
CHAPTER 2

Numerical approaches to solving PDE’s

1. A general framework for numerical solution of PDE’s

Now that we have an idea of the differential equations of interest in applications,
let us turn to the problem of finding solutions. Analytical techniques such as
separation of variables or Fourier analysis are very useful but for a limited class of
problems, generally linear PDE’s on domains of simple geometry. Most practical
interest arises from non-linear PDE’s over domains of complicated shape. The
fundamental problem facing us is to determine a function q̃ that approximates the
solution of the PDE of interest. A large numer of methods have been devised to
solve this problem numerically and we shall study individual methods extensively
in later chapters. It is instructive to see that basically all methods can be expressed
in a general framework that allows comparison of the strengths and weaknesses of
individual methods. Say we are faced with the following general problem:

Problem 1. Find q : Ω → Rn, q ∈ F that satisfies Lq = 0 on Ω and Bq = 0
on ∂Ω where L,B are operators defined on the normed linear space F .

Let us see how this abstract statement maps onto one of the typical PDE
problems, the Neumann problem:

(1.1)





∂2q

∂x2
+
∂2q

∂y2
= σ(x, y, q), (x, y) ∈ Ω

∂q

∂n
(x, y) = F (x, y), (x, y) ∈ ∂Ω

.

We have

L =
∂2

∂2x
+

∂2

∂2y
− σ(x, y, ·)(1.2)

B =
∂

∂n
− F (x, y)(1.3)

with L : Ω, B : ∂Ω and F some reasonable space of functions, for instance the
space of functions continuous up to second order defined on Ω, C(2)(Ω).

The advantage of the abstract formulation is that it allows us to concentrate on
the typical steps followed when building a numerical procedure without spending
too much time on the individual application at hand. We assume that the exact
solution q is difficult to find and therefore concentrate on constructing an approx-
imation q̃ ∼= q. Applying the operators L,B to the approximation q̃ leads to an
error, called a residual

(1.4) Lq̃ = r, Bq̃ = s .

It is our objective that the residual be as small as possible. In order to quantify
the error made, we need a mapping from the function space to which r belongs to
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14 2. NUMERICAL APPROACHES TO SOLVING PDE’S

a real number. Such a mapping is called a functional and the typical example is
the norm functional, e.g. �r� and �s� . In numerical approximations we often work
in the space of p-integrable functions F = L(p)(Ω) for which the norm is defined by

(1.5) �f� =
��

|f(x)|p dx
�1/p

.

The norm is a good candidate for evaluating the quality of our approximation q̃
since if �r� = 0 then we know that r = 0 and therefore q̃ = q. Unfortunately, the
presence of the absolute value operation limits the operations that can be carried
out on the norm and it is typical to use other functionals in constructing numerical
procedures. Instead of using the norm consider the functionals

(1.6) I(r) =
�

Ω

r w dx, J(s) =
�

∂Ω

s w� dx .

Here we have introduced weight functions w,w� that assign differing importance to
errors made in various parts of the domain of integration. In adopting I(r), J(s) as
measures of the quality of our approximation q̃ we have abandoned the certainty of
knowing that q̃ = q when I(r) = 0, since a zero value for I(r) could be obtained by
cancellation of positive and negative errors thorughout the domain. Appropriately
chosen weight functions alleviate this concern somewhat and this is a tradeoff we
accept for now with a view to simplicity of the ensuing algorithm. It is possible to
eliminate this drawback using the square of the residual as we shall see later on.

To simplify the presentation let us concentrate on I(r) only. The addition
of boundary conditions is usually a straightforward matter. Now that we have
established a means by which to quantify the quality of an approximation we have
to decide on how to build the approximation itself. Since F is a normed linear
space we can express any element g of F as a linear combination over a set of basis
functions

(1.7) g =
∞�

i=1

aili .

For example the set {1, sinx, cosx, sin 2x, cos 2x, . . .} is a basis for the square-
integrable functions defined on [0, 2π], L(2) ([0, 2π]), and the set {1, x, x2, . . .} is
a basis for the infinitely differentiable functions defined over the reals C(∞)(R). In
practical computations we cannot use an infinite sum, so we construct our approx-
imation q̃ using only N terms

(1.8) q̃ =
N�

i=1

cili .

Using (1.8) I(r) becomes

(1.9) I(r) =
�

Ω

L

�
N�

i=1

cili

�
w dx .

For arbitrary coefficients ci we shall have I(r) �= 0. Since we wish q̃ to be a good
approximation we can reasonably impose I(r) = 0 and thus obtain an equation to
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be used in determining the coefficients ci

(1.10)
�

Ω

L

�
N�

i=1

cili

�
w dx = 0 .

Now this is just one equation but we have N unknown coefficients. However the
weight function is arbitrary so obtaining as many equations as we need is easy: we
just choose w from some set of functions w ∈ {w1, w2, . . . , wN} and obtain a system
of N equations for N unknowns

(1.11)
�

Ω

L

�
N�

i=1

cili

�
wj dx = 0, j = 1, 2, . . . , N .

Up to this point we have concentrated on the approximation of q itself. There
still remains the question of how to approximate the presumably complex shape of
Ω. Generally this is done by approximating Ω by a set of simple-shaped subdomains
ωk such that the measure ρ of the difference between the two sets goes to zero as
we increase the number of subdomains

(1.12) ρ

�
Ω−

M�

m=1

ωm

�
→ 0 .

Using this approximation of the domain Ω (1.11) becomes

(1.13)
M�

m=1

�

ωm

L

�
N�

i=1

cili

�
wj dx = 0, j = 1, 2, . . . , N .

This is known as a weighted residual formulation and a large number of methods for
numerically solving PDE’s can be thus expressed. We shall turn to some examples
shortly, but let us summarize the basic aspects:

(1) A function space from which we construct approximations is chosen along
with a subset of a basis of this space {l1, l2, . . . , lN};

(2) A set of weight functions {w1, w2, . . . , wN} is chosen;
(3) A discretization of the domain {ω1, ω2, . . . , ωM} is chosen.

2. Basic numerical methods

2.1. Finite difference methods.
2.1.1. Finite difference derivation. In a finite difference method (FDM) the

derivatives appearing in an ODE or PDE are approximated using finite differences.
For example the IVP

(2.1)
�

q� = f(t, q)
q(t = 0) = q0

can be solved over the domain [0, T ] by finite differences using the following proce-
dure. We construct an approximation q̃ by a set of point values Qn = q̃(tn) with
tn = nk, n = 0, 1, . . . , N and k a step size k = T/N and assume that q̃ varies
linearly between the point values. From the point values we can construct myriad
approximations of the value of the derivative of q̃, for example

q̃�(tn) ∼= Qn+1 −Qn−1

2k
,
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Figure 1. The piecewise linear form functions.

and obtain practical algorithms to solve (2.1) such as

(2.2) Qn+1 = Qn−1 + 2k f(tn, Qn) ,

known as the midpoint rule.
2.1.2. Weighted residual derivation. We shall analyze (2.1) and similar algo-

rithms extensively later on, but let us now see how the same method can be ob-
tained via the weighted residual formulation and what insights we can thereby gain.
We have chosen q̃ as being a piecewise linear approximation defined at the points
tn = nk. In the general language of the weighted residual formulation we have
Ω = [0, T ], ωm = [tm−1, tm]. A basis for the piecewise linear functions defined on
this partition of Ω is given by

(2.3) ln(t) =





0 t < tn−1
1
k

�
t− tn−1

�
tn−1 ≤ t < tn

1
k

�
tn+1 − t

�
tn ≤ t < tn+1

0 tn+1 ≤ t

.

See Fig. (1).
Any piecewise linear function over {ωm} can be defined as a linear combination

of {ln}, for instance

(2.4) q̃(t) =
N�

i=0

cili(t) .

It is apparent from (2.3) that

(2.5) lm(tn) = δmn =
�

1 if m = n
0 if m �= n

,

so imposing the conditions q̃(tn) = Qn leads to

(2.6) q̃(tn) =
N�

i=0

cili(tn) =
N�

i=0

ciδin = cn = Qn ,

i.e. the coefficients of the expansion (2.4) are the nodal values Qn. A similar
expansion is made to approximate the values of the r.h.s. term

(2.7) f(t, q) ∼= f̃(t, q) =
N�

i=0

F ili(t)

with Fn = f̃(tn, Qn).
We must now choose appropriate weight functions. Since the approximation

we are building depends only on nodal values, a reasonable choice would be a set of
weight functions that give importance to the residual obtained at the nodes. Such
a set is given by

(2.8) wj = δ(t− tj)
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where δ(t − tj) is the Dirac delta functional centered on tj defined by its integral
property

(2.9)
� T

0

g(t)δ(t− tj) dt = g(tj)

for any function g(t).
Having chosen the function space on which to base our aproximation q̃, a basis

in this space {lm(t)}, the weight functions {δ(t − tj)} and a discretization of the
domain [0, T ] we can work through the weighted residual formulation (1.13) to
obtain

(2.10)
M�

m=1

� tm

tm−1

�
d

dt

�
N�

n=1

Qnln(t)

�
−

�
N�

n=1

Fnln(t)

��
δ(t− tj) dt = 0 .

It is easiest to use the properties of the Dirac-δ function to work through the above
expression. We have

(2.11)
� T

0

d

dt

�
N�

n=1

Qnln(t)

�
δ(t− tj) dt =

� T

0

�
N�

n=1

Fnln(t)

�
δ(t− tj) dt

(2.12)
N�

n=1

Qn

� T

0

l�n(t) δ(t− tj) dt =
N�

n=1

Fn

� T

0

ln(t) δ(t− tj) dt

(2.13)
N�

n=1

Qn l�n(tj) =
N�

n=1

Fnln(tj) =
N�

n=1

Fnδnj = F j

We should be careful in evaluating l�n(tj) since ln(t) is not differentiable at the nodal
points t = tn. If we interpret l�n(tj) in principal value as the average of the limits
to the left and the right we have

(2.14) l�n(tj) =





− 1
2k n = j − 1
0 n �= j ± 1
1
2k n = j + 1

.

Eq. (2.13) becomes

(2.15)
Qj+1 −Qj−1

2k
= F j

which is exactly the same expression we had obtained previously, Eq. (2.2).
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2.1.3. Comparison of the two derivations. It is satisfying to see a method de-
rived in two ways, but an immediate question is what is to be gained by more
complicated weighted residual procedure in comparison to the straightforward fi-
nite difference derivation. Generally the benefit arises in theoretical considerations
of the behavior of the method. For instance let us consider the following theorem
from approximation theory.

Theorem 1. Let V be a metric linear space with a metric induced by the scalar
product (·, ·) on V and let S be a subspace of V. Let v ∈ V and u ∈ S. If v − u is
orthognal to any w ∈ S, then u is the best approximation of v within S.

Proof. Let d(u, v) be the distance induced by the scalar product between u
and v. Ask whether any other w ∈ S gives a smaller distance to v

[d(v, w)]2 = (v − w, v − w) = (v − u+ u− w, v − u+ u− w)(2.16)

= (v − u, v − u) + 2(u− w, v − u) + (u− w, u− w)(2.17)

= �v − u�2 + �u− w�2 + 2(u− w, v − u) .(2.18)

Since v − u is orthogonal to any element in S, it is orthogonal to u − w so (u −
w, v − u) = 0 and

(2.19) [d(v, w)]2 = �v − u�2 + �u− w�2 ≥ �v − u�2 = [d(v, u)]2

and we conclude that u is the best approximation of v within S. �

We can apply such theorems to weighted residual derivations to infer the be-
havior of the numerical approximation. Applied to the above example, V would be
the space of differentiable functions to which q belongs. S would be the subspace
of piecewise continuous functions where we defined our approximation q̃. The best
approximation we could obtain would be orthogonal to the complement S of within
V. This subspace would contain functions that are not expressible as an expansion
along the set (2.3), for instance functions that vary more rapidly than the time step
chosen k. Predictions such as this are typically more difficult to obtain from the
simpler finite difference derivation.

Let us consider an application of the above theorem. Let V be the space
of differentiable functions defined on the interval [0, T ]. We introduce the scalar
product

(u, v) =
� T

0

u(t)v(t) dt ,

with u, v ∈ V. The metric induced by the scalar product is

d(u, v) = (u− v, u− v)1/2 =

�� T

0

[u(t)− v(t)]2 dt

�1/2

.

Now let us consider the problem of approximating elements of V by piecewise linear
functions defined by their point values on a partition of the interval [0, T ]. Let
{0 = t0, t1, . . . , tN−1, tN = T} be the partition of this interval. To keep things
simple we’ll use an uniform partition with tn = t0 + nk, k = T/N . The subspace
of piecewise linear functions is

S =

�
(Qn) | n = 0, 1, . . . , N, q̃(t) =

�
Qn −Qn−1�

k
(t− tn−1) +Qn−1 for tn−1 ≤ t ≤ tn

�
.
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A piecewise linear function is obviously continuous but is not differentiable at the
partition points tn so at present we cannot affirm that S is a subspace of V. This
drawback is easily eliminated by imposing a principal value definition of the deriv-
ative at the partition points, i.e. for q̃ ∈ S we define

q̃�(tn) =
1
2


 lim

t→tn

t<tn

q̃�(t) + lim
t→tn

t>tn

q̃�(t)


 =

Qn+1 −Qn−1

2k
.

With this definition we can now state that S is a subspace of V. Let’s determine
the scalar product in S induced by that defined for V. With q̃, r̃ ∈ S we have

(q̃, r̃) =
� b

a

q̃(t)r̃(t) dt =
N�

n=1

� tn

tn−1

��
Qn −Qn−1�

k
(t− tn−1) +Qn−1

� ��
Rn −Rn−1�

k
(t− tn−1) +Rn−1

�
dt

=
k

6
�
2QnRn + 2Qn−1Rn−1 +QnRn−1 +Qn−1Rn

�
.

Let us now look for the best approximation of an element q ∈ V by an ele-
ment q̃ ∈ S. By the above theorem, the best approximation possible satisfies the
condition

(q − q̃, r̃) = 0

for all r̃ ∈ S. This leads to
� T

0

[q(t)− q̃(t)] r̃(t) dt = 0

or
N�

n=1

� tn

tn−1

�
q(t)−

�
Qn −Qn−1�

k
(t− tn−1)−Qn−1

�
r̃(t) = 0 .

The unknowns of the above problem are the nodal values {Qn} and we can obtain
the relation
(2.20)
N�

n=1

��
Qn −Qn−1�

k

� tn

tn−1
(t− tn−1) r̃(t) dt+Qn−1

� tn

tn−1
r̃(t) dt

�
=

� T

0

q(t) r̃(t) dt .

This is a linear relation in the unknowns. If this relation is valid for all r̃ ∈ S
we have determined the best approximation of q by elements within S. Note that
S is of finite dimension N + 1 so we need only choose N + 1 functions r̃j ∈ S,
j = 0, 1, . . . , N that form a basis of S. If (2.20) is verified for the elements of the
basis then it is verified for all elements within S (why?). We obtain the system of
equations
N�

n=1

��
Qn −Qn−1�

k

� tn

tn−1
(t− tn−1) r̃j(t) dt+Qn−1

� tn

tn−1
r̃j(t) dt

�
=

� b

a

q(t) r̃j(t) dt , j = 0, 1, . . . , N,

which is linear system with N + 1 equations for the N + 1 unknowns Qn.
The same technique can be applied to determine best approximations to ele-

ments v ∈ V which are not specified directly. In the above initial value problem
(2.1) we are not given q but rather its derivative q�(t) = Lq(t) = f(t, q). We can
impose a condition

(Lq − Lq̃, r̃) = (f − Lq̃, r̃) = 0
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namely that the residual be orthogonal to the subspace S. This leads to the system
N�

n=1

��
Qn −Qn−1�

k

� tn

tn−1
r̃j(t) dt

�
=

� T

0

f(t, q) r̃j(t) dt , j = 0, 1, . . . , N,

again with {rj}, j = 0, 1, . . . , N a basis of S. Note that if we choose rj(t) = lj(t),
the linear form functions from (2.3), we obtain
N�

n=1

��
Qn −Qn−1�

k

� tn

tn−1
lj(t) dt

�
=

Qj+1 −Qj−1

2
=

� tj+1

tj−1
f(t, q) lj(t) dt , j = 0, 1, . . . , N .

If we additionally introduce a piecewise linear approximation for f(t, q) by

f(t, q) =
N�

n=0

Fnln(t)

with Fn = f(tn, Qn) we obtain

Qj+1 −Qj−1

2
=

N�

n=0

Fn

� tj+1

tj−1
ln(t) lj(t) dt , j = 0, 1, . . . , N .

Only three of the integrals give non-zero values,
� tj+1

tj−1
lj−1(t) lj(t) dt =

k

6
,

� tj+1

tj−1
lj(t) lj(t) dt =

2k
3

,

� tj+1

tj−1
lj+1(t) lj(t) dt =

k

6
,

leading to the final formula

Qj+1 −Qj−1

2
= kF j ,

the same as that obtained above, (2.2). We can now however state that the nu-
merical solution obtained by this formula is the best possible approximation of the
initial value problem (2.1) by piecewise linear functions when the right-hand-side
term f(t, q) is also approximated by piecewise linear functions. This statement
could not have been made from the simple finite difference derivation.

2.2. Finite volume methods.
2.2.1. Derivation by integrating over a finite volume. Finite volume methods

for PDE’s are derived by integrating the equation of interest over a finite region of
the solution domain and introducing an average value for the unknown function over
each finite region. Let us exemplify for an elementary PDE, the one-dimensional,
constant-velocity advection equation

qt + uqx = 0 .

Say we wish to determine the solution for (x, t) ∈ [0, 1] × [0, T ] starting from the
initial condition q(x, t = 0) = sin(πx). In a finite volume method we first introduce
a partition of the definition domain into finite volumes V n

i = [xi−1, xi]× [tn−1, tn]
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with xi = ih, h = 1/M , tn = nk, k = T/N . We then integrate the PDE over a
finite volume � tn

tn−1

� xi

xi−1

(qt + uqx) dx dt = 0 ,

and obtain
� xi

xi−1

�
q(x, tn)− q(x, tn−1)

�
dx+

� tn

tn−1
[uq(xi, t)− uq(xi−1, t)] dt = 0 .

An average value for the field variable q over the interval [xi−1, xi] is now introduced
at each time

Qn
i =

1
h

� xi

xi−1

q(x, tn) dx .

Similarily an average value for the flux f(q) = uq is introduced over the time
interval [tn−1, tn] for each xi

Fn−1
i =

1
k

� tn

tn−1
uq(xi, t) dt .

Such averages are known to exist by virtue of the mean value theorem. We obtain
an update formula

Qn
i = Qn−1

i − k

h

�
Fn−1

i − Fn−1
i−1

�
.

At first glance this looks just like a backward in time, backward in space finite
difference approximation. The interpretation is a bit different though; whereas in a
finite difference approximation we would have taken Qn

i to be the value at x = xi,
t = tn in a finite volume method it is understood as the average value at tn over
the cell [xi−1, xi]. This difference is slight though and indeed we shall see that most
finite volume methods have equivalent finite difference formulations.

2.2.2. Weighted residual derivation. We can easily recognize the appropriate
weights and approximation spaces that lead to a finite volume method. Since we’re
using average spatial values over a computational cell the appropriate approxima-
tion space is that of piecewise constant functions

ci(x) =





0 x ≤ xi−1
1 xi−1 < x ≤ xi

0 x > xi

.

The time dependence of q̃ is not specified in the finite volume derivation. We can
assume a linear variation given by (2.3) such that

q̃(x, t) =
M�

i=1

N�

n=0

Qn
i ci(x)ln(t)

is our approximation of q(x, t). The weight functions are unity within a cell and
zero outside

wn
j (x, t) =

1 xi−1 ≤ x ≤ xi and tn−1 ≤ t ≤ tn

0 otherwise

The weighted residual formulation (1.13) becomes
� T

0

� 1

0

L

�
M�

i=1

N�

n=0

Qn
i ci(x)ln(t)

�
wp

j (x, t) dx dt = 0
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with L = ∂t + u∂x. The properties of the weight functions leads to

� tp

tp−1

� xj

xj−1

L

�
M�

i=1

N�

n=0

Qn
i ci(x)ln(t)

�
dx dt = 0 .

We can carry out some of the integrations analytically to obtain

� xj

xj−1

M�

i=1

N�

n=0

Qn
i ci(x)ln(t

p) dx−
� xi

xi−1

M�

i=1

N�

n=0

Qn
i ci(x)ln(t

p−1) dx+

� tp

tp−1

M�

i=1

N�

n=0

uQn
i ci(xj)ln(t) dt−

� tp

tp−1

M�

i=1

N�

n=0

uQn
i ci(xj−1)ln(t) dt = 0

and we can use the identities ci(xj) = δij , ln(tp) = δnp to obtain

� xj

xj−1

M�

i=1

Qp
i ci(x) dx−

� xi

xi−1

M�

i=1

Qp−1
i ci(x) dx+

� tp

tp−1

N�

n=0

uQn
j ln(t) dt−

� tp

tp−1

N�

n=0

uQn
j−1ln(t) dt = 0 .

Another application of the properties of the form functions easily leads to

(2.21) hQp
j − hQp−1

j + kF p−1
j − kF p−1

j−1 = 0

the same formula as was obtained previously. Note that because we have assumed
a certain variation in time of q̃(x, t) we actually can establish a formula for the
time-averaged fluxes

F p−1
j =

u

k

� tp

tp−1

�
Qp−1

j lp−1(t) +Qp
j lp(t)

�
dt(2.22)

=
u

2

�
Qp−1

j +Qp
j

�
.(2.23)

2.3. Finite element methods. Finite element methods have traditionally
been developed directly from the weighted residual formulation. There various ways
in which weights and approximating functions are chosen that shall be studied in
some detail later on. As an initial example let us consider the popular Galerkin
procedure in which the weight functions are chosen identical to the approximating
form functions. A simple example is to build a finite element method to solve the
Poisson equation with Dirichlet boundary conditions

qxx + qyy = 0 on Ω(2.24)

q(Σ) = f on Σ = ∂Ω.(2.25)

Let us assume a simple rectangular domain Ω = [0, 1] × [0, 1] and introduce an
uniform partition [xi−1, xi] × [yj−1, yj ], xi = ih, yj = jh, h = 1/M. There are
many variants of the finite element method. The basic common thread is that a
local approximation valid over a single finite element is used. Consider the so-called
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form functions

N1(ξ, η) =
1
4
(ξ − 1)(η − 1)(2.26)

N2(ξ, η) =
1
4
(ξ − 1)(η + 1)(2.27)

N3(ξ, η) =
1
4
(ξ + 1)(η − 1)(2.28)

N4(ξ, η) =
1
4
(ξ + 1)(η + 1)(2.29)

for −1 ≤ ξ, η ≤ 1 and N1 = N2 = N3 = N4 = 0 otherwise. A local approximation
valid over the element (i, j) which has its lower left corner at (xi, yj) is given by

(2.30) q̃(ξ, η) =
4�

k=1

Q
(i,j)
k Nk(ξ, η)

Here k is the local numbering of the unknowns associated with element (i, j). The
weighted residual formulation leads to
(2.31)

� +1

−1

� +1

−1
L

�
4�

k=1

Q
(i,j)
k Nk(ξ, η)

�
Nk(ξ, η) dξdη = 0, 1 ≤ k ≤ 4, 1 ≤ i, j ≤M .

This leads to a linear system for the unknown values Q(i,j)
k . There intervene var-

ious practical complications involving numbering of unknowns and the fact that
unknowns are based at the nodes and hence shared by more than one element. The
numbering problem is readily solved while the issue of shared unknown values leads
to the process of matrix assembly which shall be studied in detail when we analyze
finite element methods.

2.4. Spectral methods. Up to now we have predominantly used local, poly-
nomial approximating functions. There are good reasons to make such a choice
for very many problems, especially those that contain jumps (discontinuities) in
the unknown function or its derivatives. However if it is known that the function
is smooth other basis functions can be used, for example global basis functions
defined over an entire domain. When these basis functions have a special relation
with the operator of the PDE being solved the resulting method is known as a
spectral method. For instance for the operator

(2.32) L = − d2

dx2

the functions sin(rx), cos(rx) play a special role since they satisfy the eigenfunction
relation

(2.33) L sin(rx) = r2 sin(rx), L cos(rx) = r2 cos(rx) .

Such eigenfunctions have remarkable advantages as basis functions; in a very pre-
cise sense they offer the most compact representation of any given function in the
space which they span. When they are used as basis functions in a numerical
approximation the resulting method is known as a spectral method. Weight func-
tions must also be chosen and there exist various procedures to do this. Again
the Galerkin procedure is widely used in which the basis functions are also used as
weight functions.


