CHAPTER 6

Finite difference methods for hyperbolic equations

1. Scalar equations

1.1. Constant velocity advection in one dimension. The simplest exam-
ple of a hyperbolic equation is the constant velocity advection equation

(11) g +u g, =0

with some initial condition ¢(z,t = 0) = go(x). The equation can be solved along
the entire real axis in x or some portion thereof. In numerical work we always
have a finite subdomain which we shall conveniently choose as [0, 27] with a view
to applying Fourier analysis later on. When using a finite subdomain the ques-
tion of boundary conditions arises which we shall postpone by considering periodic
boundary conditions ¢(x + 27, t) = g(x,t).

1.1.1. Exact solution by characteristics. A first attack on finding the solution
to (1.1) is to try to reduce it to a simpler problem. One can ask whether there is
any subdomain over which the equation can be cast in a simpler form. For instance
we can inquire whether there are any particular curves within the (z,¢) plane over
which the equation simplifies. A general curve I' of curvilinear parameter is given
by

(1.2) I: x=ux(s), t =1t(s)
and the infinitesimal change in ¢ when going along T is

dg Oqdt Oqdx
(1.3) ds ~ otds Owds

Comparing (1.3) with (1.1) we see that if we impose

dt dz
1.4 — =1, — =
(14) ds Y ds
then by (1.1) we must have that
dq
1.5 —=0.
(1.5) Is

This means that ¢ is constant along the curves I' defined by (1.4) which are z =
ut + C. The curves are shown in Fig. (1)

1.1.2. Finite difference methods. We can construct numerical methods for (1.1)
by the same approaches used for the heat equation.

FiGUuRrE 1. Characteristic curves for ¢; + ¢, = 0.
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60 6. FINITE DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS

Semi-discretization. Define a computational grid z; = jh, h = 2rx/(M + 1),
t™ = nk with step size h, k in space and time. Define Q;(t) to be the restriction of
q(z,t) to x = x;

(1.6) Q;(t) =q(z;,t), 7=0,1,...,M+1.

We can choose some approximation of the x derivative. For instance approximating

dq(zj,t) § o Qj+1(t) —Qj-1(t)

(L.7) de th N 2h
leads to the ODE system
(1.8) 2q=-1Bq
with
(1.9) Q=[@ Q@ - Qu]"

0 1 -1

-1 0 1

-1 0 1
(1.10) B= .
-1 0 1
1 -1 0

We can now try various ODE schemes to solve (1.8). Using Euler’s method
would lead to a FTCS scheme

(1.11) Q' =Q - pQ (IB) Q.

If instead of Euler’s scheme we use the midpoint method we obtain the update
formula

(112) Qn+1 Qn 1 _ kBQn

known as the leap-frog or Dufort-Frankel method.

Full discretization. Instead of the semi-discretization or method of lines ap-
proach we can also directly discretize both the space and time derivatives appearing
n (1.1). A first-order forward in time, second-order centered in space discretization
would lead to the FTCS scheme

uk

(1.13) Q@ =Q5 - 5 (Qf — Qfy)
A modification of (1.13) of historical relevance is the Lax-Friedrichs scheme
uk
n+1 n n
(1.14) Q" (Q]+1 + Q1) = 5 (@ — Q1) -

This scheme is obtained by replacing ()7 with its arithmetic average using values to
the left and to the right. Since the formula has not been derived from discretizations
of the derivative which we know to be consistent with the original equation it is
useful to determine the truncation error. The exact advection operator is

o 0
(1.15) D= +us



1. SCALAR EQUATIONS 61

and we have Dg = 0 according to (1.1). Our approximation of this operator is
1

~ w_ G s (@t g) | w
(1.16) Dy, ") = +——2-7 =+ 5 (@ — i)

with ¢} = g(w;,"). The truncation error is therefore

~ 1 1 U
(117) 1} = (D - D) 9(zj,t") = 207 = o (G T 05-1) + 55 (G — 671)
We can now carry out a Taylor’s series expansion around (z;,t"). To simplify
notation ¢ and its derivatives will be understood to be evaluated at (x;,t") if not

explicitly shown otherwise

(1.18)

L1 2 1 h2 h2
s <Q+kqt+2qtt+...> ~ 5% (q+hqz+2qm+...+q—hqx+2qm+--
(1.19)

u h? h3 h? h3
+t5n <q+hqz+2qm+6qm+...—q+hqm—qu+6qm+...>
which gives
(1.20) Ty =qt+ﬁqtt+...—thqwm+...+uqm+L2qmw+...
J 2 2k 12
Using (1.1) leads to the leading order error
3
(1.21) T gqtt + %qg:m:c = O(k, h?)

The analysis shows that the scheme is first order in time and second order in space.
The Lax-Friedrichs scheme is consistent, i.e.
. n_

(1.22) k}}llgo 7 =0.

Instead of centered finite differences, other approximations may be introduced.
A good choice would be to use one-sided finite differences. This would take into
account what we know from the exact solution to the advection equation: infor-
mation travels along the characteristic lines. It would make sense to use finite
differences which have a stencil that mimics this behavior. If u > 0 we would use
left-sided differences and for u < 0 we would use right-sided differences. A first
order approximation would be

k
Q;-’—Zk(@?— ) w0

Q — 5 (@ - @p) w<0

This is known, naturally enough, as the upwind scheme.

Taylor series approach. A procedure useful in deriving higher order finite dif-
ference approximations for (1.1) is the Taylor series approach. In practical work it
is economical to only store two time levels at any given stage in the computation.
The general prescription for attaining higher order for the time derivative would
involve keeping more terms from the operator series

o 1 AZ A3

(1.23) Qi =

)
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This would be incovenient since the time stencil of the scheme would become wider
and we would need to store more than two time levels. We can however use (1.1)
to convert time derivatives into spatial derivatives

(1.25) qr = —Uqy

0 __8 _ 2 B g oy
(1.26) qit = 9 (qt) = ot (uge) = u@x (qt) = u@x (ugz) = U Qaa

The Taylor series approach can now be applied to obtain as high an order of ap-
proximation in time as needed

2 k3
(1.27) q(t +k) ZQ+th+?Qtt+KQttt+~-~ .
As an example, let us construct a second order scheme by truncating

2

k
(1.28) q(t+k) %q—kkqt—k?qtt

We now replace the time derivatives with spatial derivative

u?k?
and use second order accurate, centered finite differences to approximate the spatial

derivatives. The resulting scheme is

n+1 n Uk n n U2k2 n n n
(1.30) QT =Qf — 55 (QFn — Q1) + 557 (QFn — 207 + Q)

This is known as the Lax- Wendroff scheme.

Instead of centered finite differences we might want to use one-sided formulas
to take into account the direction of the characteristics of (1.1). Let us construct a
second order accurate one sided approximation using (??). One-sided differences
can be obtained to arbitrary order of accuracy using the series

9 1 Az, AL
(1.31) &c_h@“— S —)
1 A? A3
1.32 =— | A,_ L- I— ..
(1.32) h( -t 3 )

with the finite difference operators defined by

(1.33) A:r+q(xvt)
(1.34) Ay_q(z,t)

= Q(x + hvt) - q(xvt)
= Q(x7t) - Q(m — h,t)

Let us assume that v > 0 and therefore that we will be using backward differences
so that the computational stencil mimics the true domain of dependence. A second
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order accurate approximation of ¢, is given by

(1.35)
qw(xﬁt ) = %(mj’t ) = E (Aaz— + 9 )q(xj)t )
1 n n 1 n n n
(1.36) =7 |:q($j7t ) —q(xj_1,t") + B (q(xj, t") — 2q(xj—1,1") + q(xj_2,1"))
1 n n 1 n n n
(1.37) = h {Q; — Wi+ 5 (Q] - 2Q3>1 + Qj2):|
1 n n n
(1.38) =5 (3Q7 —4Q}_, +Q}_,)
The second derivative is obtained from
(1.39)
? 0090 1 A Az A3 1 A A2 A3
022 owor h\" Tt T3 T )\ Bt Py
(1.40)

1 9 3 11 5
= 3 <Aw +A,_+ 12Ax>
Note that in (??) we have neglected terms of O(k?). The exact solution of the
advection equation is g(z,t) = go(x —ut). The x —ut argument sugests that similar
step sizes should be used for x and ¢. This will be confirmed by our stability analysis
below. So let us assume that &k = O(h). Since ¢, already has a k? factor in (?7?)
we only need an O(h) approximation of ¢,,. The leading order error term from
k2qu, will then be of O(k%h) = O(k3) = O(h®). We can therefore truncate the
series (1.40) to just the first term and approximate

8%q

(1.41) D2 (zj,t") = ﬁAiJJ(%‘at )= 72 la(z;,1") — 2q(zj-1,t") + q(zj—2,1")]
1 n n n
(1.42) = ) (QF —2Q7_, +QF,)

Note that this is different from the procedure used in deriving the Lax-Wendroff
scheme where a second order accurate expression of ¢,, was used. The reason is
that in the Lax-Wendroff scheme the computational stencil already included Q7_;,

7, Q74 from the approximation of the first derivative g,. Since the second order
accurate approximation of g, does not widen the stencil there is no penalty in using
the more accurate, second order approximation of ¢,,. In the one-sided scheme we
are deriving here however, using a second order accurate approximation of ¢
would involve widening the computational stencil to include Q?_g. This increases
the arithmetic cost of applying the formula without noticeable gain so we choose
to use an O(h) approximation of ¢,,. Combining the above results we obtain

uk

k 1 2
(1L43) Q1 = @~ (50 ~ Q5 + Q)+ () (@) 2011+ @)

for u > 0, which is known as the Beam-Warming scheme.

1.1.3. Stability analysis. We now turn to the analysis of the stability of the
various schemes introduced above. The analysis can be done using the techniques
for systems of ODE’s or using Von Neumann analysis. We shall carry out both
procedures.
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Semi-discretized system. The matrix B arising in the semi-discretized approach
is skew-symmetric and will have purely imaginary eigenvalues. We can check this
by explicitly calculating the eigenvalues. As usual, we guess that

(144) Wp — [ eiph einh . eipjh . eith ]

will be an eigenvector since B discretizes a derivation operator. Computing the 5"
component of BW, we get

(1.45) (BW,); = ePUtDh _ opG=Dh — 9jgin ph P = 2isin ph (Wp);

so the eigenvalue associated with W, is
(1.46) Ap = 2isinph

and is indeed purely imaginary.
To establish the stability region for the FTCS method (?7) we use the eigen-
values A of B in the criterion

(1.47) 1+z<1

with z = kA. It is immediately apparent that the scheme will be unconditionally
unstable because A is purely imaginary A = ai so

(1.48) 1+2z| =14 (ka)®>>1

for all a > 0.
The interval of stability for the midpoint scheme is Re z = 0, [Im(z)| < 1. Here
we would have

k
(1.49) 2= —%isinph
and the method is stable for
uk
1.50 — | <1
(1.50) k) <

Von Neumann analysis. Obtaining analytical expression for the matrices arising
from the semi-discretized approach becomes increasingly difficult as we use more
accurate approximations of the derivatives in the PDE or study PDE’s more com-
plex than the advection equation. Von Neumann analysis is typically simpler to
apply. We start by determing the stability region for the FTCS scheme (1.13).
Substituting a typical wavemode Q" = Q"e’fj h we obtain

uk (Qneig(g‘ﬂ)h _ Qneig(jq)h) '

151 An+1 icjh _ An ,itjh _ WY
(51 QrteEt = gt - O

The amplification ratio is

An+1 k

(1.52) =9 1 Gnen
Q" h

which is always greater than 1

(1.53) Gl >1.

Thus the scheme is unconditionally unstable as we expected from the semi-discretized
stability analysis done above.
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For the Lax-Friedrichs scheme we obtain
(1.54)

Ortigicin — 1 (Qneif(jﬂ)h n Qneié(j—l)h) _ uk (Qneif(jﬂ)h _ Q"eié(j—l)h)
2 2h
and the amplification factor is

(1.55) G = cos&h — u—:isinéh

Let us introduce the notation

(1.56) V= 0==¢h.

The stability condition is that

(1.57) |G| = cos? 6 + v?sin? 0 < 1 = cos? § + sin” 0
from where we obtain

(1.58) (1* —1)sin*0 <0 .

The inequality is satisfied for

(1.59) v <1.

The quantity v that appears repeatedly in analysis of numerical schemes for the
advection equation is known as the Courant-Friedrichs-Lewy number or more con-
cisely as the CFL number. We say that the Lax-Friedrichs scheme is stable for CFL
numbers up to 1, it being implicitly understood that we’re considering the absolute
value of the velocity |u|. From the stability criterion we obtain a bound on the time
step that we can use in the Lax-Friedrichs scheme

h
(1.60) k< — .
Jul

For the Lax-Wendroff scheme the amplification ratio is

(1.61) G =1—visinf+v?(cosf — 1)

We have

(1.62) 1G] =14 202 (cos @ — 1) + v* (cosf — 1)° + 2 sin? 0
(1.63) =1— 41%sin? g (1 — cos? Z) + 4% sin? g

The stability condition is |G| < 1 leads to

(1.64) (V¥ —1)sin®> = <0

N D

so again the domain of stability is
(1.65) v <1.

Lax-Wendroff is a more efficient scheme than Lax-Friedrichs since we obtain O(h?, k?)
precision as opposed to O(h, k?) under the same time step restriction k < h/ |ul.
Turning now to the one-sided schemes, for upwind when u > 0 we have

(1.66) G=1-v(l-e")

(1.67) |Gl =1 —2v (1 —cosf) + v? (1 — cos 0)® + v*sin? 0
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FIGURE 2. Amplification factor |G(v,0)| for the Beam-Warming
scheme evaluated at 6 = mn/8, m =0,1,...16.

The stability condition |G| < 1 leads to

(1.68) —2v (1 — cos ) + 1% (1 — cos0)® + 12 sin? 0 < 0
which can be rewritten in terms of the half-angle 6/2 to give
0 0 0 0
) 2 4 2 a2 2
, - Z Z Zcos? 2 <
(1.69) 4vsin 2+41/ sin 2+4V sin” 5 cos” 5 <0
and finally
(1.70) vir—1)<0

so the stability region is again v < 1.

For the Beam-Warming scheme we have
(1.71) G=1- g (3—de " +e77) + %1/2 (1—2e % 4727
Notice that as we look at more complicated schemes the amplification factors be-
come increasingly difficult to evaluate analytically. We can however use a numerical
evaluation of G(v,0) to generate plots such as Fig. 2. From the plot we deduce
that the stability region is v < 2.

1.1.4. Lazx equivalence theorem. The importance of establishing consistency and
stability for a finite difference scheme for the advection equation is that these two
properties guarantee convergence by the Lax equivalence theorem.

THEOREM 4. A finite difference scheme for a linear PDE is convergent if the
scheme is consistent with the PDE and it is stable.

Convergence means that

(1.72) Jm Q= gz ;1)
where k,h go to zero in accordance with the stability criterion for the scheme.
Convergence is obtained when the scheme is consistent, i.e. the truncation error
goes to zero

. n_
(1.73) k’lllzrgo =0
and the step sizes satisfy the stability criterion.

1.1.5. Modified equations. We have established a number of methods for solv-
ing the advection equation (1.1). Up to now we have characterized the error of any
one scheme by its truncation error. Though indicative of the overall quality of an
approximation, the precise nature of the error in the scheme is not apparent. It
has proved very fruitful in the development of better methods to more accurately
describe how a numerical approximation differs from the exact solution. A ques-
tion one can ask is whether a given numerical scheme is perhaps a more accurate
discretization of another PDE than the one it was originally designed for. Let us
exemplify using the upwind scheme for the advection equation with u > 0

(1.74) Q=@ —v(Q}-Q}y) .



1. SCALAR EQUATIONS 67

We know that this scheme is O(k, h) accurate for the equation ¢;+ug, = 0. Suppose
that the scheme is an exact discretization of some unknown PDE Ls = 0 with L
an unknown differential operator and s = s(x,t). Then we would have

(1.75) s(x,t+ k) =s(z,t) —vis(z,t) —s(x — h,t)] ,
exactly. Let us carry out Taylor series expansion of s around (z,t)
k2 k3 uk h? h3
(1.76) s+ kst + 5 St + Fsm +...=5— e hsy — 5 S + Fsm,; —

To obtain a more concise notation the function arguments have been dropped. We
obtain

2 2
(1.77) St +usy = —§stt+%hsm — %sttt— %smgﬂ—...
This is of the form As = FE(;, ;)s with A the advection operator A = 0; + ud, and
E(,1y an operator giving the deviation of the modified equation from the advection
equation. Note that if £ = h = 0 we obtain the advection equation for which
the scheme (1.74) is O(h, k) accurate. We can interpret (1.77) as stating that the
scheme (1.74) is:

(1) first order accurate for

(1.78) St +usy =0
(2) second order accurate for
h
(1.79 St +us, = —58”—%—%8“
(3) third order accurate for
uh k> uh?
(180) St +USy = *551515 + 7sz — Fsm — Tszm

The equations obtained above are called modified equations. These statements
can be verfied by explicit computation of the truncation error. For example let us
compute the truncation error in applying (1.74) to (?7)

(1.81) ™= (D—D)s(xj,tn)
The finite difference approximation operator is
n+1 n
~ n S — S u n n
(1.82) Ds(zj,t") = % ty (5 = s5-1)

The exact operator for the modified equation (??) is

7] o ko* wuh 9
(1.83) D—&+u%+§ﬁ—7@
and we have Ds = 0. We now expand s?“, sy, sy from (1.82) around (z;,t")
and obtain
(1.84)
n 1 k2 u h? h3
T = z <5+kst+2stt+...> f%erﬁ <ss+hsw25m+65xm+...)

k h
(1.85) 7' = s+ 55t + use + %sm + O(k?* h?) = Ds + O(k*,h?) = O(k?, h?)



68 6. FINITE DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS

so the truncation error is indeed of second order.

Now let us show the benefits of looking at the modified equation by using (?7?)
for which the upwind scheme (1.77) is second order accurate. First we recast (?7?)
so as to eliminate higher order derivatives in time. We can rewrite (??) as

uh
(1.86) St = —USy — 55t + 5 Saw
and differentiate with respect to ¢ to obtain
uh
(1.87) Stt = ~USqt — St + — Sawt
Replacing (1.87) in (?7) gives
k k uh uh
(188) St + USy = _5 (_uszt - §3ttt + 28mxt> + 73w$
k h
(1.89) = - Sut + - Sax + O(K, 2, kh)

We can neglect the higher order terms since this is consistent with the order of
accuracy used in obtaining (?7?). Differentiating (??) with respect to x yields

h
(190) Stx = —USgx — §5ttx + %Swww
and replacing this in (?7?) gives
u?k uh uh
(1.91) St +usy = 7733” + 753“ =5 (1—v)8zs

Equation (1.91) is the usual way to express the modified equation for the upwind
scheme applied to the advection equation to second order. It shows that the upwind
scheme does indeed model the advection equation in the limit h — 0. For finite
step sizes however the upwind scheme more accurately models the equation (1.91).
The difference between (1.91) and the advection equation is the term

(1.92) %h (1—v)$zs

Note that this is a diffusive term whose effect is to smooth out any variations
in s(z,t) as long as |1 — v| > 0 as has been seen in the study of the heat equation.
The condition |1 — v| > 0 is exactly the stability criterion for the upwind scheme.
Indeed if v > 1 then we would obtain a negative diffusion coeflicient for which
the initial value problem is ill-defined. We can see that at exactly ¥ = 1 there
is no diffusion indicating that for v = 1 the upwind scheme achieves higher order
accuracy for the advection equation. When v < 1 the error in the upwind scheme
with respect to the true solution ¢(z,t) of the advection equation will be diffusive:
gradients will be smoothed out instead of being simply advected.

Now that we have seen the nature of the error introduced by the upwind scheme
applied to the advection equation, we can also use this information to derive better
schemes. Since the error is known to be given by (1.92) we can change the upwind
scheme

(199 Q= Q) - v (@) - Q)
to counteract the known error by including a discretization of (1.92)
uh T —2Q7 + Q74

(1L99) Q=@ v (Q - Q) kY (1-) -
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Working this through leads to the scheme

2
(1.95) Q= QF = 5 Qi — Qo) + 5 (@ — 207 +Q))

Thus we have obtained the Lax-Wendroff scheme (1.30) via another route.

The procedure can be continued to higher orders. We can now ask what is the
modified equation more accurately described by the Lax-Wendroff scheme. Repeat-
ing the same procedures as above we first write
(1.96)

2

s(z, t+k) = s(x, t)—% [s(z + h,t) — s(z — h, t)]—i—% [s(z + ht) — 2s(2,t) + s(z — h, )]

and then carry out Taylor series expansions around (z,t) to obtain

k2 3 uk h?
(197) 5+k5t+?3tt+gsttt+-~- =S — % |:2h8w+3sa;mw+:| +
u?k? h?
(1.98) 2N { ST ]
from where
k k2 h?
1.99 St uSy = —— (St — U Spy) — — St — u—smw +O(k3, h3
2 6 6

Note the appearance of the O(k) term. Had we carried out the Taylor expansion
for the advection equation this term would have been proportional to ¢;; — u2gae
which is zero according to (1.26). Here we cannot assume that sy — u? Sy 1S ZEro
a priori. We must carry the term in the ensuing computations, expecting that it
will give a higher order correction. Let us neglect the O(k3, k%) contributions and
proceed with our technique of replacing higher order time derivatives with spatial
derivatives using

k
(1.100) su = s = 5 (Sur = U sem)

(1.101) Sttt = —USgtt-

Higher order terms have been dropped since they would lead to O(k3, h%) contri-

butions in (1.99). Our intermediate result is
k k> uh?
(1.102) 8¢ +usy = =5 | —usp — 5 (Sur = Wspae) = Wspn | + FUSar = === Szza

and we continue by eliminating mixed derivatives. In the above formula we wish
to express Sy in terms of x derivatives to O(1)

(1.103) Sptt = Stte = (St)1p = (—US2)te = =0 (5¢),, = U Sprn -

We also need to express s;¢ in terms of = derivatives to O(k, h)

(1104) St = Sta = —USga — 5 (Stt:c - UQSzzz)

and sy4t, Sz0¢ to O(1)

3
(1105) Sttt = —U Sgpxx, Szat = —USgex -
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Replacing in (1.102) leads to

(1.106)
k
st+usz = -3 —U | —USgx — 5 (stta: - u2szzz) - U2szz S (_ugsxmx + usszx:r) +g (k2u2 - h2) Szax
2 2 2 6
which simplifies to
k? 2 U2 2 2
(1.107) St +usy = R (sttch —u sxm) + s (k: u® —h ) Sy

Since 8¢y = U282, to O(1) we obtain in final

h2
(1.108) St + usy = —% (1= %) Saa0 -

The third order derivative now obtained shows that the Lax-Wendroff scheme intro-
duces a dispersive error with different wave numbers traveling at different speeds.
As expected, the dispersive error is proportional to h? since the Lax-Wendroff
scheme is second order. A scheme more accurate than Lax-Wendroff could be ob-
tained by adding a correction term modeling the dispersive error. Since this involves
a third-order derivative the stencil of the scheme would become wider by at least
one unit thereby entailing more computational work.

1.2. Non-linear scalar equations. We have introduced a number of finite
difference methods for the simple constant-velocity advection equation (1.1). Of
course, there is hardly much need for a numerical method in order to solve (1.1).
Rather we have used (1.1) as a model problem to study the properties of numerical
schemes on a simple case. We now proceed to consider more complicated problems
and investigate how the methods already derived apply to these problems.

A general first order, hyperbolic scalar equation is given by

(1.109) g +u(z,t,9)g: = o(x,t,q)

where u may be interpretred as local advection velocity that depends in general
upon z,t and ¢. In a wide range of problems equations of the form

(1.110) @+ f(@)e = o(2,t,q)
arise where f is known as the fluzx function. If f is differentiable we can write
(1.111) @+ fodz = o(2,t,q)

so fq plays the role of the local advection velocity. Generally u, f depend on ¢
so that the equations become non-linear in ¢q. Equation (1.110) is said to be in
conservative form as opposed to (1.109) which is said to be in non-conservative
form. Generally we say that a PDE is in conservative form when it can be expressed
as the space-time divergence of a vector field. For equation (1.110) the vector field
would be (g, f(q)) and the space-time divergence is V(; ;)- = (0, d:)- so another
way of writing (1.110) is

(1.112) Vit - (6, (@) = 0.

An initial value problem is defined by specifying a solution domain along x and an
initial condition go(x).
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FIGURE 3. Characteristic curves for ¢; + e“*'q, = —fq .

1.2.1. Solution by characteristics. We can solve (1.109) using the method of
characteristics. We again ask whether there are any special curves I' within the
(x,t) plane on which (1.109) reduces to a simpler form. Along the curves specified
by the differential system

dt_l dx

1.11 — =1, == t
(1113) L =1, ¥ e tg)
we do indeed obtain the simpler form
dq
1.114 et
(1.114) =0

The essential difference with respect to the constant-velocity case is that the curves
are no longer simple straight lines but depend on z,t and q. Let us consider some
examples in order to see the complications involved.

Variable-velocity advection. Consider the equation

(1.115) @ +u(z,t)gy =0

which describes the advection of the unknown field variable ¢ by an imposed velocity
field w(z,t). The velocity field is not influenced by ¢ itself; ¢ is said to be a passive

tracer. The characteristic curves are given by the ODE
dx
1.116 — =u(z,?) .
(1.116) = uat)
Note that we are no longer guaranteed that the characteristics exist for all times
as they did for the constant-velocity advection equation. This is the case only if u
is uniformly Lipschitz.

ExXAMPLE 7. Consider the velocity field
(1.117) u(z,t) =z +t,
the initial condition
(1.118) qo(z) = sinz,
and the source term
(1.119) o=-0q.
The characteristic curves are
(1.120) z(t)=Ce' —t—1
which are shown in Fig. (8). At t = 0 the characteristic labeled by C passes

through the x coordinate xg = C —1. Along each characteristic the variable-velocity
advection equation reduces to the ODE

dq
E = —fq

which has the solution q(x,t) = Ae™Pt. We have to determine the constant A from
the initial conditions. Through any given point (x,t) there passes the characteristic
curve labeled by C = e~ '(x+t+1). This particular characteristic curve will intersect

(1.121)
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FIGURE 4. Solution of ¢; + (¢ +1t)q, = —f0q, q(x,t = 0) = sinz for
B=01att=0,02...1.

FIGURE 5. Crossing characteristics for inviscid Burgers equation
with initial condition go(x) = sinz (shown in thick line).

the x-axis at xo = C'—1 and this is the position from which we must take the initial
value for q
(1.122)  q(z,t) =qoe x4+ t+1) —1De P =sin(fe Hx+t+1) —1)e Pt .

We have found the solution to the PDE using the simpler expression of the PDE
along the characteristics. The solution can be verified by direct substitution in
(1.115) and is depicted in Fig. (4). The initial condition is spread out due to the
spreading out of the characteristic curves and attenuated due to the source term o.

Burgers equation. A model equation used extensively in the study of non-linear
equations is

(1.123) q +qq. =0

known as the inviscid Burgers equation. It is given in non-conservative form above.
In conservative form it becomes

¢

(1.124) g + (2) =0
so the flux function is
(1.125) flay=d¢/2.
The characteristic curves are given by

dx
1.126 = = t
(1126) = g()

and along a characteristic curve I' equation (1.123) reduces to

(1.127) (;lz)r =0,

i.e. there is no variation in g along the characteristic. This implies that the slope of
each characteristic curve is constant and specified by the initial condition g(x,t =
0) = qo(z).

The type of difficulties that arise for non-linear equations is immediately ap-
parent from the consideration of simple initial conditions. Consider go(z) = sinz.
The characteristics are sketched in Fig. 5. The problem is that the characteristic
curves cross one another. At such a crossing point it is not apparent what the
correct value of ¢ should be since different values are being transported along each
of the crossing characteristics.
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To get a better idea of what is happening it is useful to simplify the initial
condition as much as possible. This leads to the so-called Riemann problem

(1.128) (o) = {

Let us try to solve Burgers equation for this initial condition.

If g, > g, characteristics from x < 0 will overtake those from = > 0. This will
occur on some ray from the origin of equation x = st. To the left of this separating
ray we will observe the value ¢; while to the right we will observe the value ¢,.. The
solution is therefore

. q xT<st
(1.129) q(z,t) = { o x> st

q <0
q x>0

The initial discontinuity propagates at a velocity s. The discontinuity is called a
shock using the language of compressible gas dynamics and s is the shock velocity.
The shock velocity can be determined by using the integrating Burgers equation
over a domain having the shock as its diagonal [stq, sta] X [t1, t2]

(1.130) / t / e+ f(g)a) dida =0

ty
from where
flar) — flar)
ar —q '
If ¢ < g, two solutions are possible. We can again have the shock solution
(1.129) but also the solution

(1.131) 5=

q r<qt
(1.132) gz, t) =< z/t qt<z<gt
qr x> qrt

called a rarefaction solution, again using terms from gas dynamics. This an even
worse conundrum, not only can discontinuities arise which invalidate the differen-
tiation operations but multiple solutions seem to be possible. Clearly something is
wrong and a way to correct the model that led to equation (??) must be found.
From the physical point of view certain effects have been neglected, namely the
viscosity of the fluid and we might be led to studying the viscous Burgers equation

(1.133) 4t + Qe = Vaa

as a remedy to the difficulties encountered. This can be done and leads to smooth
solutions with very large gradients in the regions where shocks would have formed
for the inviscid Burgers equation. These large gradients are difficult to resolve
properly requiring very fine grids, much finer than needed elsewhere in the solution
domain. So a way that enables us to still work with the inviscid equation is quite
useful.

1.2.2. Weak solutions. The possibility of crossing characteristic curves is in-
dicative with a breakdown of the modeling assumptions that led to a certain hy-
perbolic PDE. In this situation one must revisit the method by which a certain
PDE is derived and consider the validity of all intermediate hypotheses used in the
derivation. Burgers equation serves as a useful example. The PDE

(1.134) g+ f(@)z =0
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with f = ¢?/2 was proposed as a model for fluid flow in which the quantity ¢ is
conserved but being advected by itself. The correct formulation of a conservation
principle is through the integral statement

(1.135) / P g ta) — ()] dr = / el t) — fla(en, 1)) de

1 t1

the one-dimensional expression of (1.10). In this form one can replace

(1.136) ofo.t) = o) = [ 5wt
(1.137) flatea0) = Flateort) = [ SLas

and obtain Burgers equation by going to the limits to — t1, xo — x7 if the deriva-
tives 0q/0t, Of /Ox exist. However one cannot do this if ¢ is discontinuous. In this
case only the integral form (1.135) is valid.

Nonetheless it is typically much more convenient to work with differential equa-
tions instead of integral equations. Therefore it is useful to extend the meaning we
associate to “q is a solution of a PDE” to cover the case where ¢ might be dis-
continuous at a few points. This is done through the techniques of the theory of
distributions by requiring that ¢ satisfy a certain integral condition. Namely we
consider the integral

oo —+oo
(1.138) =[] el sl dnar

with ¢ a smooth function of finite support and impose I = 0. Typically we require
that ¢ be at least differentiable. We can integrate by parts to obtain

oo —+oo —+oo
(1.139) [ ] ea+os@dsa=- [ o 0e.0)ds
0 —o0 —o00
By this technique all differentiation operations on g have been removed. We say
that ¢ is a weak solution of (1.134) if (2.28) is satisfied for all ¢ from some space of
test functions such as ¢ € C! (R x R).

1.2.3. Difficulties of finite difference methods for non-linear hyperbolic equa-
tions. The possibility of shocks for non-linear hyperbolic equations should alert us
to possible difficulties with the finite difference methods we have introduced for
the linear advection equation. Since these are based upon Taylor series expansions
of g(x,t) and ¢ can be discontinuous, the expansions will break down and not be
valid near the discontinuities. Nevertheless, we would expect the methods to be
adequate in regions where ¢ is smooth.

Let us see how we would apply the methods to a non-linear equation, taking
Burgers equation as an example. One possibility is to interpret ¢ as the local
advection velocity . The upwind method for

(1.140) g +qq; =0
then becomes

Qn(@n_ nﬁ) ifQ» >0
1.141 QU =qQn — { ERS A vt
- ! 71 Q7 (@ —@)) Q<0
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and the Lax-Wendroff methods reads

nk n)? 2
R L oy ST A KL e B I
Applying this for a Riemann problem leads to a numerical solution similar to
the exact shock solution but with oscillations near the shock (Fig. 1.2.3). There is
also a smearing of the shock, instead of sharp discontinuity we have a smoothing of ¢
in the vicinity of the shock. Far from the shock the numerical solution is quite good
however. This therefore leads to the search for so-called high-resolution algorithms
that are able to preserve a high order of accuracy away from discontinuities and
also sharply capture discontinuities.

2. Systems of hyperbolic equations

2.1. Linear systems.
2.1.1. Classification of linear systems. Consider now that we are interested in
the simultaneous time evolution of a number of quantities

T
(2.1) a=[a @ .. @]
that satisfy

with A a constant m X m matrix of real numbers. Such a system is said to be
hyperbolic if the eigenvectors of A form a basis for real m-vectors.

EXAMPLE 8. The second order wave equation is given in canonical form as

(2.3) Gt — Caa = 0.
It can be reduced to a system of two first-order equations by introducing
(2.4) U=, V=g
We have
(2.5) Uy — vy, =0
and since ¢z = Py
(2.6) v —ug =0
In vector form we obtain
0 -] 0
e alo]e 5T El] -
or
(2.8) qt +Agz =0
with

i) 7]

The eigenvalues of A are A1 2 = £c and the eigenvectors are

(2.10) n“},rg{_lc]



76 6. FINITE DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS

The eigenvectors are independent for ¢ # 0 and therefore they form a basis for the
space of real 2-vectors. The system (2.8) is hyperbolic.

EXAMPLE 9. Applying the same procedure to the Laplace equation

leads to the matrix

(2.12) A= { O ]

whose eigenvalues are A1 2 = £t and eigenvectors are

)15

These have complex values and are not a basis for real 2-vectors. The system (2.12)
is not hyperbolic, it is elliptic.

2.1.2. Solution by method of characteristics and reduction to diagonal form.
For hyperbolic systems we can apply a procedure similar to that used for systems
of ODE’s. We can write

(2.14) A =TAT™

with

(2.15) A =diag{ri, e, ..., A}
(2.16) T=[rry -
(2.17) Arj =N, j=1,2,...,m.
and write

(2.18) g+ TAT ¢, =0.
Introducing the notation

(2.19) w="T"q

we obtain

(2.20) wy + Aw, = 0.

Since A is a diagonal matrix, the equations of the original system have been de-
coupled and we can write the scalar j*"component equation

(2.21) wt(j) + )\jw;j) =0,

for j =1,2,...,m. These are now simple constant-velocity advection equations for
which we know the solution

(2.22) w (z,t) = wi (z — A\jt)

with w(()j ) given by the initial conditions on ¢
(2.23) wo =T g .

The value of each individual component of w() is constant along the family of
characteristics * — A;t = C;. Therefore w are known as the conservative variables.
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From a knowledge of the conservative variable solution we can recover the solution
for the original variables

(2.24) g=Tw.

2.1.3. Finite difference methods. The finite difference methods derived for the
constant-velocity advection equation can be applied formally to hyperbolic systems
also. For example, the Lax-Wendroff scheme is

2.95 n+1l __ n k A n n kz A2 n 20 n

(2.25) o _Qj_% (j+1_ jq)*’ﬁ (j+1_ Qj"_ijl)
There are some new features though due to the fact that there is no longer just a
single “advection” or characteristic velocity. Let us try to apply the upwind method
to the system (2.8). It is not apparent what the upwind direction should be for
q. We can ascertain this for the conservative variables though. We have \; = —c,
)\2 = C,

(2.26) m“},rl{_lc]

1 1
N 1 5 5 | —c 0
U O el A I P
and the conservative variable system is
a [ w — 0] 0 [ w®
(2.28) m[w(z)]+[0 C}ax{w@)}o
This system can be discretized in an upwind manner and we obtain the scheme
O\ 2 (oY L ()t ()"
20y (W)= (W) e () - (),
(2.30) (W@)”+1 = (we)" - ck (W)~ (we)"
‘ j i h j -1
In matrix form this reads
(2.31) Wit = (1—v) W'+ CW;" | + DW}',,
with
ck 0 0 v 0
o1 sethon ]9 0] ne [ 0]

Multiplying by T leads to
(2.33) Q= (1-v)Q} +TCT™'Q}_, + TDT'Q},

v 1 —c c
1

(2.34) TCT =2 l 1 v

, TDT ' = -
2| —= 1 2
Cc

Q=

This is the upwind scheme for the system (2.8).

2.2. Non-linear systems.
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2.2.1. Classification. Non-linear systems are written as

(2.35) g+ f(@)z =0
with
(2.36) a=[a @ - Gm ]T7f=[f1 L2 oo Im ]T

The classification of non-linear systems is made in accordance with the properties
of the Jacobian of f with respect to ¢

91 0Ogo o
(2.37) fo=| 90 O m
L 8q1 8(]2 8qm _

If the eigenvectors of f, form a basis for g-vectors the system is said to be hyperbolic,
otherwise it is elliptic or parabolic. Note that in this case the eigenvectors typically
depend on the variables ¢ themselves so that the same system of equations may
be hyperbolic in some regions and elliptic in others. The classification of PDE’s as
hyperbolic, parabolic and elliptic may be more familiar from the classification of
second order equations. Let us show the equivalence of the two usages.

The canonical elliptic second order PDE is the Laplace equation

We reduce it to a system of first-order PDE’s by introducing v = ¢¢, v = ¢,. The
Laplace equation states u; + v, = 0 and we also have u, = v; by the equality of
mixed derivatives. These two relations can be written in matrix form as

(239) qt + qu =0

(2.40) q:[H’A:[O1H:O

The matrix A has the eigenvalues A\ 2 = %4 and eigenvectors 71 o = [ +7 1 } .
The eigenvectors 712 do not form a basis for two-component real vectors such as
q so the system is classified as elliptic in accord with the second-order Laplace
equation’s classification.

The canonic hyperbolic second order PDE is the wave equation

(241) ¢tt — Pz =0 .

Following the same procedure we arrive at the study of the eigensystem of
0o -1

(2.42) B= [ 1 0 ]

which is given by A2 = £1, ri2 = [ +1 1 ] The eigenvectors now do form a
basis for two-component real vectors and the system is classified as hyperbolic as
expected from the wave equation.

Finally, the typical parabolic equation is

(2.43) Gw = Put
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for which we denote u = ¢; to obtain

(2.44) q+Cq, =0
with
(2.45) q:[i},(}z[gg},az{g}.

The eigensystem of C is A\j2 =0, r1 = [ 0 1 ], re = [ 0 0 } which does not
form a basis for two-component real vectors. Note that in this case the rank of C is
less than the dimension of the system; this is characteristic of parabolic equations.

2.2.2. Solution by characteristics. Let A be the Jacobian matrix for a non-
linear hyperbolic system

(2.46) ¢+ A(q)q =0,

with ¢ a vector with m components. By the definition of a hyperbolic system we
know that A can be represented as

(2.47) A=TAT'.

The difference with respect to the linear system case is that the matrices T, A
are no longer constant but depend on ¢ and hence on (z,t). Nevertheless, we
can follow the same procedure of reduction to characteristic form locally for some
neighborhood of a point (g, tg) where g(x,t) = go. We can write

(2.48) 4(z,t) = qo + (2, 1)

where ¢ is the perturbation from the value gg. System (2.46) can now be written
(2.49) Gt + Aoy =0,

from where we obtain

(2.50) Wy + Ao, =0

with the perturbation characteristic variables given by

(2.51) =T 14 .

The characteristic system (2.50) leads to the ODE’s

(2.52) d;”s(:) =0i=1,...,m.

where d/ds; indicates the derivative along the i*" characteristic direction whose
slope is given by the \g; eigenvalue of Ag

d 0 0

ds, ot o

A solution to (2.46) can be found by locally solving the ODE’s (2.52). This is the
method of characteristics for non-linear hyperbolic systems.

(2.53)




