Chapter 1
TWO-DIMENSIONAL LAPLACE’S EQUATION

1.1 Introduction

Perhaps a good starting point for introducing boundary element methods is through
solving boundary value problems governed by the two-dimensional Laplace’s equation
2 2
o9 + o¢ =0. (1.1)
0x2 = Oy?

The Laplace’s equation occurs in the formulation of problems in many diverse
fields of studies in engineering and physical sciences, such as thermostatics, elasto-
statics, electrostatics, magnetostatics, ideal fluid flow and flow in porous media.

An interior boundary value problem which is of practical interest requires
solving Eq. (1.1) in the two-dimensional region R (on the Ozxy plane) bounded by a
simple closed curve C' subject to the boundary conditions

(b = fl(xay) for ('I7y) € Cl,
0
2 = o) for (1,9) €C; (1.2
n
where f1 and f> are suitably prescribed functions and C7 and C; are non-intersecting
curves such that C1 U C, = C. Refer to Figure 1.1 for a geometrical sketch of the

problem.
The normal derivative d¢/0n in Eq. (1.2) is defined by

op _  0¢ ¢

where n, and n, are respectively the  and y components of a unit normal vector to
the curve C. Here the unit normal vector [n,n,] on C is taken to be pointing away
from the region R. Note that the normal vector may vary from point to point on C'.
Thus, [n,,n,| is a function of = and y.

The boundary conditions given in Eq. (1.2) are assumed to be properly posed
so that the boundary value problem has a unique solution, that is, it is assumed that
one can always find a function ¢(z,y) satisfying Eqgs. (1.1)-(1.2) and that there is
only one such function.
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2 Two—dimensional Laplace’s Equation
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Figure 1.1

For a particular example of practical situations involving the boundary value
problem above, one may mention the classical heat conduction problem where ¢
denotes the steady-state temperature in an isotropic solid. Eq. (1.1) is then the
temperature governing equation derived, under certain assumptions, from the law of
conservation of heat energy together with the Fourier’s heat flux model. The heat
flux out of the region R across the boundary C'is given by —k0¢/0n, where k is the
thermal heat conductivity of the solid. Thus, the boundary conditions in Eq. (1.2)
imply that at each and every given point on C' either the temperature or the heat
flux (but not both) is known. To determine the temperature field in the solid, one
has to solve Eq. (1.1) in R to find the solution that satisfies the prescribed boundary
conditions on C.

In general, it is difficult (if not impossible) to solve exactly the boundary
value problem defined by Egs. (1.1)-(1.2). The mathematical complexity involved
depends on the geometrical shape of the region R and the boundary conditions given
in Eq. (1.2). Exact solutions can only be found for relatively simple geometries of
R (such as a square region) together with particular boundary conditions. For more
complicated geometries or general boundary conditions, one may have to resort to
numerical (approximate) techniques for solving Eqs. (1.1)-(1.2).

This chapter introduces a boundary element method for the numerical solution
of the interior boundary value problem defined by Eqgs. (1.1)-(1.2). We show how
a boundary integral solution can be derived for Eq. (1.1) and applied to obtain a
simple boundary element procedure for approximately solving the boundary value
problem under consideration. The implementation of the numerical procedure on the
computer, achieved through coding in FORTRAN 77, is discussed in detail.
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Fundamental Solution 3

1.2 Fundamental Solution

If we use polar coordinates r and 6 centered about (0,0), as defined by = = rcos@
and y = rsin 6, and introduce ¢(r,0) = ¢(r cosf, rsinf), we can rewrite Eq. (1.1) as

19, 9

1 0%
b Gl e v

—0. (1.4)

For the case in which ¢ is independent of 6, that is, if ¢ is a function of r
alone, Eq. (1.4) reduces to the ordinary differential equation

d, d
%(ra[w(r)]) =0 for r #0. (1.5)

The ordinary differential equation in Eq. (1.5) can be easily integrated twice
to yield the general solution

Y(r) = Aln(r) + B, (1.6)

where A and B are arbitrary constants.
From (1.6), it is obvious that the two-dimensional Laplace’s equation in Eq.
(1.1) admits a class of particular solutions given by

é(z,y) = Aln\/22+y2+ B for (z,y) # (0,0). (1.7)

If we choose the constants A and B in (1.7) to be 1/(27) and 0 respectively
and shift the center of the polar coordinates from (0,0) to the general point (§,7), a
particular solution of Eq. (1.1) is

$e,y) = 5= = O+ (= for (e,) # (€0) (1.8

As we shall see, the particular solution in Eq. (1.8) plays an important role
in the development of boundary element methods for the numerical solution of the
interior boundary value problem defined by Eqgs. (1.1)-(1.2). We specially denote this
particular solution using the symbol ®(z,y; &, n), that is, we write

B, y:6,1) = 7= Inl(e — €2+ (y — ). (1.9

We refer to ®(z,y;&,n) in Eq. (1.9) as the fundamental solution of the two-
dimensional Laplace’s equation. Note that ®(x,y; &, n) satisfies Eq. (1.1) everywhere
except at (§,n) where it is not well defined.
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4 Two—dimensional Laplace’s Equation

1.3 Reciprocal Relation

If ¢, and ¢, are any two solutions of Eq. (1.1) in the region R bounded by the simple
closed curve C' then it can be shown that

/ (6292 — 2922z, ) = 0 (1.10)

C

Eq. (1.10) provides a reciprocal relation between any two solutions of the
Laplace’s equation in the region R bounded by the curve C. It may be derived from the
two-dimensional version of the Gauss-Ostrogradskii (divergence) theorem as explained
below.

According to the divergence theorem, if F= u(z,y)i+v(x,y)j is a well defined
vector function such that V - F = du/0z 4+ 0v/dy exists in the region R bounded by
the simple closed curve C then

/Eg s(z,y) //V F dxdy,
/[unw + vnylds(z,y) // 8u d:cdy,

where n = [n,,n,] is the unit normal vector to the curve C, pointing away from the
region R.

that is,

Since ¢, and ¢, are solutions of Eq. (1.1), we may write

Por P _
0x?  Oy? ’
gy  Phy
92 2

If we multiply the first equation by ¢, and the second one by ¢; and take the
difference of the resulting equations, we obtain

g1 8¢z ‘9¢1 ()

8$(¢2 ) :07

which can be integrated over R to give

/ [l 022 = 0:52) 4 5 (025 = r )y = .
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Boundary Integral Solution 5

Application of the divergence theorem to convert the double integral over R
into a line integral over C' yields

99y 09, 99y O,
/[(ﬁbz% - ¢1E)nz + (¢28—y - ¢1a—y)ny]ds($, y) =0
loj
which is essentially Eq. (1.10).
Together with the fundamental solution given by Eq. (1.9), the reciprocal
relation in Eq. (1.10) can be used to derive a useful boundary integral solution for
the two-dimensional Laplace’s equation.

1.4 Boundary Integral Solution

Let us take ¢ = ®(x,y;&,n) (the fundamental solution as defined in Eq. (1.9))
and ¢, = ¢, where ¢ is the required solution of the interior boundary value problem
defined by Eqgs. (1.1)-(1.2).

Since ®(z,y; &, n) is not well defined at the point (£,7), the reciprocal relation
in Eq. (1.10) is valid for ¢; = ®(x,y;&,n) and ¢, = ¢ only if (£,7) does not lie in the
region RUC. Thus,

[1660.) 5 (@556, 1) = B3 ) 5 (0, v) () =0
: for (§,m) ¢ RUC. (1.11)

A more interesting and useful integral equation than Eq. (1.11) can be derived
from Eq. (1.10) if we take the point (£,7) to lie in the region RU C.

For the case in which (&, 7) lies in the interior of R, Eq. (1.10) is valid if we
replace C' by C' U C., where C. is a circle of center (£,7) and radius £ as shown in
Figure 1.2*. This is because ®(z,y;£,n) and its first order partial derivatives (with
respect to = or y) are well defined in the region between C' and C.. Thus, for C' and
C: in Figure 1.2, we can write

[ 19600) - (00, 336.1) = @16, m) (0l sl ) =0,
CUCe
that is,

J1606.9) 50011 ) = 0,56, ) (0 ) s ()

c

=~ [16le.0) 5 (Blayi &) - W) (Ol )lds(a ). (112

Ce

*The divergence theorem is not only applicable for simply connected regions but also for multiply
connected ones such as the one shown in Figure 1.2. For the region in Figure 1.2, the unit normal
vector to C. (the inner boundary) points towards the center of the circle.
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6 Two—dimensional Laplace’s Equation

Figure 1.2

Eq. (1.12) holds for any radius € > 0, so long as the circle C. (in Figure 1.2)
lies completely inside the region bounded by C. Thus, we may let ¢ — 0% in Eq.
(1.12). This gives

[1660.) 5 @3 6m) = Bla &) 5 8o ds(a.0)
(&

= i [0 )5 (B, v:6m) — B, y;€.1) o (802 )]ds(z.)

e—0t
Ce

(1.13)

Using polar coordinates r and € centered about (£,7) as defined by = — £ =
rcosf and y —n = rsinf, we may write
1

(I)(xvyagan) = %111(7”)7

0 0 0
a_n[q)(xay7§7n)] = nm%[@(x7ya§an)]+nya_y[q)<xaya§an>]

Ny cos 0 + ny sin 0

— — (1.14)
The Taylor’s series of ¢(z,y) about the point (£, 7) is given by
N~ O (z =&y —mm*
P(z,y) = ( F) -
On the circle C., r = €. Thus,
S om €™ cosk fsin™ ¥ ¢
¢(z,y) = ( oz, y)])
n;); Oxkoym—* wy)=ey  Kl(m —k)!
for (z,y) € C.. (1.15)
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Boundary Integral Solution 7

Similarly, we may write

a oo m m
= = o {[(awm
;; 81’k8y k 877/ (z,y)=(&n)
k m—k
g™ cos” fsin™ " 0 for (z,9) € C.. (1.16)

Kl (m — k)]

Using Egs. (1.14), (1.15) and (1.16) and writing ds(z, y) = £df with 6 ranging
from 0 to 27, we may now attempt to evaluate the limit on the right hand side of Eq.
(1.13). On C., the normal vector [n,,n,] is given by [—cos, —sin#]. Thus,

/¢xy O(z,y;&,nlds(z,y)

2
1
0
1 o 5 ¢ 27
em i
2ﬂ-2;;2;%kﬂ(wz—-k)! Ox*oym—* (@y)=(&n)
- —Qﬁ(fﬂl) aSE—>0+7 (117)

and

[ s g0t stz

(z,y)=(&m)

— 0 ase— 0T, (1.18)

since e™*In(e) - 0ase — 0t form=0,1,2, --- .
Consequently, as e — 0%, Eq. (1.13) yields

6.1 = [[1660.) - (@ 3361) — Blo s &) 3-8 y)ds(a.1)

c
for (§,m) € R.  (1.19)

Together with Eq. (1.9), Eq. (1.19) provides us with a boundary integral
solution for the two-dimensional Laplace’s equation. If both ¢ and d¢/dn are known
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8 Two—dimensional Laplace’s Equation

at all points on C, the line integral in Eq. (1.19) can be evaluated (at least in theory)
to calculate ¢ at any point (£,7) in the interior of R. From the boundary conditions
(1.2), at any given point on C, either ¢ or d¢/0n, not both, is known, however.

To solve the interior boundary value problem, we must find the unknown ¢
and d¢/0n on Cy and C7 respectively. As we shall see later on, this may be done
through manipulation of data on the boundary C only, if we can derive a boundary
integral formula for ¢(&, n), similar to the one in Eq. (1.19), for a general point (£, 7)
that lies on C.

For the case in which the point (£,7) lies on C, Eq. (1.10) holds if we replace
the curve C by D U D,, where the curves D and D, are as shown in Figure 1.3. (If
C- is the circle of center (£,n) and radius ¢, then D is the part of C' that lies outside
C. and D, is the part of C; that is inside R.) Thus,

[1660) 5 (o v16.) — @56 1) 5 (0N ds(a.)

D

= — [ 0le )5 @) — Bl )5 (Dl )ds( ). (120)

D.

Let us examine what happens to Eq. (1.20) when we let ¢ — 0%.
As e — 0%, the curve D tends to C. Thus, we may write

[1660.) 5 (@ 360) = Bla s &) 5 B )ds(a.0)
(&

= — lim [ﬁf)(%y)%(q’(%y;ﬁ,n)) - q)(xay;éyn)%(¢(may))]d3(x’y)‘

e—0*
D,

(1.21)

Figure 1.3

© 2007 WT Ang
A Beginner’s Course in Boundary Element Methods



Boundary Integral Solution 9

Note that, unlike in Eq. (1.13), the line integral over C' in Eq. (1.21) is
improper as its integrand is not well defined at (£,7) which lies on C. Strictly
speaking, the line integration should be over the curve C without an infinitesimal
segment that contains the point (£, 7), that is, the line integral over C' in Eq. (1.21)
has to be interpreted in the Cauchy principal sense if (£,7) lies on C'

To evaluate the limit on the right hand side of Eq. (1.21), we need to know
what happens to D, when we let ¢ — 0*. Now if (£,7) lies on a smooth part of C' (not
at where the gradient of the curve changes abruptly, that is, not at a corner point,
if there is any), one can intuitively see that the part of C inside C. approaches an
infinitesimal straight line as ¢ — 0F. Thus, we expect D, to tend to a semi-circle as
e — 0%, if (&, 7n) lies on a smooth part of C. It follows that in attempting to evaluate
the limit on the right hand side of Eq. (1.21) we have to integrate over only half a
circle (instead of a full circle as in the case of Eq. (1.13)).

Modifying Eqgs. (1.17) and (1.18), we obtain

0
dim [ 60 ) 5[0, 6 mds(r,y) = 506,
D.
i [ @,y m) S0 s y) = 0
D,

Hence Eq. (1.21) gives

0
30(6) = [ 160,) 5 (®(o.3:€,m) = Do 33 €,m) (0l )]sl )
(&
for (¢,7n) lying on a smooth part of C.  (1.22)

Together with the boundary conditions in Eq. (1.2), Eq. (1.22) may be applied
to obtain a numerical procedure for determining the unknown ¢ and/or d¢/dn on
the boundary C. Once ¢ and d¢/0n are known at all points on C', the solution of the
interior boundary value problem defined by Eqgs. (1.1)-(1.2) is given by Eq. (1.19) at
any point (§,7) inside R. More details are given in Section 1.5 below.

For convenience, we may write Egs. (1.11), (1.19) and (1.22) as a single
equation given by

NEHE) = [[1660,) 5 (Blo.5:6.1)) = Blo. 3. 1) - (602 9) s (5.0,
‘ (1.23)

if we define

0 if(§n) ¢ RUC,
AE,m) =< 1/2 if (&, n) lies on a smooth part of C, (1.24)
1 if(&mn) € R.
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10 Two—dimensional Laplace’s Equation

1.5 Boundary Element Solution with Constant Elements

We now show how Eq. (1.23) may be applied to obtain a simple boundary element
procedure for solving numerically the interior boundary value problem defined by
Egs. (1.1)-(1.2).

The boundary C is approximated as an N-sided polygon with sides C), C'?),
<o, CWV=1) and CW) | that s,

C~cWuc®uy...uc™-YuycW, (1.25)

The sides or the boundary elements CM, C® ... CW-1 and C™ are
constructed as follows. We put N well spaced out points (z™),yM), (z® ),
(WY W=Dy and (™) yV)) on C, in the order given, following the counter
clockwise direction. Defining (z(V+D y(N+D) = (20 41)) we take C*®) to be the
boundary element from (2, y®) to (2*+D y*E+D) for k =1,2, ---, N.
As an example, in Figure 1.4, the boundary C' = C; U (5 in Figure 1.1 is
approximated using 5 boundary elements denoted by C", C®, C®) C® and C®).
For a simple approximation of ¢ and d¢/dn on the boundary C, we assume
that these functions are constants over each of the boundary elements. Specifically,
we make the approximation:

(k)

p~¢  and % =% for (z,y) € C® (k=1,2,--- ,N), (1.26)

n

where E(k) and p®) are respectively the values of ¢ and d¢/On at the midpoint of
c®,

Figure 1.4



Boundary Element Solution with Constant Elements 11

With Egs. (1.25) and (1.26), we find that Eq. (1.23) can be approximately
written as

A&7 Z{qs"“’ FP(e,n) - pPFP €}, (1.27)

where

A = [ Seygndsa)
ok

FOEn = [ She i nlds(e.y). (1.28)
C(k)

For a given k, either E(k or p¥) (not both) is known from the boundary

conditions in Eq. (1.2). Thus, there are N unknown constants on the right hand side
of Eq. (1.27). To determine their values, we have to generate N equations containing
the unknowns.

If we let (¢,n) in Eq. (1.27) be given in turn by the midpoints of C¥, C?),
, CWV=D and O™ we obtain

1- () —(k) (1) (5tm) zm)y _ 50 £ (0) (m) m
m ZW FI) (gm) im)y _ 50 0 pm) zm)yy

form=1,2,--- N, (1.29)

where ("™, 7)) is the midpoint of C™,
Y

In the derivation of Eq. (1.29), we take A\(Z"™),7"™) = 1/2, since (™, 7(™)
being the midpoint of C™ lies on a smooth part of the approximate boundary C¥ U
CAy...ucW-byc,

Eq. (1.29) constitutes a system of N linear algebraic equations containing the
N unknowns on the right hand side of Eq. (1.27). We may rewrite it as

Z (mk) (k) _ Zb(mk) form=1,2,---,N, (1.30)

k=1
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12 Two—dimensional Laplace’s Equation

where a!™® b8 and (%) are defined by

gk f(k) zim) gm)) if ¢ is specified over C'®),
(k) (m) g™ — %6("“” if d¢/On is specified over C'®

plmk) ]:(k) zm) gm)) ¢ %6(7“’“)) if ¢ is specified over C*)
_(’“).7-' zm) Hlm) if O¢/On is specified over C®

§(mk) if m # k
if m=k,

) ]_)(k) if ¢ is specified over C*) (1.31)
2 = — .
QS(k) if 0¢/On is specified over C®,

Note that 2P, 2@ ... 2(N=D and V) are the N unknown constants on the
right hand side of Eq. (1.27), while a/™*) and ™*) are known coefficients.

Once Eq. (1.30) is solved for the unknowns 2%, 22 ... 2(N=1 and (M the
values of ¢ and 9¢/On over the element C*), as given by E(k) and p'® respectively,
are known for k =1, 2, --- , N. Eq. (1.27) with A(§,n) = 1 then provides us with an
explicit formula for computing ¢ in the interior of R, that is,

k _ k
Z{¢ A ) - pHANE MY for Em e R (132)

To summarize, a boundary element solution of the interior boundary value
problem defined by Eqgs. (1.1)-(1.2) is given by Eq. (1.32) together with Eqgs. (1.28),
(1.30) and (1.31). Because of the approximation in Egs. (1.25) and (1.26), the
solution is sald to be obtalned using constant elements. Analytical formulae for
calculating F1 (¢, n) and F57(¢,n) in Eq. (1.28) are given in Eqs. (1.37), (1.38),
(1.40) and (1.41) (together Wlth Eq. (1.35)) in the section below.

1.6 Formulae for Integrals of Constant Elements

The boundary element solution above requires the evaluation of F: {k) (&,m) and fék) &, n).
These functions are defined in terms of line integrals over C'*) as given in Eq. (1.28).
The line integrals can be worked out analytically as follows.

Points on the element C® may be described using the parametric equations

=z — té(k)nék)

fromt=0tot=1, 1.33
g — g8 1 gk } (1.33)

where £ is the length of C® and [n{”, nlF] = [yk+D — y®) xk) _ p(k+D] /) §g the
unit normal vector to C*) pointing away from R.

© 2007 WT Ang
A Beginner’s Course in Boundary Element Methods



Formulae for Integrals of Constant Elements 13

For (z,7) € C™ we find that ds(x,y) = \/(dz)%2 + (dy)2 = (¥ dt and

(= €)%+ (y—n)? = AW+ B (e )t + EW (€, ), (1.34)
where
AR — [g(k)]Z7
BW(&,n) = [0 (@™ — &) + (4 —n)ni?)(20W),
EW(&n) = @® -2+ (™ —n)?. (1.35)

The parameters in Eq. (1.35) satisfy 4A® E®) (¢ n) — [B®) (¢,1)]2 > 0 for any
point (&£, 7). To see why this is true, consider the straight line defined by the parametric
equations z = z® — tﬁ(k)n;k) and y = y® + t09n for —0o < t < co. Note that
C'®) is a subset of this straight line (given by the parametric equations from ¢ = 0 to
t =1). Eq. (1.34) also holds for any point (z,y) lying on the extended line. If (§,7)
does not lie on the line then A%®¢2 + BR) (¢ n)t 4+ E®) (¢ ) > 0 for all real values of ¢
(that is, for all points (z,y) on the line) and hence 4A® E®) (¢ n) — [B¥) (¢, 1)]2 > 0.
On the other hand, if (£,7) is on the line, we can find exactly one point (x,y) such
that A®¢2 4+ BW (¢ n)t+ E® (€,1) = 0. As each point (z,y) on the line is given by a
unique value of ¢, we conclude that 4A® E® (¢ n) — [B® (£ 1)]2 = 0 for (&,7) lying
on the line.

From Egs. (1.28), (1.33) and (1.34), ]:{k) (¢,7m) and fék) (¢,m) may be written
as

1
p(k)

Fen) = o In[A®2 1 BW (¢ myt + E® (¢, n)]dt,
0

1
(k) (k)
oo [ @M =9 +n (M —n)

(k) _
F2(&m) = 5= A®2 + BB n)t + E® (€, n)
0

(1.36)

The second integral in Eq. (1.36) is the easiest one to work out for the case
in which 4A® E® (¢ n) — [B® (£, 1)]? = 0. For this case, the point (£,7) lies on the
straight line of which the element C®) is a subset. Thus, the vector [z} — & 3*) —p]

is perpendicular to [n;k), n;k)], that is, nk) (ztk) —¢) +n3(,k)

(y(k) —n) = 0, and we obtain
F5(&m =0 for JANEN (€, m) — [BR(E, )] = 0. (1.37)

From the integration formula

/ i wetan( 22
at?+bt+c  Jdac — b2 Vidac — b?

for real constants a, b and ¢ such that 4ac — b* > 0,

)+ constant
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14 Two—dimensional Laplace’s Equation
we find that

(O (@ — ) +ny” (y™ — )]
m/AAWEW (£,7) — [BW (€, 7)]2
2 Ak) + B(k) (f, 77)
(\/4A““’E”“) (& n) — [BW(En)]?
B (&, n) \
VAARE® (&, 5) — [BW (£, 7)]2
for 4AM EW (& n) — [B®(€,7))* > 0. (1.38)

()

X [arctan

)

— arctan(

If 4AR BR) (¢ 1) — [B®)(¢,1)]? = 0, we may write

(k)
A2 B (e )t + BW(g,n) = AWt 4 Z_Eye

AR
Thus,
1
A = = [upawi s ZE0 g
for 4(j4‘k’E(k’(£, n) — [B® (&) =0. (1.39)

Now if (£,7) lies on a smooth part of C*)| the integral in Eq. (1.39) is im-
proper, as its integrand is not well defined at the point t = to = —B® (£, 7)/(2A®)) €
(0,1). Strictly speaking, the integral should then be interpreted in the Cauchy princi-
pal sense, that is, to evaluate it, we have to integrate over [0,to—e]U[to+¢, 1] instead
of [0,1] and then let ¢ — 0 to obtain its value. However, in this case, it turns out
that the limits of integration ¢ = tg — € and ¢t = tg 4 € eventually do not contribute
anything to the integral. Thus, for 4A® E®) (¢ n) — [B®) (¢, 1)]2 = 0, the final ana-
lytical formula for f{k) (¢€,n) is the same irrespective of whether (£,7) lies on C'®) or
not. If (¢,7) lies on O we may ignore the singular behaviour of the integrand and
apply the fundamental theorem of integral calculus as usual to evaluate the definite
integral in Eq. (1.39) directly over [0, 1].

The integration required in Eq. (1.39) can be easily done to give

B®(¢,n)

BW(¢,n) |
2 A(k)

(k)
A = g{ln(é"“’)+(1+w)1n|1+
BW(En)  BW(E n)
——gam e 1B
for 4AWEW (&, ) — [BW (£, )] = 0. (1.40)
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Implementation on Computer 15

Using
> b > b, ¢
In(at® + bt +c)dt = t[ln(a) — 2]+ (t+ 2—) In[t® + —t + E}
2at + b
—|— V4dac — b? arctan + constant
(\/4ac — b2 )

for real constants a, b and ¢ such that 4ac — b2 > 0,

we obtain

() BW(¢, )  EW(En)
(k)@’ ) = E{Q[ln(f(k)) - 1] - 2 Ak) ln‘ A(k) |
Bk) Bk E(k)
1+ QXi,)n))lnm AEE)J?) N Ag),n)|
+\/4A(k)E(k)(€v 77) _ [B(k)(faﬁ)]z
A0
X [arctan 240 + () )
\/4A““’E““’(€ n) — [BW(&,n)]2
L BY(E )
e R
for 4AWEW (e, ) — (B (e, 2 >0, (141)

1.7 TImplementation on Computer

We attempt now to develop double precision FORTRAN 77 codes which can be
used to implement the boundary element procedure described in Section 1.5 on the
computer. In our discussion here, syntaxes, variables and statements in FORTRAN
77 are written in typewriter fonts, for example, Xi, eta and A=L**2d0.

One of the tasks involved is the setting up of the system of hnear algebraic
equations given in Egs. (1.30) and (1.31). To do this, the functions F\*(¢,7) and

(k) (€,7m) have to be computed using the formulae in Section 1.6. We create a sub-

routlne called CPF which accepts the values of ¢, 1, *), y(#), n;k), ny(f) and ¢ (stored
in the real variables xi , eta, xk, yk, nkx, nky and L) in order to calculate and return
the values of Ff](_k)(f, n) and Wfék) (¢,7m) (in the real variables PF1 and PF2).

The subroutine CPF is listed below.

subroutine CPF(xi,eta, xk,yk, nkx, nky, L, PF1, PF2)

double precision xi,eta, xk,yk, nkx,nky, L, PF1, PF2,
& A B E, D BA EA
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16 Two—dimensional Laplace’s Equation

A=L**2d0
B=2d0*L*(-nky*(xk-xi)+nkx*(yk-eta))
E=(xk-xi)**2d0+(yk-eta)**2d0
D=dsqrt(dabs(4d0*A*¥E-B**2d0)

BA=B/A

EA=E/A

if (D.1t.0.0000000001d0) then
PF1=0.5d0*L*(dlog(L)
& +(1d0+40.5d0*BA)*dlog(dabs(1d0+0.5d0%BA))
& -0.5d0*BA*dlog(dabs(0.5d0*BA))-1d0)
PF2=0d0
else
PF1=0.25d0*L*(2d0*(dlog(L)-1d0)-0.5d0*BA*dloq(dabs(EA))
& +(1d040.5d0*BA)*dlog(dabs(1d0+BA+EA))
& +(D/A)*(datan((2d0*A+B)/D)-datan(B/D))
PE2=L*(nkx*(xk-xi)+nky*(yk-eta))/D
& *(datan((2d0*A+B)/D)-datan(B/D))
endif

return
end

CPF is repeatedly called in the subroutine CELAP1. CELAPI reads in the num-
ber of boundary elements (N) in the real variable N, the midpoints (Z*),7*)) in
the real arrays xm(1:N) and ym(1:N), the boundary points (z*),4*)) in the real
arrays Xb(1:N+1) and yb(1:N+1), the normal vectors (ng“),nék)) in the real arrays
nx(1:N) andny(1:N),the lengths of the boundary elements in the real array | ¢( 1: N)
and the types of boundary conditions (on the boundary elements) in the integer ar-
ray BCT(1:N) together with the corresponding boundary values in the real array
BCV(1:N), set up and solve Eq. (1.30), and return all the values of a(k) and p®
in the arrays phi(1:N) and dphi(1:N) respectively. (More details on the arrays
BCT(1:N) and BCV(1:N) will be given later on in Section 1.8.) Thus, a large part of
the boundary element procedure (with constant elements) for the numerical solution
of the boundary value problem is executed in CELAPI.

The subroutine CELAP1 is listed as follows.

subroutine CELAPLI(N, xm,ym xb,yb,nx, ny, g, BCT,BCV, phi, dphi)
integer mk, N, BCT(1000)

double precision xm(1000),ym{(1000), xb(1000),yb(1000),
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& nx(1000),ny(1000),1g(2000),BCV(1000),A(2000,1000),
& B(1000),pi,PFL, PF2, del,phi(1000), dphi(1000),FI1,F2,
& 2(1000)

15

pi=4d0*datan(1d0)

do 10 m=1, N

B(m)=0d0

do 5 k=1, N

call CPE(xm(m),ym(m,xb(k),yb(k),nx(k),ny(k),Ig(k),PF1, PF2)
F1=PF1/pi

F2=PF2/ pi

if (k.eqg.m then

del =140

else

del =040

endif

if (BCT(k).eq.0) then

A(m k)=-F1

B(m)=B(m) +BCV(k)*(-F240.5d0*del)
else

A(m k)=F2-0.5d0*de

B(m)=B(m) +BCV(k)*Fl

endif

continue

continue

call solver(A, B,N,1,2)

do 15 m=1, N

if (BCT(m).eq.0) then
phi(m)=BCV(m)
dphi(m)=Z(m)

else

phi (m=Z(m)
dphi{m)=BCV(m)

endi f

continue

return
end
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18 Two—dimensional Laplace’s Equation

The values of a!™*) in Eq. (1.30) are kept in the real array A(1: N, 1: N) | the
sum b™Y 4 pm2 ... 4 p(mN) on the right hand side of the equation in the real
array B(1: N) and the solution z(* in the real array Z(1: N) . To solve for z*), an LU
decomposition is performed on the matrix containing the coefficients a™ to obtain
a simpler system that may be easily solved by backward substitutions. This is done
in the subroutine SOLVER (listed below together with supporting subprograms DAXPY
DSCAL and | DAMAXT) which accepts the integer N (giving the number of unknowns), the
real arrays A(1: N, 1. N) and B(1: N) and the integer | ud to return Z( 1: N) . In general,
the integer | U0 may be given any value except 0. However, if we are solving two
different systems of linear algebraic equations with the same square matrice [a(mk)],
one after the other, | Ud may be given the value 0 the second time SOLVER is called.
This is because it is not necessary to perform the LU decomposition on the same
square matrix again to solve the second system after solving the first. If lud is
given the value 0, SOLVER assumes that the square matrix has already been properly
decomposed before and avoids the time consuming decomposition process. In CELAP1,
since the square matrix has not been decomposed yet, the value of 1 is passed into
lud when we call SOLVER.

The subroutine SOLVER and its supporting programs are listed as follows.

subroutine SOLVER(A,B,N, lud,Z)

integer Ida, N, ipvt(1000),info,lud, | DAMAX,
& .k, kpl, I, nml, kb

double precision A(1000,1000),B8(1000),Z(1000),t, AMD(1000,1000)
common /ludcmp/ipvt, AMD
nml=N-1
do 5 i=1,N
Z(i)=B(1)
5 continue

if (lud.eq.0) goto 99

fThe main part of SOLVER for decomposing the square matrix A and solving AX = B is re-
spectively taken from the codes in the LINPACK subroutines DEFA and DESL written by Cleve
Moler. The supporting subprograms DAXPY, D5CAL and | DAMAX written by Jack Dongarra are also
from LINPACK. DE&EFA DESL, DAXPY, D5CAL and | DAMAX are all in the public domain and may be
downloaded from Netlib website at http://www.netlib.org. Permission for reproducing the codes
here was granted by Netlib’s editor-in-chief Jack Dongarra.
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do 6

do 6 |

AMD( i, |
6 continue

!

=1, N
=1, N
) =A

(0]

info=0
if (nml.It.1) go to 70

do 60 k=1,nml
kpl=k+l
[ =I DAMAX(N-k+1, AMD(k, k), 1) +k-1
ipvt(k)=l
if (AMD(I,k).eq.0.0d0) goto 40
if (I.eq.k) goto 10
t=AMD( I, k)
AMD( 1, k) =AMD(k, k)
AMD( k, k) =t
10 continue
t=-1.0d0/AMD(k, k)
call DSCAL(N-k,t,AMD(k+1,k),1)
do 30 j=kpl, N
t=AMD(1,])
if (l.eq.k) go to 20
AMD( I, ) =AMD(k,|)
AMD(k, ) =t
20 continue
call DAXPY(N-k,t, AMD(k+1, k), 1, AMD(k+1,j), 1)
30 continue
goto 50
40 continue
info=k
50 continue
60 continue

70 continue
ipvt(N)=N

if (AMD(N,N).eq.0.0d0) info=N
if (info.ne.0) pause "Division by zero in SOLVER!
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20 Two—dimensional Laplace’s Equation

99 continue
if (nml.lt.1) goto 130

do 120 k=1,nml

[ =ipvt(k)

t=2(1)

if (I.eq.k) goto 110

Z(1)=Z(k)

Z(k) =t
110 continue

call DAXPY(N-k,t, AMD(k+1,k),1,Z(k+1),1)
120 continue

130 continue

do 140 kb=1,N

k=N+1-kb

Z(k) = Z(k)/AMD(k, k)

t=-7(k)

call DAXPY(k-1,t,AMD(1,k),1,Z2(1),1)
140 continue

return
end

subroutine DAXPY(N,da,dx,incx,dy,incy)
double precision dx(1000),dy(1000),da
integer i,incx,incy,ix, iy, mml,N
if(N.Te.0) return

if (da .eq. 0.0d0) return
if(incx.eq.l.and.incy.eq.1) goto 20

1

I X
Iy
Pf(inex. It.0) ix=(-N+1)*incx+l
if(incy. 1t.0) iy=(-N+1)*incy+l
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do 10 i=1,N
dy(iy)=dy(iy)+da*dx(ix)
I x=ix+incx
fy=iy+incy

10 continue

return

20 m=mod(N,4)
if( megq. 0 ) go to 40
do 30 i=I,m

dy(i)=dy(i)+da*dx(i)
30 continue

if(N.It.4) return

40 mpl=m+l
do 50 i=mpl, N, 4
dy(i)=dy(i)+da*xdx(i)
dy(i41)=dy(i+1)+da*dx(i+1)
dy(i42)=dy(i+2)+da*dx(i+2)

dy(i+3)=dy(i+3)+da*dx(i+3)
50 continue

return
end

subroutine DSCAL(N, da,dx,incx)
double precision da,dx(1000)
integer i,incx,mmpl, N, nincx
if(N.le.0.or.incx.le. 0) return
if(incx.eq.l) goto 20

nincx = N¥incx

do 10 i=1,nincx,incx
dx(i)=da*dx(i)
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10

20

30

40

continue

return

m=mod (N, 5)
if(meq.0) goto 40
do 30 i=1,m

dx(i) = daxdx(i)
continue

if(N.Tt.5) return
mpl=m+l

do 50 i=mpl,N,5
dx(i)=da*dx(i)
dx(i+1)=da*dx(i+l)
dx(i42) =da*dx(i+2)
dx(i+3)=da*dx(i+3)
dx(i+4)=da*dx(i+4)

50 continue

return
end

function | DAMAX(N, dx,incx)
double precision dx(1000), dmax
integer i,incx,ix, N, | DAMAX

[ DAMAX = 0

Pf(N Tt Loor inex.le. 0 ) return

| DAMAX =1

if(N.eg.1l)return
if(incx.eq.l) goto 20

ix =1
dmax = dabs(dx(1)
iX = ix +incx
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do 10 i=2,N
if(dabs(dx(ix)).le dmax) goto 5
| DAMAX =i

dmax=dabs(dx(ix))

i X=ix+incx

10 continue

o

return
20 dmax=dabs(dx(1))

do 30 i=2,N
if(dabs{dx(i)).le.dmax) goto 30
| DAMAX =i
dmax=dabs({dx(i))

30 continue

return
end

Once the values of a(k) and p*) are returned in the arrays phi(1:N) and
dphi(1:N) by CELAPL, they can be used by the subroutine CELAP2 to compute the
value of ¢ at any chosen point (£,7) in the interior of the solution domain. In the
listing of CELAP2 below, xi and eta are the real variables which carry the values of
¢ and 7 respectively. The computed value of ¢(&,n) is returned in the real variable
pint. Note that the subroutine CPF is called in CELAP2 to compute W.F{k) (¢,m) and

n 3 (E,m).

subroutine CELAP2(N, xi,eta,xb,yb,nx,ny, lg,phi,dphi,pint)
integer N,

double precision xi,eta, xb(1000),yb(1000),nx(1000),ny(1000),
& 1g(1000), phi(1000), dphi(1000), pint,sum pi,PFLl,PF2

pi=4d0*datan(1d0)
sum=0d0

do 10 i=1,N
cal | CPF(xi,eta,xb(i),yb(i),nx(i),ny(i), Ig(i),PFL,PF2)
sum=sum+phi (i) *PF2-dphi(i)*PFl

© 2007 WT Ang
A Beginner’s Course in Boundary Element Methods



24 Two—dimensional Laplace’s Equation

10 continue
pint=sum/ pi

return
end

1.8 Numerical Examples

We now show how the subroutines CELAP1 and CELAP2 may be used to solve two
specific examples of the interior boundary value problem described in Section 1.1.

Example 1.1

The solution domain is the square region 0 < x < 1, 0 < y < 1. The boundary
conditions are

=0 onz =0
¢p=cos(my) onz=1 } for 0 <y <1
99
—=0ony=0andy=1for0 <z <1.
on
top horizontal side (v =1)
% g
én
L - >
left vertical : -
: . right vertical
2ie(§x—0). ®.ide x=1)
¢ = cos(my)
® & S
bottom horizontal side (y = 0)
o _
on
Figure 1.5

The sides of the square are discretized into boundary elements of equal length.
To do this, we choose N evenly spaced out points on the sides as follows. The
boundary points on the sides y = 0 (bottom horizontal), z = 1 (right vertical), y = 1
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(top horizontal) and z = 0 (left vertical) are respectively given by (z(™), ¢(™) =
([m—1J¢,0), (amHNo) N0y = (1, [m—1]), (2(m2No) y(mF28o)) = (1 —[m—1]¢, 1)
and (z(m+3No) ¢ (m+3No)) — (0,1 — [m — 1]¢) for m = 1, 2, --- , Ny, where Ny is the
number of boundary elements per side (so that N = 4Ny) and ¢ = 1/Nj is the length
of each element. For example, the boundary points for Ny = 2 (that is, 8 boundary
elements) are shown in Figure 1.5.

The input points (z0, M), (2@, y@), -.. (@D, y™-D) () y@®) and
(xVHD ¢ (N+1) " arranged in counter clockwise order on the boundary of the solu-
tion domain, are stored in the real arrays xb(1:N+1) and yb(1:N+1). (Recall that
(xNVFD ¢y (NFDY = (21 41 ) The values in these arrays are input data defining the
geometry of the solution domain, to be generated by the user of the subroutines
CELAP1 and CELAP2. As the geometry in this example is a simple one, the input data
for the boundary points may be generated by writing a simple code as follows.

N=4xNO

d1=1d0/dfloat (NO)

do 10 i=1,NO

xb(i)=dfloat (i-1)*dl

yb(i)=0d0

xb (NO+1i)=1d0

yb(NO+1)=xb (i)

xb (2%N0+i)=1d0-xb (i)

yb (2xN0+i)=1d0

xb (3%N0+1)=0d0

yb (3%N0+1)=1d0-xb (1)
10 continue

xb(N+1)=xb(1)

yb(N+1)=yb(1)

Note that NO is an integer variable which gives the number of boundary ele-
ments per side and dl is a real variable giving the length of an element. The value
of NO is a given input. The boundary points in Figure 1.5 may be generated by the
code above if we give NO the value of 2.

In order to call CELAP1 and CELAP2, the midpoints of the elements (in the
real arrays xm(1:N) and ym(1:N)), the lengths of the elements (in the real array
1g(1:N)) and the unit normal vectors to the elements (in the real arrays nx(1:N)
and ny(1:N)) are required. These can be calculated from the input data stored in
the arrays xb(1:N+1) and yb(1:N+1). The general code for the calculation (which
is valid for any geometry of the solution domain) is as follows.

do 20 i=1,N
xm(i)=0.5d0*(xb(i)+xb(i+1))
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ym(i)=0.5d0*(yb(i)+yb(i+l))
Lg(i)=dsqre((xb(i+l)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0)
nx(i)=(yb(i+1)-yb(i))/1g(i)
ny (i) =(xb(i)-xb(i+1))/1g(i)

20 continue

The type of boundary conditions on an element (that is, whether ¢ or 9¢/dn is
specified) and the corresponding specified value of either ¢ or O¢/dn are input data.
The integer array BCT(1: N) is used to keep track of the types of boundary conditions
on the elements. If ¢ is specified on the 5-th boundary element C'® then BCT(5) is
given the value 0. If BCT(5) is not 0, then we know that d¢/0n is specified on C®.
The values of either ¢ or d¢/0n prescribed on the boundary elements are stored in
the real array BCV(1: N) . For the boundary points in Figure 1.5, the input boundary
values of ¢ on the two elements on the right vertical sides are given by cos(mn) with
1 being the y coordinates of the midpoints of the elements. For the boundary value
problem here, the code for generating the input data for BCT and BCV are as follows.

do 30 i=1,N

if (i.le.NO) then

BCT(i) =1

BCV(i)=0d0

else if ((i.gt.NO).and.(i.le.(2*¥NO))) then
BCT(i)=0

BCV(i)=dcos(pi*ym(i))
else if ((i.gt.(2*NO)).and. (i.le.(3*NO))) then

BCT(i) =1
BCV(i)=0d0
else
BCT(i)=0
BCV(i)=0d0
endif

30 continue

We may now invoke CELAP1 using the statement
cal | CELAPLT(N,xm,ymxb,yb,nx,ny,lg,BCT,BCV phi dphi)

to give us the (approximate) values of ¢ and d¢/0n on the boundary elements. The
boundary values of ¢ and d¢/0n (that is, E(k) and p'¥)) are respectively stored in
the real arrays phi(1:N) and dphi(1:N). For example, if the variable BCT(5) has
the value 0, we know that ¢ is specified on the 5-th boundary element and hence the
variable dphi (5) gives us the approximate value of d¢/0n on C®.
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Once CELAP] is called, we may use CELAP2 to calculate the value of ¢ at any
interior point inside the square. For example, if we wish to calculate ¢ at (0.50,0.70),
we may use the call statement

call CELAP2(N,0.50,0.70, xb,yb, nx,ny, [g,phi,dphi, pint)

to return us the approximate value of ¢(0.50,0.70) in the real variable pint .
An example of a complete program for the boundary value problem presently
under consideration is given below.

program EXIPT1
integer NO,BCT(1000),N,i, ians

double precision xb(1000),yb(1000), xm(1000),ym(1000)
& nx(1000), ny(1000),1g(2000),BCV(1000)
& phi(1000),dphi(1000),pint,dl,xi,eta,pi

print*, "Enter number of elements per side (<250):"
read*, NO
N=4*N(

pi=4d0*datan(1d0)
dl =1d0/dfloat(NO)

do 10 i=1,N0
xb(i)=dfloat(i-1)*dl
yb(i)=0d0
xb(NO+i)=1d0
NO+i)=xb(i)
2XNO+i ) =1d0-xb(1)
2XN0+i ) =1d0
3¥NO+i ) =0d0
yh(3*NO+i)=1d0-xb(i)
10 continue
xb(N+1)=xb(1)
yo(N+1)=yb(1)

ybi
Xb(
ybi
Xb(

do 20 i=1,N

xm(i)=0,5d0*(xb(i)+xb(i+l))
ym(i)=0.5d0*(yb(i)+yb(i+1))
Fg(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0)
nx (i) =(yb(i+1)-yb(i))/1q(i)
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ny(i)=(xb(i)-xb(i+1))/1q(i)
continue

do 30 i=1,N

if (i.le NO) then

BCT(i) =1

BCV(i)=0d0

else if ((i.9t.NO)J.and.(i.le.(2*¥NO))) then
BCT(i)=0

BCV(i)=dcos(pi*ym(i))

else if ((i.gt.(2*NO)).and.(i.le.(3*NO))) then
BCT(i) =1

BCV(i)=0d0

else

BCT(i)=0

BCV(i)=0d0

endi f

continue

call CELAPL(N, xm ym xb,yb,nx, ny, g, BCT,BCV, phi, dphi)
print*,"Enter coordinates xi and eta of an interior point:’
read*, xi,eta

call CELAP2(N, xi,eta, xb,yb,nx,ny, g, phi, dphi,pint)
write(*,60)pint, (dexp(pi*xi)-dexp(-pi*xi))*dcos(pi*eta)
[{dexp(pi)-dexp(-pi))

format('Numerical and exact values are:",

F14.6," and',F14.6," respectively')

print*, "To continue with another point enter 1.’
read*, ians

if (ians.eq.1) goto 50

end

All the subprograms needed for compiling EX1PT1 into an executable program
are the subroutines CELAP1, CELAP2, CPF and SOLVER (together with its supporting
subprograms DAXPY, DSCAL and | DAMAX).
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It is easy to check that boundary value problem here has the exact solution

_sinh(7z) cos(my)
¢= sinh(r)

In the program EX1PT1 above, the numerical value of ¢ (as calculated by the bound-
ary element procedure with constant elements) at an input interior point (£,7) is
compared with the exact solution.

Table 1.1
&,n) 20 elements 80 elements  Exact
(0.10,0.20)  0.022605 0.022397  0.022371
(0.10,0.30)  0.016454 0.016279  0.016254
(0.10,0.40)  0.008681 0.008560  0.008545
(0.50,0.20)  0.163153  0.161521  0.161212
(0.50,0.30)  0.118290 0.117325  0.117127
(0.50,0.40)  0.062107 0.061673  0.061577
(0.90,0.20)  0.586250 0.590103  0.589941
(0.90,0.30)  0.427451 0.428609  0.428618
(0.90,0.40)  0.223159 0.225308  0.225338

The numerical values of ¢ at various interior points obtained by EX1PT1 using
20 and 80 boundary elements are compared with the exact solution in Table 1.1.
There is a significant improvement in the accuracy of the numerical results when the
number of boundary elements used is increased from 20 to 80.

Table 1.2
a 0.900 0.950 0.990 0.995 0.999
20 elements 0.136% 2.830% 8.504% 9.563% 10.601%
80 elements 0.111% 0.144% 0.716% 1.403% 2.213%

We also examine the accuracy of the numerical value of ¢ at the interior point
(a,a) as a approaches 1 from below, that is, as the point (a,a) gets closer and closer
to the point (1,1) on the boundary of the square domain. The percentage errors in
the numerical values of ¢ from calculations using 20 and 80 boundary elements are
shown in Table 1.2 for various values of a. In each of the two sets of results, it is
interesting to note that the percentage error grows as a approaches 1. For a fixed
value of a near 1, the percentage error of the numerical value of ¢ calculated with 80
elements are lower than that obtained using 20 elements. It is a well known fact that
the accuracy of a boundary element solution may deteriorate significantly at a point
whose distance from the boundary is very small compared with the lengths of nearby
boundary elements.
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Figure 1.6
Example 1.2

Take the solution domain to be the region bounded between the circles 22 4 3% = 1
and 22 + y? = 4 in the first quadrant of the Ozxy plane as shown in Figure 1.6. The
boundary conditions are given by

% = 0 on the straight side z =0, 1 <y < 2,

0¢ : :

o 0 on the straight side y =0, 1 < x < 2,
¢ = cos(4 arctan(%)) on the arc 22 +y° =1, >0, y > 0,
¢ = 3cos(4 arctan(%)) on the arc z°+y?> =4, >0, y > 0.

This boundary value problem may be solved numerically using the boundary
element procedure with constant elements as in Example 1.1. To do this, we only have
to modify the parts in the program EX1PT1 that generate input data for the arrays
xb(1:N+1), yb(1:N+1), BCT(1:N) and BCV(1:N). Before we modify the program,
we have to work out formulae for the boundary points (z(¥,y™M), (2(?,4(?), ...
(:c(N_l),y(N_l)) and (x(N),y(N)).

Let us discretize each of the straight sides of the boundary into Ng elements
and the arcs on 22+ 4% = 1 and 22 4 3? = 4 into 2N and 8Ny elements respectively,
so that N = 12Np. Specifically, the boundary points are given by

—1
(2™ ytmy = 1+ [mN ],0) form=1,2,---, No,
0
(zmFNo) ylm+No)y (9 COS([m — 1}77) QSm(M)) form=1,2,---,8Np
s 16N0 5 16N0 ) Sy ) )
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—1
Qﬂm+m%%3%m+wwn _ (072__Un ])fbrnzzih2p--,A%7
0
-1 -1
(m(m+10N0)7y(m+lONo)) _ (Sin( [m4NO}7T>7 COS( [m4NO]7T)) for m = 1,2,--- ,2No.

Thus, for the boundary value problem presently under consideration, the code
for generating the input data for the boundary points in the real arrays xb(1: N+1)
and yb(1:N+1) is as given below. Note that we are required to supply an input value
for the integer N0 .

N=12*N0
pi=4d0*datan(1d0)

do 10 i=1,8*N0
dl =pi/dfloat(16*N0)
xb(i+NO0)=2d0*dcos(dfloat(i-1)*dl)
yh(i+NO)=2d0*dsin(dfloat(i-1)*dl)
if (i.1e.NO) then
dl =1d0/dfloat(NO)
xb(i)=1d0+dfloat(i-1)*dl
yb(i)=0d0
xb(i+9*N0)=0d0
yo(i+9*N0)=2d0-dfloat(i-1)*dl
endif
if (i le (2*N0)) then
dl =pi/dfloat(4*NO0)
xb(i+10*N0)=dsin(dfloat(i-1)*dl)
yo(i+10*N0)=dcos(dfloat(i-1)*dl)
endif

10 continue
Xb(N+1)=xb(1)
yo(N+1)=yb(1)

The code for generating the input data for the integer array BCT(1: N) and the
real array BCV(1: N) is as given below.

do 30 i=1,N

P ((i e NOJor. ((i.gt.(9*NO)).and.(i.le.(10*NO)))) then
BCT(i)=1

BCV(i)=0d0

else if ((i.gt.NO).and.(i.le. (9*NO))) then

BCT(i)=0
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BCV(i)=3d0*dcos(4d0*datan(ym(i)/xm(i)))

else
BCT(i)=0
BCV(i)=dcos(4d0*datan{ym(i)/xm(i)))
endi f
30 continue
3_
2_
[ 1
w0
S
>
Q 2
—a— 240 elements
3 — cxact
-4 T T ’
0 30 60 90

0 (in degree)
Figure 1.7

As ¢ is specified on the arc 22 +3% = 1, z > 0, y > 0, the last 2Ng variables in
the array dphi (1: N) returned by CELAP1 give us the numerical values of 9¢/dn at the
midpoints of the last 2Ny boundary elements, that is, —0v/0r at those midpoints if
we define 1(r,0) = ¢(rcos 0, rsinf), where the polar coordinates r and 6 are given
by by x = rcosf and y = rsinf. We may print out these variables to obtain the
approximate values of 91 /0r at the midpoints of the last 2Ng boundary elements. In
Figure 1.7, the numerical 9¢/0r at r =1, 0 < 6 < 7/2, obtained using 240 elements
(that is, using No = 20) are compared graphically against the values obtained from
the exact solution* given by

16 1 16 |22 +y?)? 16

6= [+ v~ ) — 5 (g — ) coslarctan(D)),

The numerical values show a good agreement with the exact ones except at points
that are extremely close to the corner points (0,1) and (1,0), that is, except at near
0 =0 and 0 =m/2.

fRefer to page 202 of the book Partial Differential Equations in Mechanics 1 by APS Selvadurai
(Springer-Verlag, 2000).
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The numerical values of ¢ at selected points in the interior of the solution
domain, obtained using 240 elements, are compared with the exact solution in Table
1.3. There is a good agreement between the two sets of results. The interior points in
the last two rows of Table 1.3 are close to the corner point (1,0). Note that the errors
of the numerical values at these two points are higher compared with those at the
other points. When we repeat the same calculation using 480 elements (Ng = 40),
the numerical values of ¢ are 0.826108 and 0.974111 at (1.099998,0.001920) and
(1.010000,0.000176) respectively, that is, we observe a significant improvement in
the accuracy of the numerical values at the two points.

Table 1.3
&, n) 240 elements Exact
(1.082532, 0.625000) —0.392546 —0.392045
(0.875000, 1.515544) —0.908254 —0.907816
(1.060660, 1.060660) —1.094489 —1.094211
(1.099998, 0.001920) 0.824548 0.826958
(1.010000, 0.000176) 0.960174 0.975656

1.9 Summary and Discussion

A boundary element solution for the interior boundary value problem defined by Egs.
(1.1)-(1.2) is given by Eq. (1.32) together with Eqs. (1.28), (1.30) and (1.31). The
solution is constructed from the boundary integral solution in Eq. (1.23). Constant
elements are used, that is, the boundary (of the solution domain) is discretized into
straight line elements and the solution ¢ and its normal derivative d¢/0n on the
boundary are approximated as constants over a boundary element.

As no discretization of the entire solution domain is required, the boundary
element solution may be easily implemented on the computer for problems involving
complicated geometries and general boundary conditions. The boundary may be
easily discretized into line elements by merely placing on it well spaced out points.
We have discussed in detail how the numerical procedure can be coded in FORTRAN
77. In spite of the specific programming language used, our discussion may still be
useful to readers who are interested in developing the method using other software
tools (such as C++ and MATLAB), as FORTRAN 77 codes are relatively easy to
decipher.

The term “direct boundary element method” is often used to describe the
boundary element procedure given in this chapter. This is because the unknowns
in the formulation given by Eq. (1.30) can be directly interpreted as values of ¢ or
0¢/On on the boundary. An alternative boundary element method may be obtained
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from the simpler boundary integral solution

B(z,y) = / Al ) ([ — €12+ [y — n2)ds(€, ),

C

where A(&,n) is a (boundary) weight function yet to be determined. To determine
A(&,m) approximately, we discretize C into boundary elements CV, 02 ... CcW-1
and CMas before, and approximate A(&,n) as a constant Al over C™  in order
to obtain the approximation

o) 2 3o A [ ne — g+~ nas(e,n)
m=1

C(m)

The constants A™ are to be determined by using the given boundary conditions.
We shall not go into further details here other than pointing out that such as an
approach gives rise to a so called indirect boundary element method as the unknowns
A are not related to ¢ or d¢/On on the boundary in a simple and direct manner.

1.10 Exercises

1. If ¢ satisfies the two-dimensional Laplace’s equation in the region R bounded
by a simple closed curve C, use the divergence theorem to show that

[ suiote stz ~o
C

(Note. This implies that if we prescribe d¢/dn at all points on C' in our bound-
ary value problem we have to be careful to ensure the above equation is satisfied.
Otherwise, the boundary value problem does not have a solution.)

2. If ¢ satisfies the two-dimensional Laplace’s equation in the region R bounded
by the curve C', use the divergence theorem to derive the relation

[ 156t sy = [ o6w.0)lotw. st )
C

R

Hence show that: (a) if ¢ = 0 at all points on C' then ¢ = 0 at all points
in R, that is, show that if the boundary conditions are given by ¢ = 0 on C
then the solution of our boundary value problem is uniquely given by ¢ = 0
for (z,y) € R, and (b) if d¢/0n = 0 at all points on C then ¢ can be any
arbitrary constant function in R, that is, if the boundary conditions are given
by 0¢/0n = 0 on C, then our boundary value problem has infinitely many
solutions given by ¢ = ¢ for (z,y) € R, where ¢ is an arbitrary constant.
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3. Use the result in Exercise 2(a) above to show that if the boundary conditions
are given by ¢ = f(z,y) at all points on the simple closed curve C then the
boundary value problem governed by the two-dimensional Laplace’s equation in
the region R has a unique solution. [Hint. Show that if ¢; and ¢, are any two
solutions satisfying the Laplace’s equation and the boundary conditions under
consideration then ¢ = ¢, at all points in R.] (Notes. (1) In general, for the
interior boundary value problem defined by Egs. (1.1)-(1.2) to have a unique
solution, ¢ must be specified at at least one point on C. (2) For the case in
which 0¢/0n is specified at all points on C, ¢ is only determined to within
an arbitrary constant. In such a case, the boundary element procedure in this
chapter may still work to give us one of the infinitely many solutions.)

4. Eq. (1.8) is not the only solution of the two-dimensional Laplace’s equation
that is not well defined at the single point (£,7). By differentiating Eq. (1.8)
partially with respect to x and/or y as many times as we like, we may generate
other solutions that are not well defined at (£,7). An example of these other
solutions is

(z—§)
2rf(x — )2+ (y —m)?

If we denote this solution by ®(z,y;&,n) (like what we had done before for the
solution in Eq. (1.8)), investigate whether we can still derive the boundary
integral solution as given by Eq. (1.19) from the reciprocal relation in Eq.
(1.10) or not.

o(r,y) =

5. Explain why the parameter A(§,n) in Eq. (1.23) can be calculated using

N&n) = [ (@l n)ds(e.),

C

Taking C' to be the boundary of the triangular regiony < —z+1, 2z > 0, y > 0,
evaluate the line integral above to check that: (a) A(2,1) =0, (b) A(1,0) = 1/8,
(c) A(0,0) =1/4, (d) N(1/2,1/2) =1/2, and (e) A(1/2,1/4) = 1.

6. The boundary element solution given in this chapter provides us with an ap-
proximate but explicit formula for calculating ¢ at any interior point (§,7) in
the solution domain. We may also be interested in computing the vector quan-
tity V¢. Can an approximate explicit formula be obtained for V¢ at (£,7)?
How can we obtain one?

7. Modify the program EX1PT1 in Section 1.7 to solve numerically the Laplace’s
equation given by Eq. (1.1) in the region 2 +y? < 1, z > 0, y > 0, subject to
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