
CHAPTER 11

Finite element methods

1. Preliminaries

For a number of applications the restrictions imposed by finite difference or
spectral methods with respect to the computational grid are too severe. This is
especially the case in structural engineering where the elasticity equations are solved
in domains of complicated geometry such as the interior of an automobile engine.
A review of the finite difference and spectral methods would show that the reason
relatively simple grids are required is that the differential form of the equation is
used. Finite volume methods had no such restriction since they used an integral
formulation, and indeed complicated geometries may be treated by finite volume
methods. Another class of methods which are based upon an integral formulation
are the finite element and closely related boundary element methods. We shall
concentrate on finite element methods for now.

The basic idea behind the finite element methods is to employ a piecewise local
approximation q̃ of the unknown function q that satisfies some PDE of interest.
The piecewise local approximation is defined over some general discretization of
the domain of definition of q denoted by Ω. Instead of directly using the piecewise
local approximation in the PDE we employ a weighted residual formulation. There
arises the significant question of how to best relate the integral formulation to the
PDE of interest. Once the discretization, piecewise local approximation and integral
formulation are determined a system of equations is obtained whose solution gives
the complete approximation to the problem of interest. We shall look at each of
these components in detail.

1.1. Spatial discretizations. A domain Ω may be discretized into simple
elements in very many ways. Nonetheless only a few are typically used in practice.
General affine geometry furnishes some guidance for general discretization tech-
niques. We know for instance that any d−dimensional domain may be expressed
as a reunion of simplicia

(1.1) Ω = ∪kSk .

Simplicia are the simplest continuum geometric entitites one can construct in a
space of dimension d. For 1D spaces the simplicia are line segments. In 2D they
are triangles and in 3D they are tetrahedra. The measure of each of these elements
is easily determined by the formulas:

(1) line segment in 1D of nodes {x1, x2}

(1.2) l = x2 − x1 =
����

1 1
x1 x2

����
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Figure 1. Example of the discretization into triangles of the do-
main between a circle and a NACA-0012 airfoil.

(2) triangle in 2D with nodes {(x1, y1), (x2, y2), (x3, y3)}

(1.3) A =
1
2

������

1 1 1
x1 x2 x3

y1 y2 y3

������
(3) tetrahedron in 3D with nodes {(x1, y1, z1), (x2, y2, z2), (x3, y3, z3)}

(1.4) V =
1
6

��������

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z3 z3 z4

��������
In the above formulas the element measures are given with sign, the sign cor-

responding to orientation of the nodes. We understand that the positive value is
to be taken whenever a true geometric measure (length, area, volume) is required.
Simplicia have many attractive theoretical properties, in particular there exists a
definition of what an optimal discretization is for a number of PDE’s of interest,
especially elliptic PDE’s such as the Poisson equation. Fig. 1 shows an example of
such a discretization.

Another widely used discretization is into generalized polyhedra having 2d sides,
i.e. line segments in 1D, quadrilaterals in 2D, hexahedra in 3D. These have the ad-
vantage of enabling easier organization of programs since there is a natural ordering
of the indices identifying each element. Thus discretizations which use these types
of elements give rise to structured computational grids, similar to those encoun-
tered in finite difference methods whereas discretizations using simplicia lead to
unstructured computational grids.

1.2. Piecewise interpolations. Once a discretization scheme for the geo-
metric domain has been established the next step is to define a local approximation
of q over the element E. Typically the approximation is an interpolation based
upon values Qj defined somewhere within the element E, but this is not obligatory
and other approximations (spectral elements, Chebyshev elements) may be used.
The position where the values Qj are to be defined must be established. A simple
choice is the element nodes but again this is not obligatory and the values may
be positioned at other points within E. Finally an interpolation scheme must be
established such as polynomial interpolation. Let us give some typical examples:

1.2.1. Linear elements in 1D. The element E has two nodes {x1, x2}, x2 > x1.
Values representing q(x) are defined at the nodes {Q1, Q2}. These define a linear
polynomial approximation valid over E

(1.5) q̃(x) =
(x− x1)Q2 + (x2 − x)Q1

x2 − x1
= N1(x)Q1 +N2(x)Q2

The functions N1(x), N2(x) have properties reminiscent of the Dirac delta

N1(x1) = 1, N1(x2) = 0(1.6)

N2(x1) = 0, N2(x2) = 1(1.7)
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Figure 2. Linear 1D form functions.

Figure 3. Quadratic element form functions in 1D.

and are called form functions. The particular ones used here are called the 1D
linear form functions and are depicted in Fig. (2)

1.2.2. Quadratic elements in 1D. The element E has three nodes {x1, x2, x2}
and the local approximation is

(1.8) q̃(x) = N1(x)Q1 +N2(x)Q2 +N3(x)Q3

with the form functions

N1(x) =
(x− x2)(x− x3)
(x1 − x2)(x1 − x3)

(1.9)

N2(x) =
(x− x3)(x− x1)
(x2 − x3)(x2 − x1)

(1.10)

N3(x) =
(x− x1)(x− x3)
(x3 − x1)(x3 − x2)

(1.11)

1.2.3. Linear elements on triangles in 2D. The element E has 3 nodes of coor-
dinates {(x1, y1), (x2, y2), (x3, y3)} at which the values Q1, Q2, Q3 are defined. The
local approximation of q is given by

(1.12) q̃(x, y) = N1(x, y)Q1 +N2(x, y)Q2 +N3(x, y)Q3

with the form functions
(1.13)

N1(x, y) =
1
2A

������

1 1 1
x x2 x3

y y2 y3

������
=

1
2A

(xy2 − yx2 − xy3 + yx3 + x2y3 − x3y2)

(1.14)

N2(x, y) =
1
2A

������

1 1 1
x1 x x3

y1 y y3

������
=

1
2A

(yx1 − xy1 + xy3 − yx3 − x1y3 + y1x3)

(1.15)

N3(x, y) =
1
2A

������

1 1 1
x1 x2 x
y1 y2 y

������
=

1
2A

(xy1 − yx1 − xy2 + yx2 + x1y2 − x2y1)

Notice how the properties of simplicia enable the form functions to be easily deter-
mined.

1.2.4. Linear along each direction elements on quadrilaterals in 2D. The ele-
ment E has 4 nodes {(x1, y1), (x2, y2), (x3, y3), (x4, y4}. It is convenient to introduce
a local coordinate system (ξ, η) so that the nodes correspond to the local coordi-
nates (±1,±1). The local approximation is then given in the local coordinates
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by

(1.16) q̃(ξ, η) =
4�

k=1

Nk(ξ, η)Qk

with the form functions

N1(ξ, η) =
1
4
(1 + ξ)(1 + η)(1.17)

N2(ξ, η) =
1
4
(1− ξ)(1 + η)(1.18)

N3(ξ, η) =
1
4
(1− ξ)(1− η)(1.19)

N4(ξ, η) =
1
4
(1 + ξ)(1− η)(1.20)

The local transformation of coordinates can also be written in terms of the form
functions

(1.21) x(ξ, η) =
4�

k=1

Nk(ξ, η)xk, y(ξ, η) =
4�

k=1

Nk(ξ, η)yk

2. Variational derivation of weighted residual formulations

We now turn to the problem of how to obtain a measure of the error introduced
in approximating the exact solution q to the PDE of interest with its piecewise
approximation q̃. Some techniques were presented in the general presentation of
weighted residual methods carried out in Chapter 2. For a wide class of problems
of interest, especially elliptic problems there exist alternative formulations that
lead to more efficient numerical algorithms. These are based upon variational and
functional analysis and we shall consider the basics of the theory here.

2.1. Variational calculus. Consider the problem of determining the extremum
of the integral

(2.1) I(q) =
� b

a

f(x, q, q�)dx

over all functions q : R → R that belong to some class, for example piecewise
continuous functions and that satisfy the boundary conditions q(x = a) = qa,
q(x = b) = qb. I(q) is called a functional in that it associates a scalar value to
each element from a space of functions. We can consider small perturbations of
the function q that we denote by δq̇ The perturbations maintain the boundary
conditions, i.e.

(2.2) δq(x = a) = 0, δq(x = b) = 0 .

The change in I is

(2.3) δI = I(q + δq)− I(q) =
� b

a

f(x, q + δq, q� + δq�)dx−
� b

a

f(x, q, q�)dx .

We shall consider q, q� as independent variables in f and carry out series expansions
to obtain

(2.4) δI =
� b

a

��
∂f

∂q

�
δq +

�
∂f

∂q�

�
δq�

�
dx .
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We can interchange the δ and d/dx operators in the second term and then integrate
by parts

� b

a

�
∂f

∂q�

�
δq�dx =

� b

a

�
∂f

∂q�

�
δ
dq

dx
dx =

� b

a

�
∂f

∂q�

�
d

dx
(δq) dx =(2.5)

=
�
∂f

∂q�

�
(δq)

����
x=b

x=a

−
� b

a

d

dx

�
∂f

∂q�

�
(δq) dx(2.6)

Applying the boundary conditions and then replacing the above result in (2.4) leads
to

(2.7) δI =
� b

a

��
∂f

∂q

�
− d

dx

�
∂f

∂q�

��
δqdx .

For I to be at an extremum δI must maintain the same sign under any perturbation
of the extremum. This is only possible if the factor multiplying δq in the above
integral is zero everywhere. If it were not then δq1 would give some value δI1 and
−δq1 would lead to the opposite value −δI1 and I would not be at an extremum.
We therefore have

(2.8)
�
∂f

∂q

�
− d

dx

�
∂f

∂q�

�
= 0

as the condition for I to be at an extremum. This is known as the Euler variational
principle. At the extremum we obviously have δI = 0.

The importance of the Euler variational principle for numerical solution of
PDE’s rests upon the link it furnishes between an integral formulation I(q) and
a differential equation (2.8). We can write down specific forms of f that lead to
PDE’s of great practical interest. For example replacing

(2.9) f(x, q, q�) =
1
2

�
dq

dx

�2

− gq

in (2.8) leads to the differential equation

(2.10) q�� = g

with the boundary conditions q(x = a) = qa, q(x = b) = qb. This is the standard
2 point boundary problem for a second order ODE. Recall that this can be solved
by either direct discretization leading to the linear system of equations

(2.11) Qj−1 − 2Qj +Qj+1 = h2gj , j = 1, . . . , N − 1

or by using a shooting method combined with an initial value solve in which we
seek z = q�(x = a) that leads to q(x = b; z) = qb. The variational formulation
above suggests a third approach. Instead of directly solving the ODE we can seek q
that minimizes I(q) with f given by (2.9). This is extremely useful in constructing
finite element approximations as we will see below.

Other important expressions of the Euler variational principle can be derived
for various situations. Let us consider the ones most often encountered.

(1) Functional of two functions in 1D. The functional is

(2.12) I(p, q) =
� b

a

f(x, p, p�, q, q�)dx
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and the Euler variational principle leads to

(2.13)
�
∂f

∂p

�
+

�
∂f

∂q

�
− d

dx

�
∂f

∂p�

�
− d

dx

�
∂f

∂q�

�
= 0

(2) Functional of a 2D function.

(2.14) I(q) =
� d

c

� b

a

f(x, y, q, qx, qy)dxdy

(2.15)
�
∂f

∂q

�
− ∂

∂x

�
∂f

∂qx

�
− ∂

∂y

�
∂f

∂qy

�
= 0

(3) Functional involving second order derivatives in 1D.

(2.16) I(p, q) =
� b

a

f(x, p, p�, p��)dx

(2.17)
�
∂f

∂q

�
− d

dx

�
∂f

∂q�

�
+

d2

dx2

�
∂f

∂q��

�
= 0

2.2. Ritz methods. In the Ritz formulation of the finite element method we
seek a piecewise approximation that minimizes the functional associated with the
PDE of interest. The piecewise local approximation can be expressed as

(2.18) q̃(x) =
�

e

�

k

Qe
kN

e
k(x)

where the e sum is over all elements and the k sum is over all nodes within an
element. The unknowns of the problem are the nodal values Qe

k. The form functions
Ne

k(x) correspond to some chosen approximation scheme. Let f be associated with
the PDE we are interested in solving. The problem reduces to finding {Qe

k} that
minimizes

(2.19) I(q̃) =
� b

a

f(x, q̃, q̃x)dx .

This can be solved by finding the solution to the system of equations

(2.20)
∂

∂Qe
k

I(q̃) = 0

with e going over all elements and k over all element nodes.
Note that the entire procedure rests upon the ability to determine a function

f that corresponds to a PDE of practical interest. In many situations we have
physical guidance that such a variational principle formulation exists. The basic
underpinning is furnished by analytical mechanics and the physical principle of
least action which finds various expressions in different disciplines. The principle of
least action asserts that of all the generalized trajectories (p, q) = {qk(t), pk(t) | k =
1, . . . , 3N} of a system of N particles, the one actually followed minizes the action
S

(2.21) S =
� t1

t0

L(t, p, q)dt

with L being the Lagrangean of the system. Here qk denote generalized coordinates
and pk generalized momenta. Though not always immediately apparent this leads
to other expressions typically called minimum energy functionals. These can be
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written for systems with no dissipative effects. Here are some examples of functions
f linked to important PDE’s:

(1) Poisson equation in 2D

(2.22) f =
1
2

�
q2x + q2y

�
− gq

for which (2.15) gives

(2.23) qxx + qyy = g

(2) Poisson equation in 3D

(2.24) f =
1
2

�
q2x + q2y + q2z

�
− gq

for which the Euler variational principle

(2.25)
�
∂f

∂q

�
− ∂

∂x

�
∂f

∂qx

�
− ∂

∂y

�
∂f

∂qy

�
− ∂

∂z

�
∂f

∂qz

�
= 0

gives

(2.26) qxx + qyy + qzz = g

2.3. Galerkin methods. The Ritz formulation typically leads to a system of
equations which has nice numerical properties. However there are many systems
for which a variational formulation is not possible typically because the system has
dissipative behavior. In such situations we can again use an integral reformulation
of the PDE of interest based upon the concept of a weak solution already introduced
in the study of hyperbolic problems. Suppose we’re looking for a solution to the
problem

(2.27) Aq = g

with A some differential operator. A function q that directly satisfies (2.27) is
called a classical solution. Consider now some space of test functions v and a scalar
product defined for the functions q and v. From (2.27) we can derive

(2.28) (Aq, v) = (g, v)

where (·, ·) denotes the scalar product, e.g.

(2.29) (u, v) =
� b

a

u(x)v(x)dx .

In (2.28) we can apply integration by parts to obtain

(2.30) (q,A∗v) = (g, v)

where A∗ is the adjoint operator of A. This typically enables us to avoid differenti-
ating functions q that might be discontinuous. We can now use (2.30) to determine
the unknown coefficients of a finite element approximation

(2.31) q̃(x) =
�

e

�

k

Qe
kN

e
k(x)

by requiring

(2.32)
�

e

�

k

Qe
k (N

e
k(x),A∗v) = (g, v) .
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The only piece missing is how we choose the test functions v. In a Galerkin formu-
lation these are chosen to be the form functions themselves leading to

(2.33)
�

e

�

k

Qe
k

�
Ne

k(x),A∗Ne
j (x)

�
= (g,Ne

j (x)) ,

thus defining a linear system

(2.34) AQ = b

(2.35) Ajk =
�
Ne

k(x),A∗Ne
j (x)

�
.

2.4. A detailed example. Let us now carry out the steps involved in solving
a Poisson equation in 2D using a Ritz formulation and quadrilateral elements. The
mathematical statement of the problem is

(2.36)
�

qxx + qyy = g (x, y) ∈ Ω
q = b (x, y) ∈ ∂Ω

with the domain Ω = [a, b] × [c, d] and ∂Ω denoting the boundary of Ω on which
Dirichlet conditions are given. The element form functions are given by (1.17)-
(1.20) and the function f is given by (2.22). The function I(q̃) is

(2.37) I(q̃) =
� d

c

� b

a

f(x, y, q̃, q̃x, q̃y)dxdy =
� d

c

� b

a

�
1
2

�
q̃2x + q̃2y

�
− gq̃

�
dxdy .

The finite element approximation is determined by the chosen form functions and
the nodal values {Qe

k}. The extremum of I(q̃) is attained when

(2.38)
∂

∂Qe
k

I(q̃) = 0

which leads to

(2.39)
� d

c

� b

a

��
q̃x

∂q̃x

∂Qe
k

+ q̃y
∂q̃y

∂Qe
k

�
− g

∂q̃

∂Qe
k

�
dxdy = 0

Note that

(2.40)
∂q̃

∂Qe
k

= Ne
k ,

∂q̃x

∂Qe
k

=
∂Ne

k

∂x
,

∂q̃y

∂Qe
k

=
∂Ne

k

∂y

so these derivatives no longer contain the unknowns {Qe
k}. We thus obtain

(2.41)
�

e

�

j

��� �
∂Ne

j

∂x

∂Ne
k

∂x
+

∂Ne
j

∂y

∂Ne
k

∂y

�
dxdy

�
Qe

k =
�

e

��
gNe

k dxdy

with k going over all the element nodes. The sum over the elements is typically
known as an assembly operation, leading to the computation of the matrix elements

(2.42) Ajk =
�

e

�� �
∂Ne

j

∂x

∂Ne
k

∂x
+

∂Ne
j

∂y

∂Ne
k

∂y

�
dxdy

known as the system stiffness matrix. We can easily compute the elements of this
matrix. Analytical computation is possible as in

(2.43)
∂Ne

k

∂x
=

∂Ne
k

∂ξ

∂ξ

∂x
+

∂Ne
k

∂η

∂η

∂x
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(2.44)
∂ξ

∂x
=

D(ξ,y)
D(ξ,η)

D(x,y)
D(ξ,η)

=
1
J

����
1 0
yξ yη

���� =
yη

J

(2.45)
∂η

∂x
=

D(η,y)
D(ξ,η)

D(x,y)
D(ξ,η)

=
1
J

����
0 1
yξ yη

���� = −yξ

J

(2.46) J =
����
xξ xη

yξ yη

���� = xξyη − xηyξ

The x(ξ, η) and y(ξ, η) dependencies are given by (1.21) so we obtain

∂x

∂ξ
=

4�

k=1

∂Nk

∂ξ
xk,

∂y

∂ξ
=

4�

k=1

∂Nk

∂ξ
yk(2.47)

∂x

∂η
=

4�

k=1

∂Nk

∂η
xk,

∂y

∂η
=

4�

k=1

∂Nk

∂η
yk(2.48)

But analytical evaluations are not really required in this case. We can recognize
that the integrand in (2.42) is quadratic in (x, y) and that a 4-point Gauss-Legendre
quadrature leads to an exact evaluation.


