
CHAPTER 2

Computational Fluid Dynamics

Historically, computational �uid dynamics (CFD) has been one of the �rst
disciplines in which numerical methods have been applied widely. The main reason
underlying the early adoption of computational methods is the nonlinearity of the
equations of motion which leads to signi�cant analytical di¢ culties. Indeed, even
now after more than a century of research we do not know whether a solution to the
general problem of �uid motion exists in a mathematical sense. From the physics
point of view the question of existence of solutions does not arise - experiment
ensures us that �uid motions do exist for appreciable intervals of time.

1. On the de�nition of a "�uid"

Fluids are understood from common experience to describe a state of matter
in which a substance assumes the shape of the walls bounding it by contrast to
the solid state. Liquids may �ll only a certain part of the domain open to it while
gases will �ll the container in its entirety. At the microscopic level the essential
characteristic of a �uid is that the interactions between particles (atoms, molecules)
are weak. For gases they range from interactinos so weak that they only occur when
the particles �collide�to slightly longer range interactions. By collision we typically
understand that the particles approach distances comparable to the diameter of
the electron cloud surrounding an atom in the composition of the gas. For all
gases two-particle interactions are the dominant contribution to the overall behavior
of the gas. Liquids exhibit stronger interaction forces such that the motion of
instantaneous clusters of particles becomes highly correlated over small intervals of
time. In contrast, crystalline solids have strong particle interactions leading to an
overall collective motion observed macroscopically.

By extension of the common concept of a �uid, any system for which interac-
tions between the component particles are weak and which exhibits a large number
of component parts can be treated as a �uid. In cosmology galaxies are small
compared to the scale of the Universe and interactions between them are weak -
gravitational forces play an important role only when galaxies are very close to-
gether in a state of �collision�. Hence many cosmologial simulations are carried
out using the equations of �uid mechanics. The same equations are used in the
analysis of tra¢ c on highways (though one hopes to avoid collisions in this con-
text). The spread of a malignant tumour can be modeled using the equations of
�uid dynamics. We can see that though initially motivated by problems in hydro-
and aerodynamics, the equations and the methods considered in this chapter have
wide-ranging applicability throughout applied mathematics.

Since the component parts of a �uid are too many and too small (we say that
they are below the scale of resolution we are interested in) we must introduce quan-
tities that generalize the common concepts of point mass, point velocity. This is
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2 2. COMPUTATIONAL FLUID DYNAMICS

done by introducing density functions for the main conserved quantities in mechan-
ics: mass, momentum and energy. The analogy is set forth in the following table.
Here V is a volume containing a �uid and �(V ) is the measure of the volume V:
Often, we are not so precise and use V both for the volume and its measure. It
is common terminology to refer to the �density� of a �uid when referring to the
density of mass. Similarily it is common practice to speak of the momentum of
a �uid �~u though this is more properly referred to as the density of momentum.
The macroscopic de�nition of these quantities involves taking a limit �(V ) 0 in
which the measure of the volume becomes very small. Mathematically it does not
go to zero but rather to a value such that a typical distance d = [�(V )]

1=3 is so
small that the individual component particles of the �uid become distinguishable.
It becomes apparent that some sort of separation of scales is involved: we are inter-
ested in establishing the motion of the particles of �uid on scales much large than
the distance of interaction between the particles themselves. This is formalized in
the Knudsen number

(1.1) Kn =
�

l

where � is a quantity indicative of the microscopic interactions between the particles
and l is the scale of motion we are interested in describing. If the Knudsen number
is small, e.g. Kn < 10�3 the system resembles a �uid. If it has intermediate
values 10�3 < Kn < 10�1 a kinetic description is used and if it is large the system
is described using point mechanics. For a gas � is typically the mean free path,
i.e. the distance a particle traverses before it, on average, collides with another
particle. A typical practical situation might be the computation of air �ow around
an airplane so l = 10�2 m is a reasonable estimate of the scales of motion we would
be interested in. By comparison, the mean free path for air is on the order � = 10�7

m so Kn = 10�5:
The table also shows how we can de�ne �uid density quantities microscopically.

The density of mass may be de�ned by summing the masses mi of all the particles
having a position vector ~xi that places them within the volume V and dividing by
the measure of the volume �(V ):

Point particle quantity Analagous �uid quantity Macroscopic de�nition Microscopic de�nition

mass - m density (of mass) � � = lim
�(V ) 0

m(V )

�(V )
� =

1

�(V )

X
~xi2V

mi

momentum - m~u (density of) momentum �~u � = lim
�(V ) 0

m(V )~u(V )

�(V )
� =

1

�(V )

X
~xi2V

mi~ui

energy - E (density of) energy �E � = lim
�(V ) 0

m(V )E(V )

�(V )
� =

1

�(V )

X
~xi2V

miEi

2. The conservation equations

When the velocity of the �uid is small by comparison to the speed of light we
say that we have classical �uid motion. The equations of motion are derived from
the general physical principle of conservation of mass, momentum, energy. Recall
that the local, di¤erential form of a conservation principle is

(2.1)
@q

@t
+r � f = �
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with q - the conserved quantity, f - the �ux of q and � - the source of q (from hereon
we shall use � as a notation for source intensities and adopt the common practice
in physics of using V for both volume and its measure). It is a physicist�s job to
determine the appropriate expressions for q; f ; �: One the most lucid presentations
by physicists of how this is done can be found in the classic Fluid Mechanics by
Landau and Lifschitz. We�ll go over the main points in the derivation.

2.1. Conservation of mass - the continuity equation. To express the
conservation of mass we set q = � and consider now the means by which mass may
be transferred into a control volume V: One way is by overall, macroscopic motion of
the �uid. Another way is through microscopic di¤usion processes for multi-species
�uids (�uids containing more than one chemical component). Let us concentrate
only on single-species �uids for now. It is clear that the macroscopic �ux of mass
(mass transported per unit time thorugh unit area) is just the density multiplied
by the velocity

(2.2) ~f = �~u :

If there are no chemical reactions then mass is neither created or destroyed and we
come across the familiar continuity equation

(2.3)
@�

@t
+r � (�~u) = 0 ;

or

(2.4) �;t + (�ui);i = 0 ;

in component form. An important special case of the continuity equation is obtained
when we consider a �uid to be incompressible. This is satis�ed to a high degree
of accuracy for common �uids such as liquid water for instance. Then we have
� = const and the continuity equation becomes

(2.5) r � ~u = 0
or

(2.6) ui;i = 0 :

2.2. Conservation of momentum - the Navier-Stokes equations. Now
let us turn to the more complicated situation of momentum transport. We have
~q = �~u or qi = �ui componentwise. Again momentum can be transported through
a control volume either by macroscopic motion of the �uid, a process called con-
vection, or through microscopic processes termed di¤usion. The macroscopic con-
tribution to the �ux is straightforward

(2.7) f c = �~u
 ~u :
In component form we have

(2.8) fcij = �uiuj

At the microscopic level there are now processes which have to be taken into account
even for a single-species �uid. As particles pass through any bounding surface of
a control volume they carry along a certain momentum. The momentum of an
individual particle is not necessarily that of the overall �uid at that point - a
mismatch arises and this is felt macroscopically as a �pressure� or a �tangential
stress�. Pressure is essentially the microscopic transport of the momentum oriented
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normal to a surface. Momentum is a vector quantity and tangential momentum is
also transferred to a control volume when a particle crosses a volume surface. This is
felt macroscopically as �friction�or a �tangential stress�. Both of these correspond
to the same physical process: transport of momentum at the microscopic scales.
The di¤erent labels are more a result of historical accident than any true di¤erence
between pressure and friction.

Empirical observations suggest that pressure is an intrinsic isotropic scalar and
friction is proportional to the gradient of the macroscopic �uid velocity. These
physical quantities should be invariant under translations and rotations, and tensor
analysis gives the only possible expression for such a description of the microscopic
�ux of momentum as

(2.9) fdij = p�ij � a(ui;j + uj;i)� bul;l�ij :
It is convenient to rewrite this expression as

(2.10) fdij = p�ij � �
�
ui;j + uj;i �

2

3
ul;l�ij

�
� �ul;l�ij ;

which is just a di¤erent way of expressing the scalar constants a; b. The advantage
of this second form is that the tensor multiplying � has a zero trace. Recall that
the trace of a tensor Aij is a scalar T = Aij�ij (double summation on the repeated
indices i; j) so�

ui;j + uj;i �
2

3
ul;l�ij

�
�ij = ui;j�ij + uj;i�ij �

2

3
ul;l�ij�ij(2.11)

= ui;i + ui;i �
2

3
ul;l(3) = 0 :(2.12)

The two parameters �, � are called the �rst and second coe¢ cients of viscosity,
respectively.

This leads to an overall �ux f = f c + fd which is a two-component tensor (i.e.
a matrix) and whose components are

(2.13) fij = �uiuj + p�ij � �
�
ui;j + uj;i �

2

3
ul;l�ij

�
� �ul;l�ij :

The �nal element needed to write down the conservation of momentum is an
expression for the source term �: Dynamics teaches us that forces are the sources
of momentum. Let us suppose that the volume-distributed force within the �uid is
given by �i = �gi:

The local, di¤erential form of the conservation of momentum can now be written
in vector form as

(2.14)
@(�~u)

@t
+r � f = �~g :

Using the compact component notation, the conservation of momentum is

(�ui);t = �gi �
�
�uiuj + p�ij � �

�
ui;j + uj;i � 2

3ul;l�ij
�
� �ul;l�ij

�
;j

(2.15)

= �gi � (�uiuj);j � p;j�ij +
�
�
�
ui;j + uj;i � 2

3ul;l�ij
��

;j + [�ul;l�ij ] ;j(2.16)

= �gi � (�uiuj);j � p;i +
�
�
�
ui;j + uj;i � 2

3ul;l�ij
��

;j + [�ul;l] ;i(2.17)

Note that up to this point we have not given any speci�c physical signi�cance
to the quantities p, �, �. They have been introduced as scaling coe¢ cients in
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the general expression of a �ux independent of translations, rotations and that
depends linearly upon velocity gradients. We must assign physical signi�cance to
these parameters so that experiments can give values for these parameters. We
must also consider what kind of boundary conditions are to be imposed on the the
unknown quantities.

The microscopic momentum �ux density is also the stress felt by an in�nitesimal
�uid element

(2.18) Sij = fdij = p�ij � �
�
ui;j + uj;i �

2

3
ul;l�ij

�
� �ul;l�ij :

The trace of the stress is

(2.19) Sij�ij = 3(p� �ul;l):

In a �uid at rest we typically assign the label �hydrostatic pressure� P to the
average normal stress 13 (S11 + S22 + S33). We would like to be able to extend this
label to arbitrary �uid motions, i.e. to have P = p. This is possible if either we
have:

(1) ul;l = 0, i.e. the �uid is incompressible, or
(2) � = 0 the second coe¢ cient of viscosity is zero. This is known as the

Stokes hypothesis and is veri�ed for a wide variety of �uid motions (a
notable exception is ultrasonic vibrations in a �uid).

Assuming now that we can indeed identify the scalar p with the hydrostatic
pressure P , the equations of motion take the form

(2.20) (�ui);t = �gi � (�uiuj);j � p;i +
�
�
�
ui;j + uj;i � 2

3ul;l�ij
��

;j

and are known as the Navier-Stokes equations. There remains only one more pa-
rameter to discuss, �. A simple �ow which exhibits �uid friction is to enclose a
�uid between two plates, keep the plate at x2 = 0 stationary and move the plate
at x2 = h with a �xed velocity ~U = U ~e1. This is known as a Couette �ow and the
solution of the equations of motion for such a �ow is a linear distribution of the
velocity in the direction of the plate motion

(2.21) u1 = Ax2 =
@u1
@x2

x2:

The constant velocity gradient can be determined from assuming that the �uid
velocity at a solid-wall boundary is equal to the velocity of the wall. These are
known as no-slip boundary conditions. We have

(2.22)
@u1
@x2

=
U � 0
h

= U=h

One can measure the force needed to keep one of the plates in motion and this,
in turn is an indication of the �uid friction. Experiments show that the friction
increases linearly with the top plate velocity U and the inverse of the plate spacing.
This led Newton to propose a de�nition of the tangential stress exerted between
two �uid elements as

(2.23) � = �
@u1
@x2

thus assigning a speci�c physical signi�cance to the parameter �.
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2.3. Conservation of energy. The derivation of an equation expressing the
conservation of energy is a bit more involved because there are multiple de�nitions
of what we mean by �energy� in the context of �uid �ow. For a point mass one
typically starts out with �energy�signifying the kinetic energy K = 1

2mv
2: After-

wards, when considering motion in a gravitational �eld, it makes sense to assign to
the point mass a �total energy�E = 1

2mv
2 +mgh with mgh called the potential

energy of the point mass in a gravitational �eld. These are not the only de�nitions
of �energy�we could use; the point mass is a model of a true solid that is composed
of atoms that move and hence have an intrinsic kinetic energy. This type of energy
is typically not included in point dynamics. For �uids a similar problem arises in
that we can assign various de�nitions of what we mean by energy and write down
corresponding transport equations. Here, we�ll consider just the simplest possible
de�nition and look at the change in time of kinetic energy for an incompressible
�uid with constant � and with no external forces ~g = 0. We�ll adopt a slightly
di¤erent approach to determining the local form of the conservation form. Instead
of �rst determining an expression for the �ux, we�ll directly compute the derivative
with respect to time of the kinetic energy (density)

(2.24)
@

@t
K =

@

@t

�u2

2
= �ui

@ui
@t

= �uiui;t :

The Navier-Stokes equations give us an expression for

(�ui);t = �ui;t = � (�uiuj);j � p;i +
�
�
�
ui;j + uj;i � 2

3ul;l�ij
��

;j(2.25)

= ��ui ;juj � �uiuj;j � p;i +
�
�
�
ui;j + uj;i � 2

3ul;l�ij
��

;j :(2.26)

Note that for an incompressible �uid we have uj;j = 0 so

(2.27) (�ui);t = ��ui ;juj � p;i + � (ui;j + uj;i);j
Therefore

(2.28)
@

@t

�u2

2
= �uiui;t = ��uiui ;juj � uip;i + �ui (ui;j + uj;i);j :

We�ll now try to use this expression to come up with what the �ux of kinetic energy
is. For this we must isolate the divergence of vector quantity in the above equation.
Note that

(2.29) (pui);i = p;iui + pui;i = uip;i

for an incompressible �uid. Similarily
(2.30)�

1
2�uiujuj

�
;i
= 1

2�ui;iujuj +
1
2�uiuj;iuj +

1
2�uiujuj;i = �uiujuj;i = �ujuiui ;j :

The last equality above corresponds to switching the i; j indices. The viscous term
from (2.28) can be rewritten as

(2.31) �ui (ui;j + uj;i);j = �uj (uj;i + ui;j);i

by switching indices and then as

(2.32) �uj (uj;i + ui;j);i = [�uj (uj;i + ui;j)];i � �uj;i (uj;i + ui;j)

We can rewrite (2.28) as
(2.33)
@

@t

�u2

2
= �uiui;t = �

�
1
2�uiujuj + pui � uj� (ui;j + uj;i)

�
;i
� �uj;i (uj;i + ui;j) ;
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and can now identify the �ux and source terms for the conservation of kinetic
energy. The �ux has components

(2.34) fi =
1
2�uiujuj + pui � � (ui;j + uj;i)uj

which in vector form corresponds to

(2.35) ~f = K~u+ p~u� S � ~u
with S the viscous stress tensor

(2.36) Sij = � (ui;j + uj;i) :

The physical e¤ects present in the �ux are:

(1) K~u - convective (macroscopic) transport of kinetic energy by the �uid
(2) p~u - microscopic transport of energy thorugh the action of normal stresses

in the �uid. This is more commonly interpreted macroscopically as work
done by the pressure forces

(3) �S � ~u - microscopic transport of energy thorugh the action of tangential
stresses in the �uid. This is more commonly interpreted as work consumed
to overcome friction forces.

The source term is

(2.37) � = ��uj;i (uj;i + ui;j) :
This corresponds to loss of kinetic energy (into thermal energy) due to the action
of friction forces.

2.4. Boundary conditions. The theory of boundary conditions for the �uid
dynamic equations can get quite involved1. Rather than going into the details of
what boundary conditions lead to well-posed problems in a precise mathematical
sense we�ll adopt the viewpoint of physics which observes that �uid motions exist
and are unique for speci�c initial and boundary conditions.

2.4.1. Solid walls. At a solid wall it is common experience that �uids �stick�
to the wall. This leads to the so-called no-slip boundary condition where the �uid
velocity at a solid wall ~uw is the same as the velocity of the wall itself ~V

(2.38) ~uw = ~V :

There are several departures from this boundary condition that are encountered
experimentally. Some �uids like liquid helium exhibit what is known as super�uidity
and �uid velocity might be di¤erent from the wall velocity. Also in the transition
region between �uid and particle behavior when Knudsen numbers become large
(Kn & 0:01) slip is observed between the �uid velocity and the wall velocity �such
situations arise in space vehicle atmosphere re-entry. We shall not discuss these
rather speci�c situations and assume that the no-slip boundary condition is valid
for viscous �uids. Note that the no-slip boundary condition only gives us 3 relations
for the 5 unknowns needed to describe �uid motion. Further boundary conditions
must be imposed. These typically have to do with the speci�cs of heat transfer of
the wall. A general discussion may be found in �uid dynamics texts. Generally
we�ll assume we have adiabatic walls, i.e. there is no heat transferred from the wall
to the �uid and work out the implications of this assumption as the need arises.

1See O.A. Ladyzhenskaya, Boundary value problems of mathematical physics for a mathe-
matical treatment of these issues.
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2.4.2. Free surfaces, �uid-�uid interfaces. Free surfaces of a �uid arise in many
situations: the ocean surface, two immiscible liquids in the same container are some
some examples. Though one might assume at �rst sight that the required boundary
condition is that �uids should move with the same velocity this is not a necessary
condition that comes from the �uid dynamic equations. If one isolates a �uid-�uid
interface with a small control volume and lets the thickness of this control volume
go to zero the forces acting on the control volume sides must balance, otherwise the
�uid inside would be accelerated to an arbitrarily large value. The proper boundary
conditions to apply in such situations are known as stress continuity equations and
state that on both sides of an interface the motion of the �uids must be such that
the normal and tangential stresses match across the interface.

3. Computational techniques for speci�c �uid models

Though we could attack the problem of directly solving the full set of conser-
vation laws governing the motion of a �uid it is more instructive to �rst consider
speci�c simpli�ed situations and the techniques which we can use for these cases.

3.1. Inviscid �uids. An inviscid �uid has negligible viscosity � �= 0 in most
of the �ow domain of interest. Many applications can be treated under this hy-
pothesis, e.g. aerodynamics of aircraft, hydrodynamics of ships, in order to obtain
a �rst estimate of the forces exerted by a �uid on other objects. For most of these
applications thermodynamics provides additional informatino which can be used to
eliminate the need for solving the energy equation explicitly. We are left with a
system formed by the continuity and momentum equations which reads

�;t + (�uj);j = 0(3.1)

(�ui);t + (�uiuj);j = �gi � p;i(3.2)

The momentum equation can be rewritten as
(3.3)
�;tui + �ui;t + ui(�uj);j + �ujui;j = �(ui;t + ujui;j) + ui [�;t + (�uj);j ] = �gi � p;i:
Using the continuity equation this becomes

(3.4) ui;t + ujui;j = �gi �
1

�
p;i

and is known as the Euler equation of �uid dynamics.
In vector form we have

@�

@t
+r � (�~u) = 0(3.5)

D~u

Dt
� @~u

@t
+ (~u � r)~u = ~g � rp

�
(3.6)

Note the appearance of the substantive derivative D
Dt =

@
@t + ~u � r expressing the

change in a qunatity due to the combine e¤ects of its rate of change in time and the
di¤erence between in�ow and out�ow of that quantity. From the vector identity
~a�(~b�~c) = (~a�~c)~b�(~a�~b)~c one can obtain a very useful expression of the substantive
derivative. Consider the product ~u � (r � ~u): Remembering that the curl should
only act upon the second instance of ~u we can rewrite this product as

(3.7) ~u� (r� ~u) = r
�
u2

2

�
� (~u � r) ~u ;
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and therefore obtain an expression for the substantive derivative

(3.8)
D~u

Dt
=
@~u

@t
+r

�
u2

2

�
+ (r� ~u)� ~u:

The curl of the vector �eld ~u which describes the local, instantaneous rate of rotation
of the �uid and is known as the vorticity ~!

(3.9) ~! = r� ~u ;
so the Euler equations can also be written as

(3.10)
@~u

@t
+r

�
u2

2

�
+ ~! � ~u = ~g � rp

�
:

Taking the curl of this equation leads to the vorticity transport equation also known
as the Helmholtz equation

(3.11)
@~!

@t
+ (~u � r)~! = (~! � r)~u� (r � ~u)~! +r� ~g �r�

�
rp
�

�
:

3.1.1. The Bernoulli relation. Notice that up to this point we have used the
conservation of mass and conservation of momentum principles. In order to close
the system of equations decribing inviscid �uid motion we need to also invoke
conservation of energy. There are various ways to do this. We shall see later on
that one possibility is to impose a speci�c form of the thermodynamic process
which the �uid undergoes during its motion. When imposing such a relation the
�rst principle of thermodynamics (an a¢ rmation of the conservation of energy) is
used.

Another important way in which conservation of energy can be used is actually
derived from the Euler equations. Assume that we have a stationary motion, i.e.
there is no change of the �ow variables with respect to time. The Euler equations
then read

(3.12) r
�
u2

2

�
+ ~! � ~u = ~g � rp

�
:

It is typically the case that the external forces are conservative and hence can be
expressed as the gradient of a potential

(3.13) ~g = rU :

Furthermore for almost all �uids one can express the ratio rp=� as the gradient of
what is known as a barotropic potential function P

(3.14)
rp
�
= rP

so the steady Euler equations are

(3.15) r
�
u2

2

�
+ ~! � ~u = r (U � P)

Multiply this by some arbitrary displacement d~r and let the d-operator denote
changes in the �ow variables made along this displacement

(3.16) d () + (~! � ~u) � d~r = d (U � P) :
The mixed product above is null for two cases

(1) If d~r corresponds to a streamline, i.e. it is colinear with ~u;
(2) If d~r corresponds to a vorticity line, i.e. it is colinear with ~!:
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In both of the above cases we obtain

(3.17) d

�
u2

2
� U + P

�
= 0

which is the general form of the Bernoulli equation. This equation is essentially an
expression of the conservation of energy and provides the �nal relation necessary
for solving the system of PDE�s describing the motion of an inviscid �uid. You may
be most familiar with the form of the Bernoulli equation for incompressible �uids
in a gravitation �eld for which U = �gz and P = p=� with z the height above some
reference line

(3.18)
u2

2
+ gz +

p

�
= const :

3.1.2. The Crocco relation. Though we will not go into the detailed thermody-
namics of �uid �ow there is one relation that is very useful that should be mentioned.
It provides a link between kinematic and thermodynamic parameters and is known
as the Crocco relation. We start from the �rst principle of thermodynamics in
di¤erential form

(3.19) de = dq � dl
with e - the internal energy, q - heat transfer from the �uid to surrounding systems
and l - the mechanical work exchanged between the �uid and the surroundings.
The de�nition of entropy s is given di¤erentially by

(3.20) ds =
dq

T

with T the temperature. Mechanical work is given by

(3.21) dl = pd

�
1

�

�
so we have

(3.22) de = Tds� pd
�
1

�

�
from where

(3.23) re = T rs� pr
�
1

�

�
:

In the Euler equations we have the term rp=� which can be rewritten

(3.24)
rp
�
= r

�
p

�

�
� pr

�
1

�

�
= r

�
e+

p

�

�
� Trs

so the Euler equations become

(3.25)
@~u

@t
+r

�
u2

2

�
+ ~! � ~u = �r

�
e+

p

�

�
+ Trs

or

(3.26) Trs = @~u

@t
+r

�
e+

p

�
+
u2

2

�
+ ~! � ~u ;

the Crocco relation. The quantity h = e + p=� is known as the enthalpy of a �uid
and expresses its internal energy including the work necessary to form the �uid
from its constituent particles. Energy in a �uid may be transferred between kinetic
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and internal forms. In an inviscid �uid this process is lossless and it is convenient
to have a measure of the overall constant total energy available to the �uid. For
this we de�ne the stagnation energy

(3.27) E = e+
u2

2
;

and the stagnation enthalpy

(3.28) H = h+
u2

2
:

Using these quantities Crocco�s relation can be written as

(3.29) Trs = @~u

@t
+rH + ~! � ~u :

Notice that for a steady motion (@~u=@t = 0) of a lossless �uid (rH = 0) the change
in entropy is given only by the vector product of vorticity and velocity

(3.30) Trs = ~! � ~u :
3.1.3. Inviscid, incompressible �uids - Potential �ow. If the �uid is both in-

compressible � = const, and inviscid � = 0 the equations of motion simplify con-
siderably. The continuity equation becomes

(3.31) ui;i = 0 :

The momentum equations are

(3.32) ui;t + ujui;j = �p;i
in the absence of external forces. In vector notation form the equations are

r � ~u = 0(3.33)

@~u

@t
+ (~u � r)~u = �rp(3.34)

with the density assumed to be equal to 1 (always possible through a change of
units of measurement). Taking the curl of the incompressible Euler equations leads
to the following special form of the vorticity transport equation

(3.35)
@~!

@t
+ (~u � r)~! = (~! � r)~u :

This shows that if the initial vorticity of an inviscid �uid is zero it remains zero at
all later times within the interior of the �uid domain

(3.36) ~!0 = 0)
@~!

@t
= 0 :

The velocity �eld is said to be irrotational or solenoidal and can be expressed as
the gradient of a scalar function known as the velocity potential �

(3.37) ~u = r� :
This leads to a great simpli�cation of the system of PDE�s describing �uid motion
since we only seek a single scalar function and furthermore we see that this function
is harmonic

(3.38) r2� = 0
as a result of the continuity equation. Since the �uid velocity is determined from
a single scalar potential such �ows are called potential �ows and we can apply the
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full range of methods known to be applicable to the Laplace equation to determine
the �uid motion. From the Crocco relation we see that such motions are isentropic,
i.e. they preserve constant entropy

(3.39) rs = 0 :

We must also specify boundary conditions to be satis�ed by the velocity poten-
tial. Typically these will involve imposing the normal velocity along some surface.
Along solid walls we would have

(3.40) ~u � ~n = d�

dn
= 0

which is known as the no through-�ow condition. At computational interfaces
typically the velocity is assumed to be given

(3.41) ~u � ~n = d�

dn
= Un :

Singularity methods in two dimensions.
Integral formulas for solutions to the Poisson equation. A typical problem one en-
counters in potential �ow is determining the velocity �eld around some body 
b
moving through a �uid - this is known as an exterior �ow problem. Let us consider
the simplest case �rst, that when the body is moving with a constant velocity ~U1:
We can orient our x-axis parallel to this velocity direction and also choose to work
in a reference frame attached to the body so that the body appears motionless
and the �uid far away from the body�s in�uence has the constant velocity �U1~ex
(note that this implies that the presence of the body induces perturbations which
decay su¢ ciently fast away from the body, a point we shall return to later). We
typically choose a computational domain of �uid around the body 
 = 
1 � 
b
such that on the far-�eld boundary of this computational domain �1 = 
1 we
have ~U �= �U1~ex to whatever degree of precision required. The problem we wish
to solve is therefore

r2� = 0 in 
(3.42)

d�

dn

����
�1

= �~U1 � ~n

d�

dn

����
�b

= 0

where the �rst boundary condition is given by the �ow far away from the body and
the second expresses no through-�ow at the body surface.

Potential theory gives us analytical expressions for the solution that are useful
computationally. For example, a function which is harmonic in 
 may always be
expressed as an integral over the surfaces bounding � = @
 as

(3.43) �(P ) =
1

4�

Z
�

�
d�(M)

dn

�
1

r

�
� �(M) d

dn

�
1

r

��
d� ;

in three-dimensional space. For two dimensional �ows this becomes

(3.44) �(P ) =
1

2�

Z
�

�
d�(M)

dn
ln r � �(M) d

dn
(ln r)

�
d� :
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Here P denotes some point within 
 and M a point on the surface �. The vector
~r is the relative position of P from the viewpoint of P

(3.45) ~r = ~rP � ~rM ;

and r = j~rj so the two above formulas can be rewritten as
(3.46)

�(P ) =
1

4�

Z
�

�
d�(M)

dn

�
1

j~rP � ~rM j

�
� �(M) d

dn

�
1

j~rP � ~rM j

��
d�M (3D);

(3.47) �(P ) =
1

2�

Z
�

�
d�(M)

dn
ln j~rP � ~rM j � �(M)

d

dn
(ln j~rP � ~rM j)

�
d�M (2D):

Relation to general operator theory methods. The above forms are examples of the
general method of solving a linear di¤erential equation through the fundamental
solution technique, a topic we shall return to in some detail. In brief, if we wish to
solve the general linear PDE

(3.48) L = �

one approach is to �rst determine the generalized fundamental solution or Green�s
function G, i.e. the solution to the problem

(3.49) LG = �

where � is a Dirac delta distribution placed at the origin. Since the rhs involves
distribution we shall say that G is a generalized solution if it satis�es

(3.50) (G;L�') = (�; ')

for some suitable space of trial functions ': Here L� is the dual operator of L and
(�; �) is some scalar product. The solution to the original problem can then be
expressed as a convolution product

(3.51)  = G � � :
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Written out explicitly the value of  at some x is

(3.52)  (x) =

Z
G(x� y)�(y)dy :

That the above formula is indeed a solution is easy to verify formally
(3.53)

L = L

Z
G(x� y)�(y)dy =

Z
LG(x� y)�(y)dy =

Z
�(x� y)�(y)dy = �(x) :

Generally, solving the equation L = � involves applying certain boundary condi-
tions which lead to speci�c forms for the general integration operation shown above
- these di¢ culties have been glossed over for now.

This general analytical procedure has many computational implementations.
All of these depend on the ease with which the fundamental solution G can be
found. In general the Green�s function also depends on the particular shape of the
domain over which the operator L is de�ned.

Example 1.: Consider as a �rst, simple example the initial value problem
given by: L = d

dt + 3, � = e�2t

(3.54) L = � , d 

dt
+ 3 = e�2t ;

with the initial condition  (0) = 0. We can easily �nd the solution by
classical techniques to be

(3.55)  (t) = e�2t � e�3t :
Let us rediscover this solution through the fundamental solution approach
by �rst solving

(3.56) LG = �:

We�ll use the property

(3.57)
d�

dt
= �

where � is the Heaviside function, to quickly verify that the fundamental
solution is

(3.58) G(t) = �(t)e�3t

since

(3.59) G0(t) = �0(t)e�3t � 3 �(t)e�3t

so that

(3.60) LG = G0(t)+3G(t) = �0(t)e�3t�3 �(t)e�3t+3 �(t)e�3t = �(t)e�3t = �(t) :

The last equality might seem a bit puzzling but recall that solutions are
considered in a generalized sense so that �(t)e�3t = �(t) is understood as
stating that

(3.61)
�
�(t)e�3t; '

�
= (�(t); ')

for some space of test functions ' and this is true since

(3.62)
Z
�(t)e�3t'(t) dt = '(0) =

Z
�(t)'(t) dt :
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Having determined the fundamental solution we can immediately write
down the solution to the initial value problem as

 = G � � )  (t) =

Z 1

0

�(t� �)e�3(t��)e�2� d� )(3.63)

 (t) =

Z 1

0

�(t� �)e�3te� d� = e�3t
Z 1

0

�(t� �)e� d�(3.64)

= e�3t
�Z t

0

�(t� �)e� d� +
Z 1

t

�(t� �)e� d�
�

(3.65)

= e�3t
h
e� j�=t�=0 + 0

i
= e�3t

�
et � 1

�
= e�2t � e�3t :(3.66)

Example 2.: For L = d2

dx2+a
2 the fundamental solution isG(x) = �(x) sin axa

so the solution to  00(x) + a2 (x) = f(x) is

(3.67)  (x) =
1

a

Z
�(x� y) sin a(x� y) f(y) dy :

Green�s functions for the Laplace operator. For the Laplace equation the Green�s
function for an arbitrary domain 
 is typically hard to �nd, involving a complexity
comparable to solving the full problem (3.42). Transforming the problem to an
equivalent problem in free space is useful because we know the Green functions for
R2 or R3 analytically for problems in which the solution decays to zero at in�nity.
In two dimensions, the solution to

4G2 = �(3.68)

lim
r!1

G2 = 0(3.69)

is

(3.70) G42 =
1

2�
log r =

1

4�
log(x2 + y2) :

This corresponds to what is known as a unit source singularity placed at the origin,
since the integral of the �uid �ux over any curve that encloses the origin is a constant
equal to 1 (for a �uid of unit density) and represents the amount of �uid injected
into the domain by the point singularity. The elementary �uid �ux is given by

(3.71) dQ = ~u d~� :

For the unit source singularity we have

(3.72) ~u = rG42 =
~r

2�r2
:

Integrate this over a unit circle centered on the origin to obtain the total �ux

(3.73) Q =

Z 2�

0

~r

2�r2
r
~r

r
d� = 1

where we used d~� = r(~r=r) d�; with ~r=r representing the outward pointing unit
normal. It is easy to see that the integral over any other curve enclosing the origin
would be the same (use integration in the complex plane and notice that the origin
is a pole).

In three dimensions the solution to the analogous problem is

(3.74) G43 = �
1

4�

1

r
= � 1

4�

1

(x2 + y2 + z2)
1=2

:
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Figure 1. Flow �eld induced by a unit source singularity placed
at the origin. also drawn are lines of constant potential.

Panel methods in 2D. The integral form of the solution can be used directly to gen-
erate useful numerical algorithms, a point that shall be investigated in conjunction
with various fast summation algorithms we�ll consider later on. To get some initial
experience with integral equation methods for potential �ow we�ll consider one of
the simplest, but still widely used, algorithms - the panel method.

Consider the 2D representation formula

(3.75) �(P ) =
1

2�

Z
�

�
q(M) ln r � 
(M) d

dn
(ln r)

�
d� :

One can read this as stating that the potential at some point is given by summing
the contribution of the in�nitesimal sources q(M)d� and the in�nitesimal dipoles

(M)d�: A straightforward discretization suggested by this observation is to replace
the curve � by a piecewise linear approximation and to specify some simple func-
tion q(M); 
(M) on each segment. The simplest case is when we take q(M),
(M)
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constants over each segment thus leading to what is known as a constant inten-
sity source panel or dipole panel, respectively. Global boundary conditions dictate
whether both kinds of panels are needed, a detail we won�t go into for now. Let us
present a typical method based upon source panels only.

A 2D body is placed in a uniform current of velocity ~U = U ~ex: The body�s
shape is approximated by a sequence of N linear segments with a speci�ed ordering
of the panels. Each segment has a uniform source distribution of intensity qj :
These intensities are the unkowns of the problem and have to be determined from
boundary conditions imposed on the body. Since boundary conditions on the body
are given in terms of velocity (the no-through �ow condition) we compute the
velocity induced by all panels at a point ~r on the body�s surface

(3.76) ~V (~r) = ~U +
NX
j=1

~Uj(~r)

where ~Uj(~r) is the velocity induced by panel j at position ~r. To compute the
induced velocity it is convenient to use a local coordinate system for each panel
that has axis � aligned with the panel. In this coordinate system the elementary
velocity induced by the source dQ = qjd� at position (�; 0) along the panel at a
point ~rk = �k~e� + �k~e� is given by

(3.77) d~Ujk =
qjd�

2�

~rk � �~e�
j~r � �~e�j2

Integration along the panel length from � = �lj=2 to � = lj=2 leads to

qj �jk = ~Ujk � ~e� =
qj
2�

Z lj=2

�lj=2

(�k � �)
(�k � �)2 + �2k

d� = � qj
4�

ln
�
(� � �k)2 + �2k

����=lj=2
�=�lj=2

(3.78)

= � qj
4�
ln
(lj=2� �k)2 + �2k
(lj=2 + �k)2 + �2k

(3.79)

qj �jk = ~Ujk � ~e� =
qj
2�

Z lj=2

�lj=2

�k
(�k � �)2 + �2k

d�(3.80)

= � qj
2�

�
arctan

�k � lj=2
�k

� arctan �k + lj=2
�k

�
(3.81)

These velocities are easily transformed back into the global coordinate system

qj ujk = ~Ujk � ~ex = qj [�jk(~e� � ~ex) + �jk(~e� � ~ex)](3.82)

qj vjk = ~Ujk � ~ey = qj [�jk(~e� � ~ey) + �jk(~e� � ~ey)](3.83)
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The no-through �ow boundary condition is now imposed leading to a linear
system for the unknown panel source intensities qj

(3.84) ~V (~rk) � ~nk = 0 = ~U � ~nk +
NX
j=1

~Uj(~rk) � ~nk

where ~nk is the unit vector normal to panel k: The explicit form of the system is

(3.85)
NX
j=1

(ujknk;x + vjknk;y) qj = �~U � ~nk

Complex variable techniques. Complex function methods are extremely useful
in studying two-dimensional potential (inviscid, incompressible) �ows with no initial
vorticity. Recall that for these types of �ows the velocity �eld can be expressed as
a scalar potential

(3.86) ~V = r� ;
and that the potential function is harmonic because of the incompressibility con-
straint r � ~V = 0 arising from the continuity equation

(3.87) 4� = 0 :
Componentwise we have

~V = u~ex + v~ey(3.88)

u = �x; v = �y(3.89)

and since � is harmonic

(3.90) ux = �vy :
A curve to which the velocity vector is always tangent is called a streamline

and determined by

(3.91)
dx

u
=
dy

v
:

Note that the above relation can be expressed as

(3.92) �v dx + u dy = 0 :
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This a di¤erential expression

(3.93) A(x; y)dx+B(x; y)dy

which may be expressed as the total di¤erential of some function  if Ay = Bx or
in this particular case

(3.94) �vy = ux :

This is exactly the incompressibility constraint ux + vy = 0 so there does exist a
total (exact) di¤erential  with the properties

d = �v dx + u dy;(3.95)

 x = �v;  y = u :(3.96)

Furthermore, along streamlines we see that

(3.97) d = 0 :

Since the �uid is assumed to be irrotational, the component of the vorticity
r� ~V perpendicular to the xy-plane must be zero

(3.98) vx � uy = 0 ;

which implies

(3.99)  xx +  yy = 0 ;

so the function  is also harmonic.
We know that holomorphic functions in the complex z = x + iy plane have

harmonic real and imaginary parts so we can de�ne a complex potential

(3.100) f(z) = �(x; y) + i (x; y) :

Since f is holomorphic we have

df

dz
=
@f

@x
= �i@f

@y
(3.101)

@f

@x
= �x + i x = u� iv(3.102)

�i@f
@y

= �i (�y + i y) = u� iv(3.103)

so we see that the derivative of the complex potential leads to quantity similar to
the velocity �eld vector, albeit with a change of sign in the y-component. We shall
call this quantity the complex velocity

(3.104) w =
df

dz
:

The conjugate complex velocity �w is equivalent to the velocity vector ~V .
3.1.4. Inviscid, compressible �ow - Euler equations of gas dynamics.
One-dimensional �ow.
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Eigenstructure of the 1D Euler equations. In the absence of viscosity the conserva-
tion form of the �uid dynamic equations in 1D is

(3.105) qt + f(q)x = 0

(3.106) q =
�
� �u �E

�T
(3.107) f =

�
�u �u2 + p �uH

�T
Faced with the task of devising a numerical method to solve the above system of
equations, our �rst goal is to determine the type of PDE system we have. We do
this by computing the eigenvalues of the local linearization

(3.108) qt + fqqx = 0

with the coe¢ cients within the Jacobian matrix fq assumed to be frozen (this is
the linearization). Though one could directly compute the eigenstructure of fq it
is typically more convenient to work with the primitive variables

(3.109) w =
�
� u p

�T
:

Through the general equations for an gas we know that a relationship q(w) ex-
ists and physical considerations imply the existence of an inverse also w(q): The
conservation equations can be rewritten as

(3.110) qwwt + fqqwwx = 0

or

(3.111) wt +Awx = 0

with

(3.112) A = (qw)
�1fqqw :

Note that the above relation is a similarity transform from the conservative variable
Jacobian fq to a new matrix A: The form of A is most easily determined by replacing
q with w and applying thermodynamic relations in the original conservative system.
The conservation form of the continuity equation

(3.113) �t + (�u)x = 0

immediately leads to the primitive variable form

(3.114) �t + u�x + �ux = 0 :

The conservative momentum equation

(3.115) (�u)t + (�u
2 + p)x = 0

likewise gives

(3.116) u([�t + (�u)x] + �ut + �uux + px = 0

with the quantity in the brackets being null by the conservative continuity equation.
The energy equation is the only equation that requires a bit more work. The
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equations

(�E)t + (�uH)x = 0(3.117)

E =
1


 � 1
p

�
+
u2

2
(3.118)

H = E +
p

�
; a2 = 


p

�
(3.119)

lead to

(3.120) pt + upx + 
pux = 0:

The �nal form we obtain for A is therefore

(3.121) A =

24 u � 0
0 u 1=�
0 �a2 u

35 :
The eigenvalues are given by

(3.122) det(A� �I) = (u� �)
�
(u� �)2 + a2

�
= 0

leading to

(3.123) �1 = u+ a; �2 = u; �3 = u� a :
The associated eigenmode matrix is

(3.124) R =
�
r1 r2 r3

�
=

24 � 1 �
a 0 �a
�a2 0 �a2

35 :

The determinant of R is

(3.125) detR = �2a3�
which is nonzero since a and � are physical, positive quantities so the eigenvectors
form a basis for 3-space and the primitive variable system wt +Awx = 0 is hyper-
bolic. Because of the existence of the similarity transform, the original conservative
variable system is also hyperbolic.

Since the system is hyperbolic, we know that one way of seeking a solution is
by marching along characteristic curves. In preparation for this let us determine
the characteristic form of the equation. We write

(3.126) A = R�R�1

with

(3.127) � =

24 u+ a
u

u� a

35

(3.128) R�1 =
1

2a2

24 0 a 1=�
2a2 0 �2
0 �a 1=�

35
The primitive variable system is therefore

(3.129) wt +R�R
�1wx = 0

leading to the characteristic system

(3.130) zt + �zx = 0
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with the characteristic variables

(3.131) z = R�1w =

24 1
2au+

1
2a2

p
�

�� 1
a2 p

� 1
2au+

1
2a2

p
�

35
Note that up to now we�ve assumed that the system was linearized by freezing

the local values of coee�cients of the derivatives. This can be motivated as a
pertubation expansion of the �ow variables

(3.132) w = �w + w0

in which �w is some average state that corresponds to the frozen coe¢ cients and w
0

are perturbations around this state. If the perturbations are small we have

(3.133) ( �w + w0)t + ( �A+A
0)( �w + w0)x = 0

which gives

(3.134) w0t + �Aw0x = 0

since derivatives of �w are zero, and neglecting second order quantitites (i.e. A0w0x).
The small-perturbation characteristic variables are now

(3.135) z0 = �R�1w0 =
1

2�a2

24 0 �a 1=��
2�a2 0 �2
0 ��a 1=��

3524 �0

u0

p0

35 =
26664

1
2�au

0 +
1

2�a2��
p0

�0 � 1
�a2 p

0

� 1
2�au

0 +
1

2�a2��
p0

37775
an entity of considerable physical importance. Recall that for a linear system of
hyperbolic variables, the characteristic variables remain constant along their re-
spective characteristic curves. For the non-linear system of 1D Euler equations
this is no longer strictly the case, but for small perturbations components of z0

remain constant along the respective characteristic curves. Hence, small perturba-
tions propagate in accordance with one of the three modes above. The physical
nature of the above waves is determined by applying thermodynamic relations; we
will skip the details and just list the physical nature of the eigenmodes:

(1) �u0=(2�a) + p0=(2
�p) corresponds to the propagation of sound waves with
velocity �u� �a

(2) �0 � p0=�a2 corresponds to the propagation of entropy waves with the �ow
velocity u

The Riemann problem for 1D Euler equations. A number of numerical methods for
hyperbolic PDE�s rely on the solution to a speci�c initial-value problem

(3.136) q(x; t = 0) =

�
ql x < 0
qr x > 0

known as the Riemann problem. To solve a system of linear hyperbolic PDE�s with
the above initial condition we would expand the jump in q at the origin on the basis
formed by the eigenvectors of the system matrix

(3.137) qr � ql =
mX
k=1

�krk
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Figure 2. Typical geometry of characteristic curves for the 1D
Euler equations showing the slopes and Riemann invariants.

and then follow the propagation of each eigenmode independently of the others.
This is no longer possible for non-linear systems since pasage of the perturbations
associated with one eigenmode a¤ects all the other modes.

Nonetheless, there exist some systems, the representative example of which
is the Euler equations, for which a complete solution for the Riemann problem
is available. The crucial aspect is that there exist quantities that remain constant
along characteristic curves, somewhat similar to how characteristic variables remain
constant along characteristic lines for linear problems. These are called Riemann
invariants and the Riemann invariants for the 1D Euler equations are

(1) along sound propagation characteristics

(3.138) s; u� 2a


 � 1

(2) along the entropy propagation characteristic

(3.139) u; p

Note that there are two quantities that remain constant along each character-
istic curve. One can plot the surfaces de�ned by constant values of the Riemann
invariants in (�; u; p) space and seek intersections between these families that cor-
respond to �nding a physical path between (�l; ul; pl) and (�r; ur; pr).
Godunov type methods for the Euler equations. The knowledge of the characteristic
structure of the equations and of the solution to the Riemann problem makes it
straightforward to construct a Godunov type method for the Euler equations. Let us
consider a �nite volume method. The same ideas can be implemented also in a �nite
di¤erence or a �nite element context. We introduce a grid fa = x0; x1:::; xM = bg
partitioning the domain [a; b] into �nite volume cells Cj = [xj�1; xj ]. Integrating
the conservative form of the Euler equations over a time step [tn; tn+1] and over a
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Figure 3. Typical aspect of characterisitic lines near the discon-
tinuity at the origin in a Riemann problem.

t

Rarefaction Contact

Shock

Figure 4. Typical pattern of discontinuities formed by interaction
of the characteristics from the left and right states in the Riemann
problem for the 1D Euler equations.

cell Cj leads to

(3.140) Qn+1j = Qnj �
�t

�x
(Fj � Fj�1)
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with

(3.141) Qnj =
1

�x

Z xj

xj�1

q(x; tn)dx; Fj =
1

�t

Z tn+1

tn
f(q(xj ; t)) dt:

The main problem faced in constructing a Godunov method is to establish a
procedure to compute the numeric �uxes Fj .


