
Chapter 1

TWO�DIMENSIONAL LAPLACE�S EQUATION

1.1 Introduction

Perhaps a good starting point for introducing boundary element methods is through

solving boundary value problems governed by the two-dimensional Laplace�s equation

�2�

�x2
+
�2�

�y2
= 0. (1.1)

The Laplace�s equation occurs in the formulation of problems in many diverse

�elds of studies in engineering and physical sciences, such as thermostatics, elasto-

statics, electrostatics, magnetostatics, ideal �uid �ow and �ow in porous media.

An interior boundary value problem which is of practical interest requires

solving Eq. (1.1) in the two-dimensional region R (on the Oxy plane) bounded by a

simple closed curve C subject to the boundary conditions

� = f1(x, y) for (x, y) � C1,

��

�n
= f2(x, y) for (x, y) � C2, (1.2)

where f1 and f2 are suitably prescribed functions and C1 and C2 are non-intersecting

curves such that C1 � C2 = C. Refer to Figure 1.1 for a geometrical sketch of the

problem.

The normal derivative ��/�n in Eq. (1.2) is de�ned by

��

�n
= nx

��

�x
+ ny

��

�y
, (1.3)

where nx and ny are respectively the x and y components of a unit normal vector to

the curve C. Here the unit normal vector [nx,ny] on C is taken to be pointing away

from the region R. Note that the normal vector may vary from point to point on C.

Thus, [nx, ny] is a function of x and y.

The boundary conditions given in Eq. (1.2) are assumed to be properly posed

so that the boundary value problem has a unique solution, that is, it is assumed that

one can always �nd a function �(x, y) satisfying Eqs. (1.1)-(1.2) and that there is

only one such function.
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Figure 1.1

For a particular example of practical situations involving the boundary value

problem above, one may mention the classical heat conduction problem where �

denotes the steady-state temperature in an isotropic solid. Eq. (1.1) is then the

temperature governing equation derived, under certain assumptions, from the law of

conservation of heat energy together with the Fourier�s heat �ux model. The heat

�ux out of the region R across the boundary C is given by ����/�n, where � is the

thermal heat conductivity of the solid. Thus, the boundary conditions in Eq. (1.2)

imply that at each and every given point on C either the temperature or the heat

�ux (but not both) is known. To determine the temperature �eld in the solid, one

has to solve Eq. (1.1) in R to �nd the solution that satis�es the prescribed boundary

conditions on C.

In general, it is di�cult (if not impossible) to solve exactly the boundary

value problem de�ned by Eqs. (1.1)-(1.2). The mathematical complexity involved

depends on the geometrical shape of the region R and the boundary conditions given

in Eq. (1.2). Exact solutions can only be found for relatively simple geometries of

R (such as a square region) together with particular boundary conditions. For more

complicated geometries or general boundary conditions, one may have to resort to

numerical (approximate) techniques for solving Eqs. (1.1)-(1.2).

This chapter introduces a boundary element method for the numerical solution

of the interior boundary value problem de�ned by Eqs. (1.1)-(1.2). We show how

a boundary integral solution can be derived for Eq. (1.1) and applied to obtain a

simple boundary element procedure for approximately solving the boundary value

problem under consideration. The implementation of the numerical procedure on the

computer, achieved through coding in FORTRAN 77, is discussed in detail.
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1.2 Fundamental Solution

If we use polar coordinates r and � centered about (0, 0), as de�ned by x = r cos �

and y = r sin �, and introduce �(r, �) = �(r cos �, r sin �), we can rewrite Eq. (1.1) as

1

r

�

�r
(r
��

�r
) +

1

r2
�2�

��2
= 0. (1.4)

For the case in which � is independent of �, that is, if � is a function of r

alone, Eq. (1.4) reduces to the ordinary di�erential equation

d

dr
(r
d

dr
[�(r)]) = 0 for r 6= 0. (1.5)

The ordinary di�erential equation in Eq. (1.5) can be easily integrated twice

to yield the general solution

�(r) = A ln(r) +B, (1.6)

where A and B are arbitrary constants.

From (1.6), it is obvious that the two-dimensional Laplace�s equation in Eq.

(1.1) admits a class of particular solutions given by

�(x, y) = A ln
p
x2+ y2+B for (x, y) 6= (0, 0). (1.7)

If we choose the constants A and B in (1.7) to be 1/(2�) and 0 respectively

and shift the center of the polar coordinates from (0, 0) to the general point (�, �), a

particular solution of Eq. (1.1) is

�(x, y) =
1

2�
ln
p
(x� �)2+ (y � �)2 for (x, y) 6= (�, �). (1.8)

As we shall see, the particular solution in Eq. (1.8) plays an important role

in the development of boundary element methods for the numerical solution of the

interior boundary value problem de�ned by Eqs. (1.1)-(1.2). We specially denote this

particular solution using the symbol �(x, y; �, �), that is, we write

�(x, y; �, �) =
1

4�
ln[(x� �)2+ (y � �)2]. (1.9)

We refer to �(x, y; �, �) in Eq. (1.9) as the fundamental solution of the two-

dimensional Laplace�s equation. Note that �(x, y; �, �) satis�es Eq. (1.1) everywhere

except at (�, �) where it is not well de�ned.
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1.3 Reciprocal Relation

If �1 and �2 are any two solutions of Eq. (1.1) in the region R bounded by the simple

closed curve C then it can be shown that
Z

C

(�2
��1
�n

� �1
��2
�n

)ds(x, y) = 0. (1.10)

Eq. (1.10) provides a reciprocal relation between any two solutions of the

Laplace�s equation in the regionR bounded by the curve C. It may be derived from the

two-dimensional version of the Gauss-Ostrogradskii (divergence) theorem as explained

below.

According to the divergence theorem, if F= u(x, y)i+v(x, y)j is a well de�ned

vector function such that � ·F = �u/�x+ �v/�y exists in the region R bounded by

the simple closed curve C then

Z

C

F · n ds(x, y) =
ZZ

R

� · F dxdy,

that is,

Z

C

[unx + vny]ds(x, y) =

ZZ

R

[
�u

�x
+
�v

�y
]dxdy,

where n = [nx, ny] is the unit normal vector to the curve C, pointing away from the

region R.

Since �1 and �2 are solutions of Eq. (1.1), we may write

�2�1
�x2

+
�2�1
�y2

= 0,

�2�2
�x2

+
�2�2
�y2

= 0.

If we multiply the �rst equation by �2 and the second one by �1 and take the

di�erence of the resulting equations, we obtain

�

�x
(�2
��1
�x

� �1
��2
�x

) +
�

�y
(�2
��1
�y

� �1
��2
�y

) = 0,

which can be integrated over R to give

ZZ

R

[
�

�x
(�2
��1
�x

� �1
��2
�x

) +
�

�y
(�2
��1
�y

� �1
��2
�y

)]dxdy = 0.
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Application of the divergence theorem to convert the double integral over R

into a line integral over C yields
Z

C

[(�2
��1
�x

� �1
��2
�x

)nx + (�2
��1
�y

� �1
��2
�y

)ny]ds(x, y) = 0

which is essentially Eq. (1.10).

Together with the fundamental solution given by Eq. (1.9), the reciprocal

relation in Eq. (1.10) can be used to derive a useful boundary integral solution for

the two-dimensional Laplace�s equation.

1.4 Boundary Integral Solution

Let us take �1 = �(x, y; �, �) (the fundamental solution as de�ned in Eq. (1.9))

and �2 = �, where � is the required solution of the interior boundary value problem

de�ned by Eqs. (1.1)-(1.2).

Since �(x, y; �, �) is not well de�ned at the point (�, �), the reciprocal relation

in Eq. (1.10) is valid for �1 = �(x, y; �, �) and �2 = � only if (�, �) does not lie in the

region R � C. Thus,
Z

C

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y) = 0

for (�, �) /� R � C. (1.11)

A more interesting and useful integral equation than Eq. (1.11) can be derived

from Eq. (1.10) if we take the point (�, �) to lie in the region R � C.
For the case in which (�, �) lies in the interior of R, Eq. (1.10) is valid if we

replace C by C � C�, where C� is a circle of center (�, �) and radius � as shown in

Figure 1.2�. This is because �(x, y; �, �) and its �rst order partial derivatives (with

respect to x or y) are well de�ned in the region between C and C�. Thus, for C and

C� in Figure 1.2, we can write
Z

C�C�

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y) = 0,

that is,
Z

C

[�(x, y)
�

�n
(�(x, y; �, �))� �(x, y; �, �) �

�n
(�(x, y))]ds(x, y)

= �
Z

C�

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y). (1.12)

�The divergence theorem is not only applicable for simply connected regions but also for multiply

connected ones such as the one shown in Figure 1.2. For the region in Figure 1.2, the unit normal

vector to C� (the inner boundary) points towards the center of the circle.
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Figure 1.2

Eq. (1.12) holds for any radius � > 0, so long as the circle C� (in Figure 1.2)

lies completely inside the region bounded by C. Thus, we may let � � 0+ in Eq.

(1.12). This gives
Z

C

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y)

= � lim
��0+

Z

C�

[�(x, y)
�

�n
(�(x, y; �, �))� �(x, y; �, �) �

�n
(�(x, y))]ds(x, y).

(1.13)

Using polar coordinates r and � centered about (�, �) as de�ned by x � � =
r cos � and y � � = r sin �, we may write

�(x, y; �, �) =
1

2�
ln(r),

�

�n
[�(x, y; �, �)] = nx

�

�x
[�(x, y; �, �)] + ny

�

�y
[�(x, y; �, �)]

=
nx cos � + ny sin �

2�r
. (1.14)

The Taylor�s series of �(x, y) about the point (�, �) is given by

�(x, y) =

�X

m=0

mX

k=0

(
�m�

�xk�ym�k
)

¯̄
¯̄
(x,y)=(�,�)

(x� �)k(y � �)m�k
k!(m� k)! .

On the circle C�, r = �. Thus,

�(x, y) =

�X

m=0

mX

k=0

(
�m

�xk�ym�k
[�(x, y)])

¯̄
¯̄
(x,y)=(�,�)

�m cosk � sinm�k �

k!(m� k)!
for (x, y) � C�. (1.15)
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Similarly, we may write

�

�n
[�(x, y)] =

�X

m=0

mX

k=0

(
�m

�xk�ym�k
{ �
�n

[�(x, y)]})
¯̄
¯̄
(x,y)=(�,�)

×�
m cosk � sinm�k �

k!(m� k)! for (x, y) � C�. (1.16)

Using Eqs. (1.14), (1.15) and (1.16) and writing ds(x, y) = �d� with � ranging

from 0 to 2�, we may now attempt to evaluate the limit on the right hand side of Eq.

(1.13). On C�, the normal vector [nx, ny] is given by [� cos �,� sin �]. Thus,

Z

C�

�(x, y)
�

�n
[�(x, y; �, �]ds(x, y)

= � 1

2�
�(�, �)

2�Z

0

d�

� 1

2�

�X

m=1

mX

k=0

�m

k!(m� k)! (
�m�

�xk�ym�k
)

¯̄
¯̄
(x,y)=(�,�)

2�Z

0

cosk � sinm�k �d�

� ��(�, �) as �� 0+, (1.17)

and
Z

C�

�(x, y; �, �)
�

�n
[�(x, y)]ds(x, y)

=
1

2�

�X

m=0

mX

k=0

(
�m

�xk�ym�k
(
�

�n
[�(x, y)]))

¯̄
¯̄
(x,y)=(�,�)

× �
m+1 ln(�)

k!(m� k)!

2�Z

0

cosk � sinm�k �d�

� 0 as �� 0+, (1.18)

since �m+1 ln(�)� 0 as �� 0+ for m = 0, 1, 2, · · · .
Consequently, as �� 0+, Eq. (1.13) yields

�(�, �) =

Z

C

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y)

for (�, �) � R. (1.19)

Together with Eq. (1.9), Eq. (1.19) provides us with a boundary integral

solution for the two-dimensional Laplace�s equation. If both � and ��/�n are known
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at all points on C, the line integral in Eq. (1.19) can be evaluated (at least in theory)

to calculate � at any point (�, �) in the interior of R. From the boundary conditions

(1.2), at any given point on C, either � or ��/�n, not both, is known, however.

To solve the interior boundary value problem, we must �nd the unknown �

and ��/�n on C2 and C1 respectively. As we shall see later on, this may be done

through manipulation of data on the boundary C only, if we can derive a boundary

integral formula for �(�, �), similar to the one in Eq. (1.19), for a general point (�, �)

that lies on C.

For the case in which the point (�, �) lies on C, Eq. (1.10) holds if we replace

the curve C by D �D�, where the curves D and D� are as shown in Figure 1.3. (If

C� is the circle of center (�, �) and radius �, then D is the part of C that lies outside

C� and D� is the part of C� that is inside R.) Thus,
Z

D

[�(x, y)
�

�n
(�(x, y; �, �))� �(x, y; �, �) �

�n
(�(x, y))]ds(x, y)

= �
Z

D�

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y). (1.20)

Let us examine what happens to Eq. (1.20) when we let �� 0+.

As �� 0+, the curve D tends to C. Thus, we may write
Z

C

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y)

= � lim
��0+

Z

D�

[�(x, y)
�

�n
(�(x, y; �, �))� �(x, y; �, �) �

�n
(�(x, y))]ds(x, y).

(1.21)

Figure 1.3
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Note that, unlike in Eq. (1.13), the line integral over C in Eq. (1.21) is

improper as its integrand is not well de�ned at (�, �) which lies on C. Strictly

speaking, the line integration should be over the curve C without an in�nitesimal

segment that contains the point (�, �), that is, the line integral over C in Eq. (1.21)

has to be interpreted in the Cauchy principal sense if (�, �) lies on C.

To evaluate the limit on the right hand side of Eq. (1.21), we need to know

what happens to D� when we let �� 0+. Now if (�, �) lies on a smooth part of C (not

at where the gradient of the curve changes abruptly, that is, not at a corner point,

if there is any), one can intuitively see that the part of C inside C� approaches an

in�nitesimal straight line as �� 0+. Thus, we expect D� to tend to a semi-circle as

�� 0+, if (�, �) lies on a smooth part of C. It follows that in attempting to evaluate

the limit on the right hand side of Eq. (1.21) we have to integrate over only half a

circle (instead of a full circle as in the case of Eq. (1.13)).

Modifying Eqs. (1.17) and (1.18), we obtain

lim
��0+

Z

D�

�(x, y)
�

�n
[�(x, y; �, �)]ds(x, y) = �1

2
�(�, �),

lim
��0+

Z

D�

�(x, y; �, �)
�

�n
[�(x, y)]ds(x, y) = 0.

Hence Eq. (1.21) gives

1

2
�(�, �) =

Z

C

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y)

for (�, �) lying on a smooth part of C. (1.22)

Together with the boundary conditions in Eq. (1.2), Eq. (1.22) may be applied

to obtain a numerical procedure for determining the unknown � and/or ��/�n on

the boundary C. Once � and ��/�n are known at all points on C, the solution of the

interior boundary value problem de�ned by Eqs. (1.1)-(1.2) is given by Eq. (1.19) at

any point (�, �) inside R. More details are given in Section 1.5 below.

For convenience, we may write Eqs. (1.11), (1.19) and (1.22) as a single

equation given by

�(�, �)�(�, �) =

Z

C

[�(x, y)
�

�n
(�(x, y; �, �))��(x, y; �, �) �

�n
(�(x, y))]ds(x, y),

(1.23)

if we de�ne

�(�, �) =

�
�
�

0 if (�, �) /� R � C,
1/2 if (�, �) lies on a smooth part of C,

1 if (�, �) � R.
(1.24)
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1.5 Boundary Element Solution with Constant Elements

We now show how Eq. (1.23) may be applied to obtain a simple boundary element

procedure for solving numerically the interior boundary value problem de�ned by

Eqs. (1.1)-(1.2).

The boundary C is approximated as an N-sided polygon with sides C (1), C(2),

· · · , C(N�1) and C(N), that is,

C ' C(1) � C(2) � · · · � C(N�1) � C(N). (1.25)

The sides or the boundary elements C (1), C(2), · · · , C(N�1) and C(N) are
constructed as follows. We put N well spaced out points (x(1), y(1)), (x(2), y(2)),

· · · , (x(N�1), y(N�1)) and (x(N), y(N)) on C, in the order given, following the counter
clockwise direction. De�ning (x(N+1), y(N+1)) = (x(1), y(1)), we take C(k) to be the

boundary element from (x(k), y(k)) to (x(k+1), y(k+1)) for k = 1, 2, · · · , N.
As an example, in Figure 1.4, the boundary C = C1 � C2 in Figure 1.1 is

approximated using 5 boundary elements denoted by C (1), C(2), C(3), C(4) and C(5).

For a simple approximation of � and ��/�n on the boundary C, we assume

that these functions are constants over each of the boundary elements. Speci�cally,

we make the approximation:

� ' �(k) and ��

�n
= p(k) for (x, y) � C(k) (k = 1, 2, · · · , N), (1.26)

where �
(k)
and p(k) are respectively the values of � and ��/�n at the midpoint of

C(k).

Figure 1.4
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With Eqs. (1.25) and (1.26), we �nd that Eq. (1.23) can be approximately

written as

�(�, �)�(�, �) =

NX

k=1

{�(k)F (k)
2 (�, �)� p(k)F (k)

1 (�, �)}, (1.27)

where

F (k)
1 (�, �) =

Z

C(k)

�(x, y; �, �)ds(x, y),

F (k)
2 (�, �) =

Z

C(k)

�

�n
[�(x, y; �, �)]ds(x, y). (1.28)

For a given k, either �
(k)

or p(k) (not both) is known from the boundary

conditions in Eq. (1.2). Thus, there are N unknown constants on the right hand side

of Eq. (1.27). To determine their values, we have to generate N equations containing

the unknowns.

If we let (�, �) in Eq. (1.27) be given in turn by the midpoints of C (1), C(2),

· · · , C(N�1) and C(N), we obtain

1

2
�
(m)

=

NX

k=1

{�(k)F (k)
2 (x(m), y(m))� p(k)F (k)

1 (x(m), y(m))}

for m = 1, 2, · · · , N, (1.29)

where (x(m), y(m)) is the midpoint of C (m).

In the derivation of Eq. (1.29), we take �(x(m), y(m)) = 1/2, since (x(m), y(m))

being the midpoint of C (m) lies on a smooth part of the approximate boundary C (1)�
C(2) � · · · � C(N�1) � C(N).

Eq. (1.29) constitutes a system of N linear algebraic equations containing the

N unknowns on the right hand side of Eq. (1.27). We may rewrite it as

NX

k=1

a(mk)z(k) =

NX

k=1

b(mk) for m = 1, 2, · · · , N, (1.30)
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where a(mk), b(mk) and z(k) are de�ned by

a(mk) =

(
�F (k)

1 (x(m), y(m)) if � is speci�ed over C(k),

F (k)
2 (x(m), y(m))� 1

2�
(mk) if ��/�n is speci�ed over C (k),

b(mk) =

(
�
(k)
(�F (k)

2 (x(m), y(m)) + 1
2�

(mk)) if � is speci�ed over C(k),

p(k)F (k)
1 (x(m), y(m)) if ��/�n is speci�ed over C (k),

�(mk) =

½
0 if m 6= k,

1 if m = k,

z(k) =

(
p(k) if � is speci�ed over C(k),

�
(k)

if ��/�n is speci�ed over C (k).
(1.31)

Note that z(1), z(2), · · · , z(N�1) and z(N) are the N unknown constants on the

right hand side of Eq. (1.27), while a(mk) and b(mk) are known coe�cients.

Once Eq. (1.30) is solved for the unknowns z(1), z(2), · · · , z(N�1) and z(N), the

values of � and ��/�n over the element C (k), as given by �
(k)

and p(k) respectively,

are known for k = 1, 2, · · · , N. Eq. (1.27) with �(�, �) = 1 then provides us with an

explicit formula for computing � in the interior of R, that is,

�(�, �) '
NX

k=1

{�(k)F (k)
2 (�, �)� p(k)F (k)

1 (�, �)} for (�, �) � R. (1.32)

To summarize, a boundary element solution of the interior boundary value

problem de�ned by Eqs. (1.1)-(1.2) is given by Eq. (1.32) together with Eqs. (1.28),

(1.30) and (1.31). Because of the approximation in Eqs. (1.25) and (1.26), the

solution is said to be obtained using constant elements. Analytical formulae for

calculating F (k)
1 (�, �) and F (k)

2 (�, �) in Eq. (1.28) are given in Eqs. (1.37), (1.38),

(1.40) and (1.41) (together with Eq. (1.35)) in the section below.

1.6 Formulae for Integrals of Constant Elements

The boundary element solution above requires the evaluation ofF (k)
1 (�, �) andF (k)

2 (�, �).

These functions are de�ned in terms of line integrals over C (k) as given in Eq. (1.28).

The line integrals can be worked out analytically as follows.

Points on the element C(k) may be described using the parametric equations

x = x(k) � t`(k)n(k)y
y = y(k) + t`(k)n

(k)
x

)
from t = 0 to t = 1, (1.33)

where `(k) is the length of C(k) and [n
(k)
x , n

(k)
y ] = [y(k+1)� y(k), x(k)�x(k+1)]/`(k) is the

unit normal vector to C (k) pointing away from R.
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For (x, y) � C(k), we �nd that ds(x, y) =
p
(dx)2+ (dy)2 = `(k)dt and

(x� �)2+ (y � �)2 = A(k)t2+B(k)(�, �)t+E(k)(�, �), (1.34)

where

A(k) = [`(k)]2,

B(k)(�, �) = [�n(k)y (x(k) � �) + (y(k) � �)n(k)x ](2`(k)),

E(k)(�, �) = (x(k) � �)2+ (y(k) � �)2. (1.35)

The parameters in Eq. (1.35) satisfy 4A(k)E(k)(�, �)� [B(k)(�, �)]2 � 0 for any

point (�, �).To see why this is true, consider the straight line de�ned by the parametric

equations x = x(k) � t`(k)n
(k)
y and y = y(k) + t`(k)n

(k)
x for �� < t < �. Note that

C(k) is a subset of this straight line (given by the parametric equations from t = 0 to

t = 1). Eq. (1.34) also holds for any point (x, y) lying on the extended line. If (�, �)

does not lie on the line then A(k)t2+B(k)(�, �)t+E(k)(�, �) > 0 for all real values of t

(that is, for all points (x, y) on the line) and hence 4A(k)E(k)(�, �)� [B(k)(�, �)]2 > 0.

On the other hand, if (�, �) is on the line, we can �nd exactly one point (x, y) such

that A(k)t2+B(k)(�, �)t+E(k)(�, �) = 0. As each point (x, y) on the line is given by a

unique value of t, we conclude that 4A(k)E(k)(�, �)� [B(k)(�, �)]2 = 0 for (�, �) lying

on the line.

From Eqs. (1.28), (1.33) and (1.34), F (k)
1 (�, �) and F (k)

2 (�, �) may be written

as

F (k)
1 (�, �) =

`(k)

4�

1Z

0

ln[A(k)t2+B(k)(�, �)t+E(k)(�, �)]dt,

F (k)
2 (�, �) =

`(k)

2�

1Z

0

n
(k)
x (x(k) � �) + n

(k)
y (y(k) � �)

A(k)t2+B(k)(�, �)t+E(k)(�, �)
dt. (1.36)

The second integral in Eq. (1.36) is the easiest one to work out for the case

in which 4A(k)E(k)(�, �)� [B(k)(�, �)]2 = 0. For this case, the point (�, �) lies on the

straight line of which the element C (k) is a subset. Thus, the vector [x(k)� �, y(k)� �]
is perpendicular to [n

(k)
x , n

(k)
y ], that is, n

(k)
x (x(k)��)+n(k)y (y(k)��) = 0, and we obtain

F (k)
2 (�, �) = 0 for 4A(k)E(k)(�, �)� [B(k)(�, �)]2 = 0. (1.37)

From the integration formula

Z
dt

at2+ bt+ c
=

2�
4ac� b2

arctan(
2at+ b�
4ac� b2

) + constant

for real constants a, b and c such that 4ac� b2 > 0,
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we �nd that

F (k)
2 (�, �) =

`(k)[n
(k)
x (x(k) � �) + n

(k)
y (y(k) � �)]

�
p
4A(k)E(k)(�, �)� [B(k)(�, �)]2

×[arctan( 2A(k) +B(k)(�, �)p
4A(k)E(k)(�, �)� [B(k)(�, �)]2

)

� arctan(
B(k)(�, �)p

4A(k)E(k)(�, �)� [B(k)(�, �)]2
)]

for 4A(k)E(k)(�, �)� [B(k)(�, �)]2 > 0. (1.38)

If 4A(k)E(k)(�, �)� [B(k)(�, �)]2 = 0, we may write

A(k)t2+B(k)(�, �)t+E(k)(�, �) = A(k)(t+
B(k)(�, �)

2A(k)
)2.

Thus,

F (k)
1 (�, �) =

`(k)

4�

1Z

0

ln[A(k)(t+
B(k)(�, �)

2A(k)
)2]dt

for 4A(k)E(k)(�, �)� [B(k)(�, �)]2 = 0. (1.39)

Now if (�, �) lies on a smooth part of C (k), the integral in Eq. (1.39) is im-

proper, as its integrand is not well de�ned at the point t = t0 � �B(k)(�, �)/(2A(k)) �
(0, 1). Strictly speaking, the integral should then be interpreted in the Cauchy princi-

pal sense, that is, to evaluate it, we have to integrate over [0, t0��]� [t0+�, 1] instead
of [0, 1] and then let � � 0 to obtain its value. However, in this case, it turns out

that the limits of integration t = t0� � and t = t0+ � eventually do not contribute

anything to the integral. Thus, for 4A(k)E(k)(�, �) � [B(k)(�, �)]2 = 0, the �nal ana-

lytical formula for F (k)
1 (�, �) is the same irrespective of whether (�, �) lies on C (k) or

not. If (�, �) lies on C(k), we may ignore the singular behaviour of the integrand and

apply the fundamental theorem of integral calculus as usual to evaluate the de�nite

integral in Eq. (1.39) directly over [0, 1].

The integration required in Eq. (1.39) can be easily done to give

F (k)
1 (�, �) =

`(k)

2�
{ln(`(k)) + (1 +

B(k)(�, �)

2A(k)
) ln |1 + B(k)(�, �)

2A(k)
|

�B
(k)(�, �)

2A(k)
ln |B

(k)(�, �)

2A(k)
|� 1}

for 4A(k)E(k)(�, �)� [B(k)(�, �)]2 = 0. (1.40)
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Using
Z

ln(at2+ bt+ c)dt = t[ln(a)� 2] + (t+
b

2a
) ln[t2+

b

a
t+

c

a
]

+
1

a

�
4ac� b2arctan( 2at+ b�

4ac� b2
) + constant

for real constants a, b and c such that 4ac� b2 > 0,

we obtain

F (k)
1 (�, �) =

`(k)

4�
{2[ln(`(k))� 1]� B(k)(�, �)

2A(k)
ln |E

(k)(�, �)

A(k)
|

+(1 +
B(k)(�, �)

2A(k)
) ln |1 + B(k)(�, �)

A(k)
+
E(k)(�, �)

A(k)
|

+

p
4A(k)E(k)(�, �)� [B(k)(�, �)]2

A(k)

×[arctan( 2A(k) +B(k)(�, �)p
4A(k)E(k)(�, �)� [B(k)(�, �)]2

)

� arctan(
B(k)(�, �)p

4A(k)E(k)(�, �)� [B(k)(�, �)]2
)]}

for 4A(k)E(k)(�, �)� [B(k)(�, �)]2 > 0. (1.41)

1.7 Implementation on Computer

We attempt now to develop double precision FORTRAN 77 codes which can be

used to implement the boundary element procedure described in Section 1.5 on the

computer. In our discussion here, syntaxes, variables and statements in FORTRAN

77 are written in typewriter fonts, for example, x i , e t a and A =L * * 2 d 0 .
One of the tasks involved is the setting up of the system of linear algebraic

equations given in Eqs. (1.30) and (1.31). To do this, the functions F (k)
1 (�, �) and

F (k)
2 (�, �) have to be computed using the formulae in Section 1.6. We create a sub-

routine called C P F which accepts the values of �, �, x(k), y(k), n
(k)
x , n

(k)
y and `(k)(stored

in the real variables x i , e t a , x k , y k , n k x , n k y and L ) in order to calculate and return

the values of �F (k)
1 (�, �) and �F (k)

2 (�, �) (in the real variables P F 1 and P F 2 ).
The subroutine C P F is listed below.

s u b r o u t i n e C P F ( x i , e t a , x k , y k , n k x , n k y , L , P F 1 , P F 2 )

d o u b l e p r e c i s i o n x i , e t a , x k , y k , n k x , n k y , L , P F 1 , P F 2 ,
& A , B , E , D , B A , E A
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A =L * * 2 d 0
B =2 d 0 * L * ( - n k y * ( x k - x i ) +n k x * ( y k - e t a ) )
E =( x k - x i ) * * 2 d 0 +( y k - e t a ) * * 2 d 0
D=d s q r t ( d a b s ( 4 d 0 * A * E - B * * 2 d 0 ) )
B A =B / A
E A =E / A

i f ( D . l t . 0 . 0 0 0 0 0 0 0 0 0 1 d 0 ) t h e n
P F 1 =0 . 5 d 0 * L * ( d l o g ( L )

& +( 1 d 0 +0 . 5 d 0 * B A ) * d l o g ( d a b s ( 1 d 0 +0 . 5 d 0 * B A ) )
& - 0 . 5 d 0 * B A * d l o g ( d a b s ( 0 . 5 d 0 * B A ) ) - 1 d 0 )

P F 2 =0 d 0
e l s e
P F 1 =0 . 2 5 d 0 * L * ( 2 d 0 * ( d l o g ( L ) - 1 d 0 ) - 0 . 5 d 0 * B A * d l o g ( d a b s ( E A ) )

& +( 1 d 0 +0 . 5 d 0 * B A ) * d l o g ( d a b s ( 1 d 0 +B A +E A ) )
& +( D / A ) * ( d a t a n ( ( 2 d 0 * A +B ) / D ) - d a t a n ( B / D ) ) )

P F 2 =L * ( n k x * ( x k - x i ) +n k y * ( y k - e t a ) ) / D
& * ( d a t a n ( ( 2 d 0 * A +B ) / D ) - d a t a n ( B / D ) )

e n d i f

r e t u r n
e n d

C P F is repeatedly called in the subroutine C E L A P 1 . C E L A P 1 reads in the num-

ber of boundary elements (N) in the real variable N , the midpoints (x(k), y(k)) in

the real arrays x m( 1 : N ) and y m( 1 : N ) , the boundary points (x(k), y(k)) in the real

arrays x b ( 1 : N +1 ) and y b ( 1 : N +1 ) , the normal vectors (n
(k)
x , n

(k)
y ) in the real arrays

n x ( 1 : N ) and n y ( 1 : N ) , the lengths of the boundary elements in the real array l g ( 1 : N )
and the types of boundary conditions (on the boundary elements) in the integer ar-

ray B C T ( 1 : N ) together with the corresponding boundary values in the real array

B C V ( 1 : N ) , set up and solve Eq. (1.30), and return all the values of �
(k)

and p(k)

in the arrays p h i ( 1 : N ) and d p h i ( 1 : N ) respectively. (More details on the arrays

B C T ( 1 : N ) and B C V ( 1 : N ) will be given later on in Section 1.8.) Thus, a large part of

the boundary element procedure (with constant elements) for the numerical solution

of the boundary value problem is executed in C E L A P 1 .
The subroutine C E L A P 1 is listed as follows.

s u b r o u t i n e C E L A P 1 ( N , x m, y m, x b , y b , n x , n y , l g , B C T , B C V , p h i , d p h i )

i n t e g e r m, k , N , B C T ( 1 0 0 0 )

d o u b l e p r e c i s i o n x m( 1 0 0 0 ) , y m( 1 0 0 0 ) , x b ( 1 0 0 0 ) , y b ( 1 0 0 0 ) ,
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& n x ( 1 0 0 0 ) , n y ( 1 0 0 0 ) , l g ( 1 0 0 0 ) , B C V ( 1 0 0 0 ) , A ( 1 0 0 0 , 1 0 0 0 ) ,
& B ( 1 0 0 0 ) , p i , P F 1 , P F 2 , d e l , p h i ( 1 0 0 0 ) , d p h i ( 1 0 0 0 ) , F 1 , F 2 ,
& Z ( 1 0 0 0 )

p i =4 d 0 * d a t a n ( 1 d 0 )

d o 1 0 m=1 , N
B ( m) =0 d 0
d o 5 k =1 , N
c a l l C P F ( x m( m) , y m( m) , x b ( k ) , y b ( k ) , n x ( k ) , n y ( k ) , l g ( k ) , P F 1 , P F 2 )
F 1 =P F 1 / p i
F 2 =P F 2 / p i
i f ( k . e q . m) t h e n
d e l =1 d 0
e l s e
d e l =0 d 0
e n d i f
i f ( B C T ( k ) . e q . 0 ) t h e n
A ( m, k ) =- F 1
B ( m) =B ( m) +B C V ( k ) * ( - F 2 +0 . 5 d 0 * d e l )
e l s e
A ( m, k ) =F 2 - 0 . 5 d 0 * d e l
B ( m) =B ( m) +B C V ( k ) * F 1
e n d i f

5 c o n t i n u e
1 0 c o n t i n u e

c a l l s o l v e r ( A , B , N , 1 , Z )

d o 1 5 m=1 , N
i f ( B C T ( m) . e q . 0 ) t h e n
p h i ( m) =B C V ( m)
d p h i ( m) =Z ( m)
e l s e
p h i ( m) =Z ( m)
d p h i ( m) =B C V ( m)
e n d i f

1 5 c o n t i n u e

r e t u r n
e n d
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The values of a(mk) in Eq. (1.30) are kept in the real array A ( 1 : N , 1 : N ) , the
sum b(m1) + b(m2) + · · · + b(mN) on the right hand side of the equation in the real

array B ( 1 : N ) and the solution z(k) in the real array Z ( 1 : N ) . To solve for z(k), an LU
decomposition is performed on the matrix containing the coe�cients a(mk) to obtain

a simpler system that may be easily solved by backward substitutions. This is done

in the subroutine S OL V E R (listed below together with supporting subprograms DA X P Y ,
DS C A L and I D A MA X �) which accepts the integer N (giving the number of unknowns), the
real arrays A ( 1 : N , 1 : N ) and B ( 1 : N ) and the integer l u d to return Z ( 1 : N ) . In general,

the integer l u d may be given any value except 0. However, if we are solving two

di�erent systems of linear algebraic equations with the same square matrice [a(mk)],

one after the other, l u d may be given the value 0 the second time S OL V E R is called.

This is because it is not necessary to perform the LU decomposition on the same

square matrix again to solve the second system after solving the �rst. If l u d is

given the value 0, S OL V E R assumes that the square matrix has already been properly

decomposed before and avoids the time consuming decomposition process. In C E L A P 1 ,
since the square matrix has not been decomposed yet, the value of 1 is passed into

l u d when we call S OL V E R .
The subroutine S OL V E R and its supporting programs are listed as follows.

s u b r o u t i n e S OL V E R ( A , B , N , l u d , Z )

i n t e g e r l d a , N , i p v t ( 1 0 0 0 ) , i n f o , l u d , I D A MA X ,
& j , k , k p 1 , l , n m1 , k b

d o u b l e p r e c i s i o n A ( 1 0 0 0 , 1 0 0 0 ) , B ( 1 0 0 0 ) , Z ( 1 0 0 0 ) , t , A MD ( 1 0 0 0 , 1 0 0 0 )

c o mmo n / l u d c mp / i p v t , A MD

n m1 =N - 1

d o 5 i =1 , N
Z ( i ) =B ( i )

5 c o n t i n u e

i f ( l u d . e q . 0 ) g o t o 9 9

�The main part of SOLVER for decomposing the square matrix A and solving AX = B is re-

spectively taken from the codes in the LINPACK subroutines DGEFA and DGESL written by Cleve
Moler. The supporting subprograms DAXPY, DSCAL and I DAMAX written by Jack Dongarra are also

from LINPACK. DGEFA, DGESL, DAXPY, DSCAL and I DAMAX are all in the public domain and may be
downloaded from Netlib website at http://www.netlib.org. Permission for reproducing the codes

here was granted by Netlib's editor-in-chief Jack Dongarra.
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d o 6 i =1 , N
d o 6 j =1 , N
A MD ( i , j ) =A ( i , j )

6 c o n t i n u e

i n f o =0

i f ( n m1 . l t . 1 ) g o t o 7 0

d o 6 0 k =1 , n m1
k p 1 =k +1
l =I DA MA X ( N - k +1 , A MD ( k , k ) , 1 ) +k - 1
i p v t ( k ) =l
i f ( A MD ( l , k ) . e q . 0 . 0 d 0 ) g o t o 4 0
i f ( l . e q . k ) g o t o 1 0
t =A MD ( l , k )
A MD ( l , k ) =A MD ( k , k )
A MD ( k , k ) =t

1 0 c o n t i n u e
t =- 1 . 0 d 0 / A MD ( k , k )
c a l l D S C A L ( N - k , t , A MD ( k +1 , k ) , 1 )
d o 3 0 j =k p 1 , N
t =A MD ( l , j )
i f ( l . e q . k ) g o t o 2 0
A MD ( l , j ) =A MD ( k , j )
A MD ( k , j ) =t

2 0 c o n t i n u e
c a l l D A X P Y ( N - k , t , A MD ( k +1 , k ) , 1 , A MD ( k +1 , j ) , 1 )

3 0 c o n t i n u e
g o t o 5 0

4 0 c o n t i n u e
i n f o =k

5 0 c o n t i n u e
6 0 c o n t i n u e

7 0 c o n t i n u e

i p v t ( N ) =N

i f ( A MD ( N , N ) . e q . 0 . 0 d 0 ) i n f o =N
i f ( i n f o . n e . 0 ) p a u s e ’ D i v i s i o n b y z e r o i n S OL V E R ! ’
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9 9 c o n t i n u e

i f ( n m1 . l t . 1 ) g o t o 1 3 0

d o 1 2 0 k =1 , n m1
l =i p v t ( k )
t =Z ( l )
i f ( l . e q . k ) g o t o 1 1 0
Z ( l ) =Z ( k )
Z ( k ) =t

1 1 0 c o n t i n u e
c a l l D A X P Y ( N - k , t , A MD ( k +1 , k ) , 1 , Z ( k +1 ) , 1 )

1 2 0 c o n t i n u e

1 3 0 c o n t i n u e

d o 1 4 0 k b =1 , N
k =N+1 - k b
Z ( k ) = Z ( k ) / A MD ( k , k )
t =- Z ( k )
c a l l D A X P Y ( k - 1 , t , A MD ( 1 , k ) , 1 , Z ( 1 ) , 1 )

1 4 0 c o n t i n u e

r e t u r n
e n d

s u b r o u t i n e DA X P Y ( N , d a , d x , i n c x , d y , i n c y )

d o u b l e p r e c i s i o n d x ( 1 0 0 0 ) , d y ( 1 0 0 0 ) , d a

i n t e g e r i , i n c x , i n c y , i x , i y , m, mp 1 , N

i f ( N . l e . 0 ) r e t u r n
i f ( d a . e q . 0 . 0 d 0 ) r e t u r n
i f ( i n c x . e q . 1 . a n d . i n c y . e q . 1 ) g o t o 2 0

i x =1
i y =1

i f ( i n c x . l t . 0 ) i x =( - N +1 ) * i n c x +1
i f ( i n c y . l t . 0 ) i y =( - N +1 ) * i n c y +1
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d o 1 0 i =1 , N
d y ( i y ) =d y ( i y ) +d a * d x ( i x )
i x =i x +i n c x
i y =i y +i n c y

1 0 c o n t i n u e

r e t u r n

2 0 m=mo d ( N , 4 )

i f ( m. e q . 0 ) g o t o 4 0

d o 3 0 i =1 , m
d y ( i ) =d y ( i ) +d a * d x ( i )

3 0 c o n t i n u e

i f ( N . l t . 4 ) r e t u r n

4 0 mp 1 =m+1

d o 5 0 i =mp 1 , N , 4
d y ( i ) =d y ( i ) +d a * d x ( i )
d y ( i +1 ) =d y ( i +1 ) +d a * d x ( i +1 )
d y ( i +2 ) =d y ( i +2 ) +d a * d x ( i +2 )
d y ( i +3 ) =d y ( i +3 ) +d a * d x ( i +3 )

5 0 c o n t i n u e

r e t u r n
e n d

s u b r o u t i n e D S C A L ( N , d a , d x , i n c x )

d o u b l e p r e c i s i o n d a , d x ( 1 0 0 0 )

i n t e g e r i , i n c x , m, mp 1 , N , n i n c x

i f ( N . l e . 0 . o r . i n c x . l e . 0 ) r e t u r n
i f ( i n c x . e q . 1 ) g o t o 2 0
n i n c x = N * i n c x

d o 1 0 i =1 , n i n c x , i n c x
d x ( i ) =d a * d x ( i )
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1 0 c o n t i n u e

r e t u r n

2 0 m=mo d ( N , 5 )

i f ( m. e q . 0 ) g o t o 4 0

d o 3 0 i =1 , m
d x ( i ) = d a * d x ( i )

3 0 c o n t i n u e

i f ( N . l t . 5 ) r e t u r n

4 0 mp 1 =m+1

d o 5 0 i =mp 1 , N , 5
d x ( i ) =d a * d x ( i )
d x ( i +1 ) =d a * d x ( i +1 )
d x ( i +2 ) =d a * d x ( i +2 )
d x ( i +3 ) =d a * d x ( i +3 )
d x ( i +4 ) =d a * d x ( i +4 )

5 0 c o n t i n u e

r e t u r n
e n d

f u n c t i o n I D A MA X ( N , d x , i n c x )

d o u b l e p r e c i s i o n d x ( 1 0 0 0 ) , d ma x

i n t e g e r i , i n c x , i x , N , I D A MA X

I DA MA X = 0
i f ( N . l t . 1 . o r . i n c x . l e . 0 ) r e t u r n
I D A MA X = 1

i f ( N . e q . 1 ) r e t u r n
i f ( i n c x . e q . 1 ) g o t o 2 0
i x = 1
d ma x = d a b s ( d x ( 1 ) )
i x = i x + i n c x
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d o 1 0 i =2 , N
i f ( d a b s ( d x ( i x ) ) . l e . d ma x ) g o t o 5
I D A MA X =i
d ma x =d a b s ( d x ( i x ) )

5 i x =i x +i n c x
1 0 c o n t i n u e

r e t u r n

2 0 d ma x =d a b s ( d x ( 1 ) )

d o 3 0 i =2 , N
i f ( d a b s ( d x ( i ) ) . l e . d ma x ) g o t o 3 0
I D A MA X =i
d ma x =d a b s ( d x ( i ) )

3 0 c o n t i n u e

r e t u r n
e n d

Once the values of �
(k)

and p(k) are returned in the arrays p h i ( 1 : N ) and

d p h i ( 1 : N ) by C E L A P 1 , they can be used by the subroutine C E L A P 2 to compute the

value of � at any chosen point (�, �) in the interior of the solution domain. In the

listing of C E L A P 2 below, x i and e t a are the real variables which carry the values of

� and � respectively. The computed value of �(�, �) is returned in the real variable

p i n t . Note that the subroutine C P F is called in C E L A P 2 to compute �F (k)
1 (�, �) and

�F (k)
2 (�, �).

s u b r o u t i n e C E L A P 2 ( N , x i , e t a , x b , y b , n x , n y , l g , p h i , d p h i , p i n t )

i n t e g e r N , i

d o u b l e p r e c i s i o n x i , e t a , x b ( 1 0 0 0 ) , y b ( 1 0 0 0 ) , n x ( 1 0 0 0 ) , n y ( 1 0 0 0 ) ,
& l g ( 1 0 0 0 ) , p h i ( 1 0 0 0 ) , d p h i ( 1 0 0 0 ) , p i n t , s u m, p i , P F 1 , P F 2

p i =4 d 0 * d a t a n ( 1 d 0 )
s u m=0 d 0

d o 1 0 i =1 , N
c a l l C P F ( x i , e t a , x b ( i ) , y b ( i ) , n x ( i ) , n y ( i ) , l g ( i ) , P F 1 , P F 2 )
s u m=s u m+p h i ( i ) * P F 2 - d p h i ( i ) * P F 1
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1 0 c o n t i n u e

p i n t =s u m/ p i

r e t u r n
e n d

1.8 Numerical Examples

We now show how the subroutines C E L A P 1 and C E L A P 2 may be used to solve two

speci�c examples of the interior boundary value problem described in Section 1.1.

Example 1.1

The solution domain is the square region 0 < x < 1, 0 < y < 1. The boundary

conditions are

� = 0 on x = 0

� = cos (�y) on x = 1

¾
for 0 < y < 1

��

�n
= 0 on y = 0 and y = 1 for 0 < x < 1.

Figure 1.5

The sides of the square are discretized into boundary elements of equal length.

To do this, we choose N evenly spaced out points on the sides as follows. The

boundary points on the sides y = 0 (bottom horizontal), x = 1 (right vertical), y = 1
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(top horizontal) and x = 0 (left vertical) are respectively given by (x(m), y(m)) =

([m�1]`, 0), (x(m+N0), y(m+N0)) = (1, [m�1]`), (x(m+2N0), y(m+2N0)) = (1� [m�1]`, 1)

and (x(m+3N0), y(m+3N0)) = (0, 1 � [m � 1]`) for m = 1, 2, · · · , N0, where N0 is the

number of boundary elements per side (so that N = 4N0) and ` = 1/N0 is the length

of each element. For example, the boundary points for N0 = 2 (that is, 8 boundary

elements) are shown in Figure 1.5.

The input points (x(1), y(1)), (x(2), y(2)), · · · , (x(N�1), y(N�1)), (x(N), y(N)) and

(x(N+1), y(N+1)), arranged in counter clockwise order on the boundary of the solu-

tion domain, are stored in the real arrays xb(1:N+1) and yb(1:N+1). (Recall that

(x(N+1), y(N+1)) = (x(1), y(1)).) The values in these arrays are input data de�ning the

geometry of the solution domain, to be generated by the user of the subroutines

CELAP1 and CELAP2. As the geometry in this example is a simple one, the input data

for the boundary points may be generated by writing a simple code as follows.

N=4*N0

dl=1d0/dfloat(N0)

do 10 i=1,N0

xb(i)=dfloat(i-1)*dl

yb(i)=0d0

xb(N0+i)=1d0

yb(N0+i)=xb(i)

xb(2*N0+i)=1d0-xb(i)

yb(2*N0+i)=1d0

xb(3*N0+i)=0d0

yb(3*N0+i)=1d0-xb(i)

10 continue

xb(N+1)=xb(1)

yb(N+1)=yb(1)

Note that N0 is an integer variable which gives the number of boundary ele-

ments per side and dl is a real variable giving the length of an element. The value

of N0 is a given input. The boundary points in Figure 1.5 may be generated by the

code above if we give N0 the value of 2.

In order to call CELAP1 and CELAP2, the midpoints of the elements (in the

real arrays xm(1:N) and ym(1:N)), the lengths of the elements (in the real array

lg(1:N)) and the unit normal vectors to the elements (in the real arrays nx(1:N)

and ny(1:N)) are required. These can be calculated from the input data stored in

the arrays xb(1:N+1) and yb(1:N+1). The general code for the calculation (which

is valid for any geometry of the solution domain) is as follows.

do 20 i=1,N

xm(i)=0.5d0*(xb(i)+xb(i+1))



26 Two{dimensional Laplace's Equation

y m( i ) =0 . 5 d 0 * ( y b ( i ) +y b ( i +1 ) )
l g ( i ) =d s q r t ( ( x b ( i +1 ) - x b ( i ) ) * * 2 d 0 +( y b ( i +1 ) - y b ( i ) ) * * 2 d 0 )
n x ( i ) =( y b ( i +1 ) - y b ( i ) ) / l g ( i )
n y ( i ) =( x b ( i ) - x b ( i +1 ) ) / l g ( i )

2 0 c o n t i n u e

The type of boundary conditions on an element (that is, whether � or ��/�n is

speci�ed) and the corresponding speci�ed value of either � or ��/�n are input data.

The integer array B C T ( 1 : N ) is used to keep track of the types of boundary conditions

on the elements. If � is speci�ed on the 5-th boundary element C (5) then B C T ( 5 ) is

given the value 0. If B C T ( 5 ) is not 0, then we know that ��/�n is speci�ed on C (5).

The values of either � or ��/�n prescribed on the boundary elements are stored in

the real array B C V ( 1 : N ) . For the boundary points in Figure 1.5, the input boundary

values of � on the two elements on the right vertical sides are given by cos(��) with

� being the y coordinates of the midpoints of the elements. For the boundary value

problem here, the code for generating the input data for B C T and B C V are as follows.

d o 3 0 i =1 , N
i f ( i . l e . N 0 ) t h e n
B C T ( i ) =1
B C V ( i ) =0 d 0
e l s e i f ( ( i . g t . N 0 ) . a n d . ( i . l e . ( 2 * N 0 ) ) ) t h e n
B C T ( i ) =0
B C V ( i ) =d c o s ( p i * y m( i ) )
e l s e i f ( ( i . g t . ( 2 * N 0 ) ) . a n d . ( i . l e . ( 3 * N 0 ) ) ) t h e n
B C T ( i ) =1
B C V ( i ) =0 d 0
e l s e
B C T ( i ) =0
B C V ( i ) =0 d 0
e n d i f

3 0 c o n t i n u e

We may now invoke C E L A P 1 using the statement

c a l l C E L A P 1 (N , x m, y m, x b , y b , n x , n y , l g , B C T , B C V , p h i , d p h i )

to give us the (approximate) values of � and ��/�n on the boundary elements. The

boundary values of � and ��/�n (that is, �
(k)

and p(k)) are respectively stored in

the real arrays p h i ( 1 : N ) and d p h i ( 1 : N ) . For example, if the variable B C T ( 5 ) has

the value 0, we know that � is speci�ed on the 5-th boundary element and hence the

variable d p h i ( 5 ) gives us the approximate value of ��/�n on C (5).
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Once C E L A P 1 is called, we may use C E L A P 2 to calculate the value of � at any

interior point inside the square. For example, if we wish to calculate � at (0.50, 0.70),

we may use the call statement

c a l l C E L A P 2 ( N , 0 . 5 0 , 0 . 7 0 , x b , y b , n x , n y , l g , p h i , d p h i , p i n t )

to return us the approximate value of �(0.50, 0.70) in the real variable p i n t .
An example of a complete program for the boundary value problem presently

under consideration is given below.

p r o g r a m E X 1 P T 1

i n t e g e r N 0 , B C T ( 1 0 0 0 ) , N , i , i a n s

d o u b l e p r e c i s i o n x b ( 1 0 0 0 ) , y b ( 1 0 0 0 ) , x m( 1 0 0 0 ) , y m( 1 0 0 0 ) ,
& n x ( 1 0 0 0 ) , n y ( 1 0 0 0 ) , l g ( 1 0 0 0 ) , B C V ( 1 0 0 0 ) ,
& p h i ( 1 0 0 0 ) , d p h i ( 1 0 0 0 ) , p i n t , d l , x i , e t a , p i

p r i n t * , ’ E n t e r n u mb e r o f e l e me n t s p e r s i d e ( <2 5 0 ) : ’
r e a d * , N 0
N=4 * N 0

p i =4 d 0 * d a t a n ( 1 d 0 )
d l =1 d 0 / d f l o a t ( N 0 )

d o 1 0 i =1 , N 0
x b ( i ) =d f l o a t ( i - 1 ) * d l
y b ( i ) =0 d 0
x b ( N 0 +i ) =1 d 0
y b ( N 0 +i ) =x b ( i )
x b ( 2 * N 0 +i ) =1 d 0 - x b ( i )
y b ( 2 * N 0 +i ) =1 d 0
x b ( 3 * N 0 +i ) =0 d 0
y b ( 3 * N 0 +i ) =1 d 0 - x b ( i )

1 0 c o n t i n u e
x b ( N+1 ) =x b ( 1 )
y b ( N+1 ) =y b ( 1 )

d o 2 0 i =1 , N
x m( i ) =0 . 5 d 0 * ( x b ( i ) +x b ( i +1 ) )
y m( i ) =0 . 5 d 0 * ( y b ( i ) +y b ( i +1 ) )
l g ( i ) =d s q r t ( ( x b ( i +1 ) - x b ( i ) ) * * 2 d 0 +( y b ( i +1 ) - y b ( i ) ) * * 2 d 0 )
n x ( i ) =( y b ( i +1 ) - y b ( i ) ) / l g ( i )
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n y ( i ) =( x b ( i ) - x b ( i +1 ) ) / l g ( i )
2 0 c o n t i n u e

d o 3 0 i =1 , N
i f ( i . l e . N 0 ) t h e n
B C T ( i ) =1
B C V ( i ) =0 d 0
e l s e i f ( ( i . g t . N 0 ) . a n d . ( i . l e . ( 2 * N 0 ) ) ) t h e n
B C T ( i ) =0
B C V ( i ) =d c o s ( p i * y m( i ) )
e l s e i f ( ( i . g t . ( 2 * N 0 ) ) . a n d . ( i . l e . ( 3 * N 0 ) ) ) t h e n
B C T ( i ) =1
B C V ( i ) =0 d 0
e l s e
B C T ( i ) =0
B C V ( i ) =0 d 0
e n d i f

3 0 c o n t i n u e

c a l l C E L A P 1 ( N , x m, y m, x b , y b , n x , n y , l g , B C T , B C V , p h i , d p h i )

5 0 p r i n t * , ’ E n t e r c o o r d i n a t e s x i a n d e t a o f a n i n t e r i o r p o i n t : ’

r e a d * , x i , e t a

c a l l C E L A P 2 ( N , x i , e t a , x b , y b , n x , n y , l g , p h i , d p h i , p i n t )

wr i t e ( * , 6 0 ) p i n t , ( d e x p ( p i * x i ) - d e x p ( - p i * x i ) ) * d c o s ( p i * e t a )
& / ( d e x p ( p i ) - d e x p ( - p i ) )

6 0 f o r ma t ( ’ N u me r i c a l a n d e x a c t v a l u e s a r e : ’ ,
& F 1 4 . 6 , ’ a n d ’ , F 1 4 . 6 , ’ r e s p e c t i v e l y ’ )

p r i n t * , ’ T o c o n t i n u e w i t h a n o t h e r p o i n t e n t e r 1 : ’
r e a d * , i a n s

i f ( i a n s . e q . 1 ) g o t o 5 0

e n d

All the subprograms needed for compiling E X 1 P T 1 into an executable program

are the subroutines C E L A P 1 , C E L A P 2 , C P F and S OL V E R (together with its supporting

subprograms DA X P Y , DS C A L and I D A MA X ).
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It is easy to check that boundary value problem here has the exact solution

� =
sinh(�x) cos(�y)

sinh(�)
.

In the program E X 1 P T 1 above, the numerical value of � (as calculated by the bound-

ary element procedure with constant elements) at an input interior point (�, �) is

compared with the exact solution.

Table 1.1

(�, �) 20 elements 80 elements Exact

(0.10, 0.20) 0.022605 0.022397 0.022371

(0.10, 0.30) 0.016454 0.016279 0.016254

(0.10, 0.40) 0.008681 0.008560 0.008545

(0.50, 0.20) 0.163153 0.161521 0.161212

(0.50, 0.30) 0.118290 0.117325 0.117127

(0.50, 0.40) 0.062107 0.061673 0.061577

(0.90, 0.20) 0.586250 0.590103 0.589941

(0.90, 0.30) 0.427451 0.428609 0.428618

(0.90, 0.40) 0.223159 0.225308 0.225338

The numerical values of � at various interior points obtained by E X 1 P T 1 using

20 and 80 boundary elements are compared with the exact solution in Table 1.1.

There is a signi�cant improvement in the accuracy of the numerical results when the

number of boundary elements used is increased from 20 to 80.

Table 1.2

a 0.900 0.950 0.990 0.995 0.999

20 elements 0.136% 2.830% 8.504% 9.563% 10.601%

80 elements 0.111% 0.144% 0.716% 1.403% 2.213%

We also examine the accuracy of the numerical value of � at the interior point

(a, a) as a approaches 1 from below, that is, as the point (a, a) gets closer and closer

to the point (1, 1) on the boundary of the square domain. The percentage errors in

the numerical values of � from calculations using 20 and 80 boundary elements are

shown in Table 1.2 for various values of a. In each of the two sets of results, it is

interesting to note that the percentage error grows as a approaches 1. For a �xed

value of a near 1, the percentage error of the numerical value of � calculated with 80

elements are lower than that obtained using 20 elements. It is a well known fact that

the accuracy of a boundary element solution may deteriorate signi�cantly at a point

whose distance from the boundary is very small compared with the lengths of nearby

boundary elements.
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Figure 1.6

Example 1.2

Take the solution domain to be the region bounded between the circles x2+ y2 = 1

and x2+ y2 = 4 in the �rst quadrant of the Oxy plane as shown in Figure 1.6. The

boundary conditions are given by

��

�n
= 0 on the straight side x = 0, 1 < y < 2,

��

�n
= 0 on the straight side y = 0, 1 < x < 2,

� = cos(4 arctan(
y

x
)) on the arc x2+ y2 = 1, x > 0, y > 0,

� = 3 cos(4 arctan(
y

x
)) on the arc x2+ y2 = 4, x > 0, y > 0.

This boundary value problem may be solved numerically using the boundary

element procedure with constant elements as in Example 1.1. To do this, we only have

to modify the parts in the program E X 1 P T 1 that generate input data for the arrays

x b ( 1 : N +1 ) , y b ( 1 : N +1 ) , B C T ( 1 : N ) and B C V ( 1 : N ) . Before we modify the program,

we have to work out formulae for the boundary points (x(1), y(1)), (x(2), y(2)), · · · ,
(x(N�1), y(N�1)) and (x(N), y(N)).

Let us discretize each of the straight sides of the boundary into N0 elements

and the arcs on x2+ y2 = 1 and x2+ y2 = 4 into 2N0 and 8N0 elements respectively,

so that N = 12N0. Speci�cally, the boundary points are given by

(x(m), y(m)) = (1 +
[m� 1]

N0
, 0) for m = 1, 2, · · · , N0,

(x(m+N0), y(m+N0)) = (2 cos(
[m� 1]�

16N0
), 2 sin(

[m� 1]�

16N0
)) for m = 1, 2, · · · , 8N0,
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(x(m+9N0), y(m+9N0)) = (0, 2� [m� 1]

N0
) for m = 1, 2, · · · , N0,

(x(m+10N0), y(m+10N0)) = (sin(
[m� 1]�

4N0
), cos(

[m� 1]�

4N0
)) for m = 1, 2, · · · , 2N0.

Thus, for the boundary value problem presently under consideration, the code

for generating the input data for the boundary points in the real arrays x b ( 1 : N +1 )
and y b ( 1 : N +1 ) is as given below. Note that we are required to supply an input value

for the integer N 0 .

N=1 2 * N 0
p i =4 d 0 * d a t a n ( 1 d 0 )

d o 1 0 i =1 , 8 * N 0
d l =p i / d f l o a t ( 1 6 * N 0 )
x b ( i +N 0 ) =2 d 0 * d c o s ( d f l o a t ( i - 1 ) * d l )
y b ( i +N 0 ) =2 d 0 * d s i n ( d f l o a t ( i - 1 ) * d l )
i f ( i . l e . N 0 ) t h e n
d l =1 d 0 / d f l o a t ( N 0 )
x b ( i ) =1 d 0 +d f l o a t ( i - 1 ) * d l
y b ( i ) =0 d 0
x b ( i +9 * N 0 ) =0 d 0
y b ( i +9 * N 0 ) =2 d 0 - d f l o a t ( i - 1 ) * d l
e n d i f
i f ( i . l e . ( 2 * N 0 ) ) t h e n
d l =p i / d f l o a t ( 4 * N 0 )
x b ( i +1 0 * N 0 ) =d s i n ( d f l o a t ( i - 1 ) * d l )
y b ( i +1 0 * N 0 ) =d c o s ( d f l o a t ( i - 1 ) * d l )
e n d i f

1 0 c o n t i n u e
x b ( N+1 ) =x b ( 1 )
y b ( N +1 ) =y b ( 1 )

The code for generating the input data for the integer array B C T ( 1 : N ) and the

real array B C V ( 1 : N ) is as given below.

d o 3 0 i =1 , N
i f ( ( i . l e . N 0 ) . o r . ( ( i . g t . ( 9 * N 0 ) ) . a n d . ( i . l e . ( 1 0 * N 0 ) ) ) ) t h e n
B C T ( i ) =1
B C V ( i ) =0 d 0
e l s e i f ( ( i . g t . N 0 ) . a n d . ( i . l e . ( 9 * N 0 ) ) ) t h e n
B C T ( i ) =0
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B C V ( i ) =3 d 0 * d c o s ( 4 d 0 * d a t a n ( y m( i ) / x m( i ) ) )
e l s e
B C T ( i ) =0
B C V ( i ) =d c o s ( 4 d 0 * d a t a n ( y m( i ) / x m( i ) ) )
e n d i f

3 0 c o n t i n u e

Figure 1.7

As � is speci�ed on the arc x2+ y2 = 1, x > 0, y > 0, the last 2N0 variables in

the array d p h i ( 1 : N ) returned by C E L A P 1 give us the numerical values of ��/�n at the

midpoints of the last 2N0 boundary elements, that is, ���/�r at those midpoints if
we de�ne �(r, �) = �(r cos �, r sin �), where the polar coordinates r and � are given

by by x = r cos � and y = r sin �. We may print out these variables to obtain the

approximate values of ��/�r at the midpoints of the last 2N0 boundary elements. In

Figure 1.7, the numerical ��/�r at r = 1, 0 < � < �/2, obtained using 240 elements

(that is, using N0 = 20) are compared graphically against the values obtained from

the exact solution� given by

� = [
16

85
([x2+ y2]2� 1

[x2+ y2]2
)� 16

255
(
[x2+ y2]2

16
� 16

[x2+ y2]2
)] cos(4 arctan(

y

x
)).

The numerical values show a good agreement with the exact ones except at points

that are extremely close to the corner points (0, 1) and (1, 0), that is, except at near

� = 0 and � = �/2.

�Refer to page 202 of the book Partial Di�erential Equations in Mechanics 1 by APS Selvadurai
(Springer-Verlag, 2000).
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The numerical values of � at selected points in the interior of the solution

domain, obtained using 240 elements, are compared with the exact solution in Table

1.3. There is a good agreement between the two sets of results. The interior points in

the last two rows of Table 1.3 are close to the corner point (1, 0). Note that the errors

of the numerical values at these two points are higher compared with those at the

other points. When we repeat the same calculation using 480 elements (N0 = 40),

the numerical values of � are 0.826108 and 0.974111 at (1.099998, 0.001920) and

(1.010000, 0.000176) respectively, that is, we observe a signi�cant improvement in

the accuracy of the numerical values at the two points.

Table 1.3

(�, �) 240 elements Exact

(1.082532, 0.625000) �0.392546 �0.392045
(0.875000, 1.515544) �0.908254 �0.907816
(1.060660, 1.060660) �1.094489 �1.094211
(1.099998, 0.001920) 0.824548 0.826958

(1.010000, 0.000176) 0.960174 0.975656

1.9 Summary and Discussion

A boundary element solution for the interior boundary value problem de�ned by Eqs.

(1.1)-(1.2) is given by Eq. (1.32) together with Eqs. (1.28), (1.30) and (1.31). The

solution is constructed from the boundary integral solution in Eq. (1.23). Constant

elements are used, that is, the boundary (of the solution domain) is discretized into

straight line elements and the solution � and its normal derivative ��/�n on the

boundary are approximated as constants over a boundary element.

As no discretization of the entire solution domain is required, the boundary

element solution may be easily implemented on the computer for problems involving

complicated geometries and general boundary conditions. The boundary may be

easily discretized into line elements by merely placing on it well spaced out points.

We have discussed in detail how the numerical procedure can be coded in FORTRAN

77. In spite of the speci�c programming language used, our discussion may still be

useful to readers who are interested in developing the method using other software

tools (such as C++ and MATLAB), as FORTRAN 77 codes are relatively easy to

decipher.

The term �direct boundary element method� is often used to describe the

boundary element procedure given in this chapter. This is because the unknowns

in the formulation given by Eq. (1.30) can be directly interpreted as values of � or

��/�n on the boundary. An alternative boundary element method may be obtained
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from the simpler boundary integral solution

�(x, y) =

Z

C

A(�, �) ln([x� �]2+ [y � �]2)ds(�, �),

where A(�, �) is a (boundary) weight function yet to be determined. To determine

A(�, �) approximately, we discretize C into boundary elements C (1), C(2), · · · , C(N�1)

and C(N)as before, and approximate A(�, �) as a constant A(m) over C(m), in order

to obtain the approximation

�(x, y) '
NX

m=1

A(m)
Z

C(m)

ln([x� �]2+ [y � �]2)ds(�, �).

The constants A(m) are to be determined by using the given boundary conditions.

We shall not go into further details here other than pointing out that such as an

approach gives rise to a so called indirect boundary element method as the unknowns

A(m) are not related to � or ��/�n on the boundary in a simple and direct manner.

1.10 Exercises

1. If � satis�es the two-dimensional Laplace�s equation in the region R bounded

by a simple closed curve C, use the divergence theorem to show that

Z

C

�

�n
[�(x, y)]ds(x, y) = 0.

(Note. This implies that if we prescribe ��/�n at all points on C in our bound-

ary value problem we have to be careful to ensure the above equation is satis�ed.

Otherwise, the boundary value problem does not have a solution.)

2. If � satis�es the two-dimensional Laplace�s equation in the region R bounded

by the curve C, use the divergence theorem to derive the relation

ZZ

R

|��(x, y)|2dxdy =
Z

C

�(x, y)
�

�n
[�(x, y)]ds(x, y).

Hence show that: (a) if � = 0 at all points on C then � = 0 at all points

in R, that is, show that if the boundary conditions are given by � = 0 on C

then the solution of our boundary value problem is uniquely given by � = 0

for (x, y) � R, and (b) if ��/�n = 0 at all points on C then � can be any

arbitrary constant function in R, that is, if the boundary conditions are given

by ��/�n = 0 on C, then our boundary value problem has in�nitely many

solutions given by � = c for (x, y) � R, where c is an arbitrary constant.
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3. Use the result in Exercise 2(a) above to show that if the boundary conditions

are given by � = f(x, y) at all points on the simple closed curve C then the

boundary value problem governed by the two-dimensional Laplace�s equation in

the region R has a unique solution. [Hint. Show that if �1 and �2 are any two

solutions satisfying the Laplace�s equation and the boundary conditions under

consideration then �1 = �2 at all points in R.] (Notes. (1) In general, for the

interior boundary value problem de�ned by Eqs. (1.1)-(1.2) to have a unique

solution, � must be speci�ed at at least one point on C. (2) For the case in

which ��/�n is speci�ed at all points on C, � is only determined to within

an arbitrary constant. In such a case, the boundary element procedure in this

chapter may still work to give us one of the in�nitely many solutions.)

4. Eq. (1.8) is not the only solution of the two-dimensional Laplace�s equation

that is not well de�ned at the single point (�, �). By di�erentiating Eq. (1.8)

partially with respect to x and/or y as many times as we like, we may generate

other solutions that are not well de�ned at (�, �). An example of these other

solutions is

�(x, y) =
(x� �)

2�[(x� �)2+ (y � �)2] .

If we denote this solution by �(x, y; �, �) (like what we had done before for the

solution in Eq. (1.8)), investigate whether we can still derive the boundary

integral solution as given by Eq. (1.19) from the reciprocal relation in Eq.

(1.10) or not.

5. Explain why the parameter �(�, �) in Eq. (1.23) can be calculated using

�(�, �) =

Z

C

�

�n
(�(x, y; �, �))ds(x, y).

Taking C to be the boundary of the triangular region y < �x+1, x > 0, y > 0,

evaluate the line integral above to check that: (a) �(2, 1) = 0, (b) �(1, 0) = 1/8,

(c) �(0, 0) = 1/4, (d) �(1/2, 1/2) = 1/2, and (e) �(1/2, 1/4) = 1.

6. The boundary element solution given in this chapter provides us with an ap-

proximate but explicit formula for calculating � at any interior point (�, �) in

the solution domain. We may also be interested in computing the vector quan-

tity ��. Can an approximate explicit formula be obtained for �� at (�, �)?

How can we obtain one?

7. Modify the program E X 1 P T 1 in Section 1.7 to solve numerically the Laplace�s

equation given by Eq. (1.1) in the region x2+ y2 < 1, x > 0, y > 0, subject to


