the material. This approach was proposed by Hencky [0]
and used with great efficacy by Oldroyd [I3] and Lodge [10]. Oldroyd set
out the general principle that in the coordinate system (E, t) moving and
deforming with the material a constitutive law describing the material can
be written as an invariant set of integro-differential equations that link the
stress tensor 71'(5, t), the metric tensor of the co-moving coordinate system
~(€,1), the temperature T(£,t) and a number of material constants r(£)
that depend only on spatial position. Lagrangian time derivatives of these
quantities in the co-moving coordinate system are allowed since they do not
introduce any spatial dependence. Coordinate derivatives 0/0¢" in general
cannot appear in the constitutive laws since their presence would introduce
a spatial dependence and the stresses should depend on deformation but not
on position. Invariant combinations of spatial derivatives are allowed.
Oldroyd proceeds to obtain the transformation of tensor quantities (3

expressed in the co-moving, co-deforming Lagrangian reference frame (é’, t)



to a tensor b in the fixed Eulerian frame (Z,t)
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3
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where W, the exponent of the inverse Jacobian determinant J = ’63?/851,
is the weight of the tensor 8. In this and the following we use the repeated
index summation convention. Tensor components in the Lagrangian frame
are expressed with reference to directions induced by the metric 7. When
transforming a Lagrangian time derivative from the moving frame variations
induced by changes in the basis vectors must be taken into account. This
is captured by the following principle set out by Oldroyd: wherever a La-
grangian time derivative of a tensor 3 (5’, t) appears in the moving frame,
it is replaced in the fixed Eulerian frame by the following derivative of the

transformed tensor from (3])
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The first line above contains terms one recognizes in the standard convective
derivative. The terms in line (B]) show the effect of covariant components of
the tensor, while those in line (@) capture the effects of contravariant terms.

As an example, apply the above procedure for the conservation of mass. The



density in the Eulerian frame p(Z, ) is a scalar function, linked to the density
p_(g, t) in the Lagrangian frame by p = Jp, hence density has a weight W = 1.
In the Lagrangian frame conservation of mass states

D(p/J)
Dt

0. (7)

By the Oldroyd theorem (), the equivalent statement in the Eulerian frame

i _

= =0 (8)

The 0/t derivative of a scalar field with weight W =1 is

op  Op m Op  Ou™
5t ot U aem T’ ©)

and we obtain the familiar continuity equation in Eulerian coordinates, p; +

V- (pv) = 0.

2.1.1 Oldroyd-B equations of motion

In his 1950 paper Oldroyd considers the Frohlich and Sack [4] incompressible
viscoelastic model which can be expressed in the co-deforming Lagrangian

frame as

D D
lid ) =n(1+ N2 ) el 1
( + A t)ﬂ' 77( + A t)e ; (10)



where 7’ is the deviatoric part of the stress 7r, with components 7T;-k =Tk —

%wg}%k and e is the rate of strain tensor with components 5§.1)

= (Vjktvk,)
in the small deformation regime initially considered by Frohlich and Sack. In
the above, A is the characteristic relaxation time and X' is the characteristic

retardation time. Transforming the above constitutive relation to a fixed

Eulerian reference frame gives

b} B
I+ A= )p' =n(1+N=)eW 11
(+)\6t)p 77( +)\5t)e (11)

with p/, e denoting the deviatoric stress and rate of strain tensor in the
Eulerian frame. For polymeric solutions it is convenient to separate the total
viscosity 7 into a polymeric and solvent part as in n = 7, + 7,. These are
related to the characteristic times A\, X by Ans, = N (ns +n,) (see p. 37, [15]).

The total deviatoric stress p’ can be decomposed as
p/ = 7]56(1) + T, (12)

with the first part n,e due to a Newtonian solvent, and the second part

7 due to the polymer. This leads to the relation

b
(1 + AE) 7 =nel) . (13)

The notation



is often used in the literature when 7 is a 2-contravariant tensor. Applying

the Oldroyd theorem for this case leads to
(15)

F = %—;—F(U'V)T—(Vﬁ)TT—T(Vﬁ).

The additional stress exerted by the polymer is included as a force term

on the solvent and we can write the following equations of motion

V-7 =0, (16)
ov 1 s
a—z+(ﬁ-v)6: ;v-(—pl+7)+%v26, (17)
1
r =T+ Tlp (1) , (18)
A

=5
known as the Oldroyd-B system. If 7 = 0 at all times the above reduces to

the Navier-Stokes equations for a Newtonian fluid. In component form the

(19)

equations are
Vg, ke = 0,

1 s
Orvi + vvig = — (=P + Tjig) + Vi (20)
_Tij . (21)

NTij + VTijk — VikThj — TkVjk = ~ (Vi + Vi) —

The non-dimensional form of the momentum and stress evolution equations

1s
8/17 — - ]' 2=
E—F(U-V)U—V'(—pI-i-T)—FEVU, (22)
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v 1 p (1)
S 23
T e ( T+ 7756 , (23)

with

ULp AU

Re = m ,WBZT, (24)

the Reynolds and Weissenberg numbers, respectively.

The rather complicated nature of the differentiation operation T should
not obscure the fact that the physical content of (Ig]) is exactly the same
as in the Frohlich-Sack model ([I0). Of particular relevance to the main
point of this paper is that the incompressibility condition constrains not
only the evolution of the velocity field but also that of the additional stress
due to viscoelastic effects. But rather than investigating the nature of such
constraints in the Eulerian frame, it is simpler and more physically intuitive

to do so in the Lagrangian frame using (I0).

2.2 Elastic waves

A brief presentation of elastic waves in linear elastic solids is useful in analysis
of wave modes for viscoelastic fluids. With « the elastic displacement vector
and e®) = (Vii+ V") the strain tensor, the stress in an elastic solid obeying

Hooke’s law is

vE P E
€110;
2014 v)(1—2v) "

Sik =
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The equation of motion is

1 0si 0%u; 0%y,
Y p Oy, 0x,0xy; * )(%iaxk ’ (26)
with the longitudinal and transverse wave speeds defined by
E(1 - E
P? = (1—v) >t = —— (27)
p(1+v)(1 —2v) 2p(1+v)

Note that if the material is incompressible, the displacement field is con-
strained by the condition V - @ = u;,, = 0 and the material can only support

shear waves.

3 Numerical method

The Oldroyd-B system is a set of partial differential equations of mixed type
(p. 54, [15]). A hyperbolic subsystem is associated with propagating shear
waves and convective effects. The momentum diffusion is of parabolic char-
acter. The incompressibility condition imposes an overall elliptic constraint,
such that a boundary value problem would have to be solved for all the flow
variables at each time step. Such fully implicit discretizations have been
carried out and have shown to be stable up to high Weissenberg or Deborah
numbers (e.g. De = 80 in [I4]). Solving the nonlinear system of equations
arising from posing the boundary value problem is computationally expen-

sive hence approaches which can reduce the amount of effort required are of

12



great interest. Several schemes have been proposed that combine a fractional
in time or time-split method with a projection correction applied to the ve-
locity field to enforce incompressibility ([12], [I8]). The general approach to
building a time-split scheme is presented by Owens & Phillips (p. 156-157,
[T5]) and consists of successively advancing in time the additional polymeric

stress tensor 7, the velocity field ¥ and finally correcting the velocity field.

3.1 Numerical splitting procedure

We now present an explicit time-split scheme. The distinguishing feature of
the approach taken here is that the hyperbolic part is advanced forward in
time taking into account the convective and shear wave mode eigenmodes
naturally present in the system. A cell-centered finite-volume approach is
adopted with (7™, 7", p™) the flow variable values at time ¢".

Stage 1: (From ¢" to ¢*). The following hyperbolic subsystem is used

to obtain interim values (7%, 7%)

ov 1
a—z HEV)T= v, (28)
v 1 T (1)

L O 29
T /\17'+/\le (29)

In component form for two dimensions the system can be written as

dq dq dq
ot * Aax o Bay = vl4) (30)
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with

T
9= | Vo Uy Tax Tay Tyy )
Uy 0 —— 0 0
P
1
0 Uy 0o — 0
p
A=1 902 0 w 0 0|
Tay —pci 0 v, 0
i 0 274y 0 0 v, ]
[ 0 0 ! 0 |
/l) _—
Y p
0 v 0o 0 —-
! p
B—

—pcf/ —Toy 0 v, O

0 —2pc; 0 0 v,

V=10 0 —Tu/\ —Tug/ A —Tyy /A )

2 n 2 7
pcx:_p_f_ﬂm, pcy:_p+7yy'

A A

The wave propagation approach of LeVeque [§] is used to advance system

B0) forward in time. Briefly, in this approach the cell average values

" 1 Tiy1/2 Yj+r1/2

Ti-1/2 Yj—1/2
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are used to define Riemann problems at each cell interface. To solve the Rie-
mann problem, the jump at an interface is decomposed on the basis formed
by eigenvectors of the A, B matrices. Consider the interface at z;_;/, and
let R be the matrix of eigenvectors of A formed using the arithmetic av-
erage of cell center values to the left and right, R = R((Q} + Q7_,)/2),
R = [r1,7r9,73,74,75), Ar), = A1y for £ = 1,...,5. The jump at the interface

AQY Ja,j> 18 decomposed on the R eigenbasis

5
n _ n n _ l !
AQifl/Zj = Qz] — W1 = E Qi_1/2,57i-1/2,5-
=1

The waves WLUQJ = O‘é’q/zréq/z propagate into cells to the left and right
in accordance with the sign of the associated eigenvalue and modify the cell
average values. For full details see [§]. The scheme is second order in time

and space. The eigendecomposition of the A, B matrices is required to define

the waves. For A the eigensystem is

AA = diag(vx - C:t\/ia Uy — Cg, Vg, Uy + Cgy Uy + C:E\/i)

15



[ pEVE 0 0 0 —pd/VE |
g VE o 0 = —eaTry/ V2
Ra= pct 0 0 0 p*ch
PC2 Ty pct 0 pc PC2 Ty
i Tfy 2Ty 1 27, Tfy ]

and the solution of the linear system R a = AQ is given by

o) = % (AQ?) + V2 AQI) ; Q5 = % <AQ3 — V2 AQl)
Qg = % [C?g (AQ4 + C:UAQ2) - (AQZ’) + CacAQl)Tacy} )
Oy = % [Ci(AQ4 - CacAQ2) - (AQ3 - C:UAQI)T:vy}

TLU
a5 = AQs + =2 (7, AQs — 2620Qu)

xT

The eigensystem for B is

A = diag(vy — Cy\/i Uy — Cy, Uy, Uy + Cy, Uy + Cy\/i) )

OTey/V2 ¢ 0 —cy =Ty /V2 _
pc3/N2 00 0 —pcd/V2
R = T:fy 2Ty 1 27, Tgy
pCZTxy pcf/ 0 pcz pCZTxy
P 0 0 0 p’c, |
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and the solution of Rgar = AQ) is

1 1

] = 2_034/ (AQ5 + Cy\/iAQ2> , Q5 = 2—034/ (AQE) - Cy\/iAQ2> ’ (31)
Qg = % [032/ (AQ1 + ¢ AQ1) — (AQs + ¢y AQ2) Txy] ) (32)
o = 57 [6(AQ1 — 6,0Q) — (AQs — ,AQ) 72,]. (33)
a5 = AQs + (0, AQs — 22AQu) - (34)

)

The source term 1(q) is included through Strang splitting.

Note that the eigensystem for each matrix contains three types of waves.
For the A matrix we have: (1) longitudinal or P-waves of speed v, + v/2¢c,,
(2) shear or S-waves of speed v, + ¢,, and (3) a jump in the orthogonal
normal stress 7, convected at the fluid velocity v,. Though the full system of
equations is incompressible and P-waves cannot appear, the reduced system
B0) above exhibits P-waves since it does not contain the incompressibility
condition. Indeed the hyperbolicity of ([30) depends crucially on the presence
of P-waves.

In the DPM to be presented below an additional stage will be introduced
which will obtain field values ¢ from ¢*. For now, we just set (07, 77) =
(0%, 7*). In this time-split method no further corrections of the stress are

1

carried out, so we set 7" = 7+,

Stage 2: (From ¢* to ¢**). A Crank-Nicolson procedure is employed to

17



compute viscous effects modeled by the subsystem
— = =V, (35)

thus obtaining a new velocity field ** from the interim field 7. The numer-

ical update is given by

At n, At
(1 el v2) 7 = (I + —”vQ) ad (36)
p p

and the resulting system of linear equations is solved using a multigrid pro-
cedure.

Stage 3: (From ¢** to ¢"*1). A projection method is applied to correct
the velocity field. In its simplest, first-order accurate in time form, the update
is given by

T =+ VpT (37)

The correction potential is obtained by a multigrid solve of the Poisson equa-
tion

1
2 n+l TR
Vephth = —tV o (38)

The projection can be extended to second-order accuracy as shown by Van
Kan [I9] and Bell et al. [I], taking care to correctly apply time-split boundary
conditions [2]. Before considering such extensions we turn to an investigation
of the consequences of not enforcing the compressibility constraint in the

evolution equation for 7.
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3.2 Spurious modes

The above time-split approach is often encountered in numerical computa-
tions of Oldroyd-B. The specific details vary scheme to scheme. For example
Trebotich et al. [I8] and Webster et al. [20] use a Lax-Wendroff method
to advance the viscoelastic stress. A fundamental distinction can be made
between explicit methods that use an interim value of the viscoelastic stress
in the momentum update enforcing incompressibility only on the velocity
field and fully implicit schemes (e.g. [14]) that enforce the incompressibility
constraint in the computation of 7 also.

It is perhaps useful to recall how the projection method functions for the
Navier-Stokes equations. To restrict the presentation to the essential idea, a
first order scheme is discussed. Starting from the velocity and pressure fields
(0™, p™) at time t" the momentum equation is used to construct an interim
velocity field . In component form

v =} + A [=0fol 4 nevigs] (39)

Taking the divergence gives

v, = —=At vl (40)

Z7Z ]7Z Z7] )

which we can interpret as stating that the nonlinear terms arising from the

convective derivative do not preserve divergence-free velocity fields. Nu-
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merical approximations of the differential operations in (B9) can lead to fur-
ther divergence errors. The projection correction for Navier-Stokes computes
vt = vf + ¢, with ¢ the solution of ¢ j; = —vy,/At.

Schemes for the Oldroyd-B model that advance the viscoelastic stress
independently of the incompressibility constraint lead to the same type of
error. The nonlinear convective terms present in the T derivative can lead
to stresses associated with P-waves (longitudinal modes) that are prohib-
ited by the incompressibility constraint. If the interim stress value 7* is
subsequently used in the momentum update a spurious force acts upon the
fluid. Subsequent correction of the velocity field by a projection method will
enforce compressibility after the action of this spurious force field and, in
general, will not remove the effects of the spurious forces.

We present now a diagnosis of the appearance of longitudinal modes in
the viscoelastic stress. A symmetric tensor stress 7* function defined on some

domain €2 can always be decomposed into a divergence-free part 3, which

does not carry any forces, and a force-carrying part a
T =a"+ 3. (41)
The divergence-free part satisfies the equations

V-8 =0inQ (42)

B -1 =0 on . (43)



The force-carrying part can be represented as
o = Vi + (Vi)' | (44)
with the vector field @ computed by solving the elliptic system

VP +V(V-d*)=V-7" inQ, (45)

[Va* + (Va*)"] -7 = —7* - i on 0.

Note that the link between a* and u«* is of the same form as that given by
the Frohlich-Sack model ([I0). The time dependence in ([I0) implies a link
between the stress and the entire time-deformation history so «* which is
determined here for 7* at just one instant in time cannot be identified as
the actual deformation field of the viscoelastic material. However, since the
viscoelastic deformation field was subject to the incompressibility constraint
at all times, the field @* must reflect this constraint and the solution of (4]

should satisfy
V.-u =0, (46)

if the stress field 7* has been evolved correctly by a numerical scheme. We
proceed to verify whether the condition ({6 is met by the time-split scheme.

A computation of the flow inside a square cavity of unit side length is
presented in Fig. 1. The top lid moves at velocity U = 1, the Weissenberg

number is We = 0.1 and the Reynolds number is Re = 1. The time-split
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method presented above was used on a 100x100 grid. The flow is shown
at t = 4 and is steady state. The viscoelastic stress field was decomposed
into divergence-free and force-carrying parts and the divergence of @ from
(@4) is shown as contour lines using a logarithmic scale. Clearly @* is not
divergence-free.

The pseudo-deformation field 4* can be separated into a divergence-free
part (w*) and the gradient of a scalar potential using a Helmholtz decompo-
sition

T =V (47)

with ¢* computed by solving the Poisson equation VZ¢* = V- @*. The V-1*
term is the viscoelastic force used in the momentum equation. The forces

induced by the divergence carrying part of « are spurious and given by

—

F=v 7=v@—o)+ V@ —a)" . (48)

The 7' field is presented in Fig. 2 along with the velocity field obtained for a
computation at higher Weissenberg number We = 0.30 and Reynolds number
of Re =1 at t = 0.4. A steady flow regime is expected for these parameter
values from experimental results [I6]. We surmise that the spurious forces are
leading to a non-physical loss of flow stability. The numerical computations
for this case did not diverge and the computation could be advanced to later

times (the computation up to ¢ = 10 was carried out).
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Figure 1: Cavity flow at Re = 1, We = 0.1 and contour lines of the divergence
of the pseudo-deformation field u
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Figure 2: Non-physical oscillations in cavity flow at Re = 1, We = 0.3 and
a representation of the spurious longitudinal stress field 7’/
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3.3 Relevance to the high Weissenberg number prob-

lem

The loss of numerical or physical stability at high Weissenberg numbers has
been observed in numerical simulations of viscoelastic flows for some time.
A good overview of the history of the problem is presented by Owens and
Phillips (p. 173, [15]). The improper treatment of hyperbolic terms in steady-
state computations has been identified as a major source of error and proper
upwinding has led to stable computations for both unsteady and steady flows
at relatively high Weissenberg numbers [I8]. Implicit algorithms have been
shown to behave more stably than explicit schemes [I4]. The main contribu-
tion of this paper is that part of the observed difficulties in explicit time-split
schemes can be traced to a numerical approximation of the viscoelastic stress
that does not conform to the constraints imposed by the incompressibility
condition, in particular that longitudinal modes and associated forces should

not arise in the fluid.

4 Double projection method

Based on the above observations we now introduce a correction of the in-
terim stress field 7* obtained at the end of Stage 1 of the time-split method
presented in Sect Bl

Stage la: (From ¢* to ¢). One of the attractive properties of the wave

propagation approach used above is the close connection between numerical
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model and physical behavior. We wish to maintain this approach and con-

tinue updating the velocity and stress fields simultaneously. The spurious

forces have furnished an erroneous prediction of the velocity field. Hence we

introduce one more stage and correct the viscoelastic stress by subtracting

the part associated with longitudinal modes

= V(&) + V()"

with w* determined from

A A v

In order to compute the corrected stress field the elliptic problems

V3 +V(V-a@*) =V 7" inQ

(Vi + (Vi*)"] -7t = —7* - on 09,

and

Vip* =V - @ in Q

¢* =0 on 01,

are solved. This is the first projection of the Double Projection Method

proposed here. Note that we are correcting a two-component tensor. Hence

it is to be expected that at least a vector potential (in this case w*) is required
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to remove the longitudinal modes.
The velocity field has already been updated using the 7* viscoelastic

stress in Stage 1. We correct the velocity field using the equation
G=V-(rt"—-1%). (54)

Using a second-order midpoint rule and taking into account that at the be-
ginning of the time step the stress is assumed to contain no longitudinal

modes the discrete update is

Th=v"+—V-(r7 -7 . (55)

At
2

Algorithm complexity. Stages 1, 2 and 3 of the Double Projection
Method are the same as the time split method from Sect. Bl Overall for a
2D computation we shall solve 4 scalar elliptic equations. This should be
compared to a fully implicit method in which 6 equations are simultaneously
solved. In 3D the DPM requires solving 5 scalar as opposed to 10 equations
required for a fully implicit procedure. In practice the corrections have been
found to within relative error of 107% in only 1 multigrid V-cycle since a very

good initial approximation is available from the previous time step.
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4.1 Comparison to standard projection algorithm

A natural question to ask is whether there is any difference in the velocity field
predicted by the double projection method by comparison to that obtained
by applying a single projection step. To answer this question we carry out a

computation in Fourier space. Let

+00 o
V(k,t) = / O(x, t)e " dz (56)

In a single projection method the interim velocity field v* is modified by the

gradient of a scalar potential ¢; to obtained a corrected field v
¥ ="+ Vo, V¢ = -V 7" . (57)

Let ® be the Fourier transform of ¢. Solving the above Poisson equation
leads to ® = i(k-V*)/k% In Fourier space the correction to the velocity field

is given by
(k-V7):
—F—k

V=V -

(58)

Incidentally, the above form clearly shows that the correction is indeed a
projection along the k direction. In the double projection method we would
start from the same interim velocity field v*. Consider the case of explicit

Euler time stepping for simplicity. Removing the effect of longitudinal modes
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leads to the correction

7=+ % (V2 - V2 - (V)] (59)

which in Fourier space becomes

Ve = B[ (0 07 4 0] (60)
The final velocity field is obtained by the second projection step
AR (61)

Computing the difference between the velocity fields predicted by the two

methods gives

AV:%—%:—EWWQW“—Uﬂ+wwm4. (62)
If the interim deformation field would have been divergence-free, then U* =
0 and Ut = U *, and there would be no difference between the double
projection method and standard projection. If the interim deformation field
is not divergence-free, we see that the predictions given by the standard

projection method differ from those of the double projection method. As

expected, the difference AV is a divergence free-field, AV -k = 0.
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5 Numerical results

5.1 Cavity problem

We conclude by comparing numerical computations to experimental results.
The numerical computations were carried in the first author’s well tested
BEARCLAW package. The wave propagation algorithm and linear solvers
used in the DPM algorithm have shown robust second-order convergence for
a number of problems.

In all cases computed here the Reynolds number is Re = 1. Fig. 3-5
present stable steady solutions obtained by the DPM for We = 0.075,0.15,0.075
in comparison with experimental visualizations from [16]. Good qualitative

agreement with the experimental results is observed.

6 Conclusions

Numerical methods benefit from incorporating physical knowledge about the
system being modeled. In this paper the utility of gaining insight by con-
sidering the physical evolution of a viscoelastic model in the co-moving, co-
deforming Lagrangian frame of reference has been highlighted. The obser-
vation that the viscoelastic field should exhibit no longitudinal modes led
to an investigation of whether standard time-split approaches maintain this
restriction. A prototypical method has been found to violate this constraint

and a correction has been proposed in the form of an additional projection
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Figure 3: Comparison of computed viscoelastic cavity flow for an Oldroyd-B
fluid at We = 0.3 using the double projection method with the experimental
results of Pakdel et al. [10]

Figure 4: As before, but for We = 0.15
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Figure 5: As before, but for We = 0.075

step that eliminates spurious longitudinal forces from the viscoelastic stress
field.

Computations on the cavity problem have shown that the Double Pro-
jection Method (DPM) introduced here stabilizes computations that exhibit
non-physical oscillations in the time-split method which uses a projection
only to correct the velocity field. Furthermore, the additional correction fur-
nished by the DPM has been shown to be essentially different from that given
by the velocity projection step as detailed in equation (62]). The fully explicit
first stage of the algorithm used here perhaps introduces larger longitudinal
force errors than predictor-corrector algorithms used in other schemes [18],
and the effects pointed out here might be less acute for other algorithms.

Nonetheless, all explicit methods would in general introduce spurious longi-

31



tudinal modes in the viscoelastic stress tensor and can be corrected using
the additional projection step proposed here. In this sense, the correction is
general and can be integrated into different algorithms for the computation
of unsteady viscoelastic flows.

Further research directions are immediately suggested by this work and
are being pursued. Similar to the divergence-cleaning procedures in magneto-
hydrodynamic computations, different approaches can be attempted here. In
particular, numerical schemes that are guaranteed not to introduce longitu-
dinal modes are being investigated in order to obtain a constrained-transport
type scheme. Though the DPM method has been introduced and exemplified
for an Oldroyd-B fluid, the procedure should be relevant for any incompress-
ible viscoelastic fluid and extensions of the procedure to FENE-P type fluids
are underway.
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