CHAPTER 2

Computational Fluid Dynamics

Historically, computational fluid dynamics (CFD) has been one of the first
disciplines in which numerical methods have been applied widely. The main reason
underlying the early adoption of computational methods is the nonlinearity of the
equations of motion which leads to significant analytical difficulties. Indeed, even
now after more than a century of research we do not know whether a solution to the
general problem of fluid motion exists in a mathematical sense. From the physics
point of view the question of existence of solutions does not arise - experiment
ensures us that fluid motions do exist for appreciable intervals of time.

1. On the definition of a "fluid"

Fluids are understood from common experience to describe a state of matter
in which a substance assumes the shape of the walls bounding it by contrast to
the solid state. Liquids may fill only a certain part of the domain open to it while
gases will fill the container in its entirety. At the microscopic level the essential
characteristic of a fluid is that the interactions between particles (atoms, molecules)
are weak. For gases they range from interactinos so weak that they only occur when
the particles “collide” to slightly longer range interactions. By collision we typically
understand that the particles approach distances comparable to the diameter of
the electron cloud surrounding an atom in the composition of the gas. For all
gases two-particle interactions are the dominant contribution to the overall behavior
of the gas. Liquids exhibit stronger interaction forces such that the motion of
instantaneous clusters of particles becomes highly correlated over small intervals of
time. In contrast, crystalline solids have strong particle interactions leading to an
overall collective motion observed macroscopically.

By extension of the common concept of a fluid, any system for which interac-
tions between the component particles are weak and which exhibits a large number
of component parts can be treated as a fluid. In cosmology galaxies are small
compared to the scale of the Universe and interactions between them are weak -
gravitational forces play an important role only when galaxies are very close to-
gether in a state of “collision”. Hence many cosmologial simulations are carried
out using the equations of fluid mechanics. The same equations are used in the
analysis of traffic on highways (though one hopes to avoid collisions in this con-
text). The spread of a malignant tumour can be modeled using the equations of
fluid dynamics. We can see that though initially motivated by problems in hydro-
and aerodynamics, the equations and the methods considered in this chapter have
wide-ranging applicability throughout applied mathematics.

Since the component parts of a fluid are too many and too small (we say that
they are below the scale of resolution we are interested in) we must introduce quan-
tities that generalize the common concepts of point mass, point velocity. This is
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2 2. COMPUTATIONAL FLUID DYNAMICS

done by introducing density functions for the main conserved quantities in mechan-
ics: mass, momentum and energy. The analogy is set forth in the following table.
Here V is a volume containing a fluid and o(V') is the measure of the volume V.
Often, we are not so precise and use V both for the volume and its measure. It
is common terminology to refer to the “density” of a fluid when referring to the
density of mass. Similarily it is common practice to speak of the momentum of
a fluid p@ though this is more properly referred to as the density of momentum.
The macroscopic definition of these quantities involves taking a limit (V') ~» 0 in
which the measure of the volume becomes very small. Mathematically it does not
go to zero but rather to a value such that a typical distance d = [U(V)]l/ % is so
small that the individual component particles of the fluid become distinguishable.
It becomes apparent that some sort of separation of scales is involved: we are inter-
ested in establishing the motion of the particles of fluid on scales much large than
the distance of interaction between the particles themselves. This is formalized in
the Knudsen number

(1.1) Kn = 7

where )\ is a quantity indicative of the microscopic interactions between the particles
and [ is the scale of motion we are interested in describing. If the Knudsen number
is small, e.g. Kn < 1073 the system resembles a fluid. If it has intermediate
values 1073 < Kn < 10! a kinetic description is used and if it is large the system
is described using point mechanics. For a gas A is typically the mean free path,
i.e. the distance a particle traverses before it, on average, collides with another
particle. A typical practical situation might be the computation of air flow around
an airplane so ! = 1072 m is a reasonable estimate of the scales of motion we would
be interested in. By comparison, the mean free path for air is on the order A = 10~7
m so Kn = 1075,

The table also shows how we can define fluid density quantities microscopically.
The density of mass may be defined by summing the masses m; of all the particles
having a position vector &; that places them within the volume V' and dividing by
the measure of the volume o (V).

Point particle quantity Analagous fluid quantity Macroscopic definition ~ Microscopic definition
mass - m density (of mass) p p= J(El)llo 7:((“//)) p= 0(1‘/) 5;77%
momentum - ma (density of) momentum p p = H(%i/l;rL . m(;/()‘;l’(V) p=- (1V) %miﬁi
energy - (density of) energy pE p= a(gr)rio m(Z()f)(V) p= 0(1\/) Z m; E;

T, eV
2. The conservation equations

When the velocity of the fluid is small by comparison to the speed of light we
say that we have classical fluid motion. The equations of motion are derived from
the general physical principle of conservation of mass, momentum, energy. Recall
that the local, differential form of a conservation principle is

9q

2.1 — -f =
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with ¢ - the conserved quantity, f - the flux of ¢ and o - the source of ¢ (from hereon
we shall use o as a notation for source intensities and adopt the common practice
in physics of using V' for both volume and its measure). It is a physicist’s job to
determine the appropriate expressions for ¢, f, . One the most lucid presentations
by physicists of how this is done can be found in the classic Fluid Mechanics by
Landau and Lifschitz. We’ll go over the main points in the derivation.

2.1. Conservation of mass - the continuity equation. To express the
conservation of mass we set ¢ = p and consider now the means by which mass may
be transferred into a control volume V. One way is by overall, macroscopic motion of
the fluid. Another way is through microscopic diffusion processes for multi-species
fluids (fluids containing more than one chemical component). Let us concentrate
only on single-species fluids for now. It is clear that the macroscopic flux of mass
(mass transported per unit time thorugh unit area) is just the density multiplied
by the velocity

—

(2.2) f=pa.
If there are no chemical reactions then mass is neither created or destroyed and we
come across the familiar continuity equation

op o
(2.3) E—FV-(pu)—O,
or
(2.4) pt+(pui)i =0,

in component form. An important special case of the continuity equation is obtained
when we consider a fluid to be incompressible. This is satisfied to a high degree
of accuracy for common fluids such as liquid water for instance. Then we have
p = const and the continuity equation becomes

(2.5) V-d=0
or
(26) Uq5 = 0.

2.2. Conservation of momentum - the Navier-Stokes equations. Now
let us turn to the more complicated situation of momentum transport. We have
q = piu or q; = pu; componentwise. Again momentum can be transported through
a control volume either by macroscopic motion of the fluid, a process called con-
vection, or through microscopic processes termed diffusion. The macroscopic con-
tribution to the flux is straightforward

(2.7) fC=pui®u.
In component form we have
(2.8) 15 = pusu;

At the microscopic level there are now processes which have to be taken into account
even for a single-species fluid. As particles pass through any bounding surface of
a control volume they carry along a certain momentum. The momentum of an
individual particle is not necessarily that of the overall fluid at that point - a
mismatch arises and this is felt macroscopically as a “pressure” or a “tangential
stress”. Pressure is essentially the microscopic transport of the momentum oriented



4 2. COMPUTATIONAL FLUID DYNAMICS

normal to a surface. Momentum is a vector quantity and tangential momentum is
also transferred to a control volume when a particle crosses a volume surface. This is
felt macroscopically as “friction” or a “tangential stress”. Both of these correspond
to the same physical process: transport of momentum at the microscopic scales.
The different labels are more a result of historical accident than any true difference
between pressure and friction.

Empirical observations suggest that pressure is an intrinsic isotropic scalar and
friction is proportional to the gradient of the macroscopic fluid velocity. These
physical quantities should be invariant under translations and rotations, and tensor
analysis gives the only possible expression for such a description of the microscopic
flux of momentum as

(29) g = péij — a(um + ’U,j,i) — buudij .
It is convenient to rewrite this expression as
2
(2.10) fidj =pbij — 1 (U” +uj; — Sul,l(sij> — Cuy10:5 ,

which is just a different way of expressing the scalar constants a,b. The advantage
of this second form is that the tensor multiplying n has a zero trace. Recall that
the trace of a tensor A;; is a scalar T = A;;d;; (double summation on the repeated
indices %, j) so

2 2
(2.11) <Uu g — 3Ul,l5z‘j> 0ij = i j0ij + U0 — 110104
2
(2.12) = Ui + Ui — fuu(3) =0.

3
The two parameters 7, ¢ are called the first and second coefficients of viscosity,
respectively.
This leads to an overall flux f = ¢ + f¢ which is a two-component tensor (i.e.
a matrix) and whose components are

(2.13) fij = puivj +pdi; —n (um +ug,; — §U1,15ij> — Quy 1055 -

The final element needed to write down the conservation of momentum is an
expression for the source term ¢. Dynamics teaches us that forces are the sources
of momentum. Let us suppose that the volume-distributed force within the fluid is
given by o; = pg;.

The local, differential form of the conservation of momentum can now be written
in vector form as

o pil
(2.14) ) L G f= g,
ot

Using the compact component notation, the conservation of momentum is
(2.15)

(pui) s = pgi — [puinj + iy —n (wij + )i — 3uidi;) — Cuiidis]
(2.16) = pgi — (puiuy) ; — p30ij + [0 (wij + uji — Fwady)] 5+ [Cwadiy]
(217) = pgi — (puiuy) ; —pi+ [0 (wig +uje — Fwadiy)] j+ [Cud]

Note that up to this point we have not given any specific physical significance
to the quantities p, 7, (. They have been introduced as scaling coefficients in
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the general expression of a flux independent of translations, rotations and that
depends linearly upon velocity gradients. We must assign physical significance to
these parameters so that experiments can give values for these parameters. We
must also consider what kind of boundary conditions are to be imposed on the the
unknown quantities.

The microscopic momentum flux density is also the stress felt by an infinitesimal
fluid element

2
(218) Sz = ff‘l] = pSU -n <uw— + Uj,i — 3u1115ij> — Cuuéij.

The trace of the stress is
(2.19) Sij0i; = 3(p — Cuyy).

In a fluid at rest we typically assign the label “hydrostatic pressure” P to the
average normal stress % (S11 + S22 + S33). We would like to be able to extend this
label to arbitrary fluid motions, i.e. to have P = p. This is possible if either we
have:

(1) wy; =0, i.e. the fluid is incompressible, or

(2) ¢ = 0 the second coefficient of viscosity is zero. This is known as the
Stokes hypothesis and is verified for a wide variety of fluid motions (a
notable exception is ultrasonic vibrations in a fluid).

Assuming now that we can indeed identify the scalar p with the hydrostatic
pressure P, the equations of motion take the form

(2.20) (pui) s = pgi — (puiuj)7j —Di+ [77 (u” +uj; — %uz,z%)] .

and are known as the Navier-Stokes equations. There remains only one more pa-
rameter to discuss, 1. A simple flow which exhibits fluid friction is to enclose a
fluid between two plates, keep the plate at zo = 0 stationary and move the plate
at xo = h with a fixed velocity U = U €}. This is known as a Couette flow and the
solution of the equations of motion for such a flow is a linear distribution of the
velocity in the direction of the plate motion
8U1

2.21 uy = Axg = —xo.
( ) 1 2= 55,2
The constant velocity gradient can be determined from assuming that the fluid
velocity at a solid-wall boundary is equal to the velocity of the wall. These are
known as no-slip boundary conditions. We have
ou U-0
Y /h
8$2 h

One can measure the force needed to keep one of the plates in motion and this,
in turn is an indication of the fluid friction. Experiments show that the friction
increases linearly with the top plate velocity U and the inverse of the plate spacing.
This led Newton to propose a definition of the tangential stress exerted between
two fluid elements as

(2.22)

. aul

thus assigning a specific physical significance to the parameter 7.
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2.3. Conservation of energy. The derivation of an equation expressing the
conservation of energy is a bit more involved because there are multiple definitions
of what we mean by “energy” in the context of fluid flow. For a point mass one
typically starts out with “energy” signifying the kinetic energy K = %mvz. After-
wards, when considering motion in a gravitational field, it makes sense to assign to
the point mass a “total energy” E = %va + mgh with mgh called the potential
energy of the point mass in a gravitational field. These are not the only definitions
of “energy” we could use; the point mass is a model of a true solid that is composed
of atoms that move and hence have an intrinsic kinetic energy. This type of energy
is typically not included in point dynamics. For fluids a similar problem arises in
that we can assign various definitions of what we mean by energy and write down
corresponding transport equations. Here, we’ll consider just the simplest possible
definition and look at the change in time of kinetic energy for an incompressible
fluid with constant 1 and with no external forces § = 0. We’ll adopt a slightly
different approach to determining the local form of the conservation form. Instead
of first determining an expression for the flux, we’ll directly compute the derivative
with respect to time of the kinetic energy (density)

0 0 pu? Ou;
2.24 TP 2%
( ) 5‘t 8t 9 pU; at PUU; ¢
The Navier-Stokes equations give us an expression for
(2.25) (pui) e = puiy = — (puguy) ; — pi + [0 (wiy +wjs — Fuidi)]
J
(226) = —pPU; J-uj — pUin,j — D, + n ui,j + Ujﬂ' — guuéij e
3
Note that for an incompressible fluid we have u;; = 0 so
(2.27) (pui) e = —pus juj — i + 1 (wij +uji) ;
Therefore
0 pu?
(2.28) B g T Puillie = —puitli ju = Ui + nui (wij + i) -

We’ll now try to use this expression to come up with what the flux of kinetic energy
is. For this we must isolate the divergence of vector quantity in the above equation.
Note that

(2.29) (pwi) i = pivi +pui; = wip;
for an incompressible fluid. Similarily
(2.30)

L oo oY — L0 oo o Lo a0 L o 0y ar . g arar.
(§pulujuj)7i = SPUU UG+ 5 PU; UG+ 5 PUU UG s = PUU UG5 = PUGUUG 5 -

The last equality above corresponds to switching the ¢, j indices. The viscous term
from (2.28) can be rewritten as

(2.31) i (i +wja) ;=g (ugi + i) ,
by switching indices and then as
(2.32) nug (wg,i + wig) ; = [y (w4 wig)] ;= nuge (uja + wi )
We can rewrite (2.28) as
(2.33)
d pu?

op o = Puitie = = [gpuinguy 4 pus — g (w4 wa)] =g ()
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and can now identify the flux and source terms for the conservation of kinetic
energy. The flux has components

(2.34) fi = spuiujug + pui —n (i + ujq) ug
which in vector form corresponds to

(2.35) f=Ki+pi—S-a

with S the viscous stress tensor

(2.36) Sij =mn(uij +uji) -

The physical effects present in the flux are:

(1) K - convective (macroscopic) transport of kinetic energy by the fluid

(2) pu - microscopic transport of energy thorugh the action of normal stresses
in the fluid. This is more commonly interpreted macroscopically as work
done by the pressure forces

(3) —S - 4 - microscopic transport of energy thorugh the action of tangential
stresses in the fluid. This is more commonly interpreted as work consumed
to overcome friction forces.

The source term is
(2.37) o= —nuj; (uj; +uij) -

This corresponds to loss of kinetic energy (into thermal energy) due to the action
of friction forces.

2.4. Boundary conditions. The theory of boundary conditions for the fluid
dynamic equations can get quite involved!. Rather than going into the details of
what boundary conditions lead to well-posed problems in a precise mathematical
sense we’ll adopt the viewpoint of physics which observes that fluid motions exist
and are unique for specific initial and boundary conditions.

2.4.1. Solid walls. At a solid wall it is common experience that fluids “stick”
to the wall. This leads to the so-called no-slip boundary condition where the fluid
velocity at a solid wall i, is the same as the velocity of the wall itself 1%

(2.38) iy =V .

There are several departures from this boundary condition that are encountered
experimentally. Some fluids like liquid helium exhibit what is known as superfluidity
and fluid velocity might be different from the wall velocity. Also in the transition
region between fluid and particle behavior when Knudsen numbers become large
(Kn 2 0.01) slip is observed between the fluid velocity and the wall velocity — such
situations arise in space vehicle atmosphere re-entry. We shall not discuss these
rather specific situations and assume that the no-slip boundary condition is valid
for viscous fluids. Note that the no-slip boundary condition only gives us 3 relations
for the 5 unknowns needed to describe fluid motion. Further boundary conditions
must be imposed. These typically have to do with the specifics of heat transfer of
the wall. A general discussion may be found in fluid dynamics texts. Generally
we’ll assume we have adiabatic walls, i.e. there is no heat transferred from the wall
to the fluid and work out the implications of this assumption as the need arises.

1See O.A. Ladyzhenskaya, Boundary value problems of mathematical physics for a mathe-
matical treatment of these issues.
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2.4.2. Free surfaces, fluid-fluid interfaces. Free surfaces of a fluid arise in many
situations: the ocean surface, two immiscible liquids in the same container are some
some examples. Though one might assume at first sight that the required boundary
condition is that fluids should move with the same velocity this is not a necessary
condition that comes from the fluid dynamic equations. If one isolates a fluid-fluid
interface with a small control volume and lets the thickness of this control volume
go to zero the forces acting on the control volume sides must balance, otherwise the
fluid inside would be accelerated to an arbitrarily large value. The proper boundary
conditions to apply in such situations are known as stress continuity equations and
state that on both sides of an interface the motion of the fluids must be such that
the normal and tangential stresses match across the interface.

3. Computational techniques for specific fluid models

Though we could attack the problem of directly solving the full set of conser-
vation laws governing the motion of a fluid it is more instructive to first consider
specific simplified situations and the techniques which we can use for these cases.

3.1. Inviscid fluids. An inviscid fluid has negligible viscosity 7 = 0 in most
of the flow domain of interest. Many applications can be treated under this hy-
pothesis, e.g. aerodynamics of aircraft, hydrodynamics of ships, in order to obtain
a first estimate of the forces exerted by a fluid on other objects. For most of these
applications thermodynamics provides additional informatino which can be used to
eliminate the need for solving the energy equation explicitly. We are left with a
system formed by the continuity and momentum equations which reads

(3.1) p+ (puj); =0

(32) (pui) ¢ + (puiv;).j = pgi — p.i
The momentum equation can be rewritten as

(3.3)

pati + puie + ui(pug) j + pujtiig = p(uiz + ujui ;) + i [pe + (puy) 51 = pgi — P
Using the continuity equation this becomes

1
(3.4) Uit + UjlUi 5 = PYi — ;P,i

and is known as the Fuler equation of fluid dynamics.
In vector form we have

dp

3.5 — 4+ V- (pt) =0
(35) L4V (o)
Dui  ou Vp
3.6 — == u-V)i=¢——
(3.6) i = gp @ V)i=g P
Note the appearance of the substantive derivative % = % + @ - V expressing the

change in a qunatity due to the combine effects of its rate of change in time and the
difference between inflow and outflow of that quantity. From the vector identity
@x (bx &) = (a@-&)b—(@-b)Z one can obtain a very useful expression of the substantive
derivative. Consider the product @ x (V x @). Remembering that the curl should
only act upon the second instance of u we can rewrite this product as

(3.7 ﬁx(in)_V(u;)(ﬁV)ﬁ,
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and therefore obtain an expression for the substantive derivative
Du 0ou u?
3.8 —=—+4+V | = V X @) X .
(38) Dt~ ot (2)+( )
The curl of the vector field « which describes the local, instantaneous rate of rotation
of the fluid and is known as the vorticity &

(3.9) Jd=Vxu,
so the Euler equations can also be written as
ou u? Vp
1 — — IXU=g§—— .
(3.10) at—i—V(Q)-l—wxu g P

Taking the curl of this equation leads to the vorticity transport equation also known
as the Helmholtz equation

o]
ot

3.1.1. The Bernoulli relation. Notice that up to this point we have used the
conservation of mass and conservation of momentum principles. In order to close
the system of equations decribing inviscid fluid motion we need to also invoke
conservation of energy. There are various ways to do this. We shall see later on
that one possibility is to impose a specific form of the thermodynamic process
which the fluid undergoes during its motion. When imposing such a relation the
first principle of thermodynamics (an affirmation of the conservation of energy) is
used.

Another important way in which conservation of energy can be used is actually
derived from the Euler equations. Assume that we have a stationary motion, i.e.
there is no change of the flow variables with respect to time. The Euler equations
then read

2
(3.12) v<u>+wxﬁg’vp.
2 p
It is typically the case that the external forces are conservative and hence can be
expressed as the gradient of a potential

(3.13) G=VU.

Furthermore for almost all fluids one can express the ratio Vp/p as the gradient of
what is known as a barotropic potential function P

Vp

(3.11) +@mvw=uavw—a%mw+ng—vX<p).

\Y%
(3.14) 71’ = VP
so the steady Euler equations are
2
(3.15) V<z>+&xﬁ:VW—P)

Multiply this by some arbitrary displacement dr’ and let the d-operator denote
changes in the flow variables made along this displacement

(3.16) d)+ (@ xa)-di=d(U —-P) .

The mixed product above is null for two cases

(1) If d7 corresponds to a streamline, i.e. it is colinear with ;
(2) If d7 corresponds to a vorticity line, i.e. it is colinear with &.
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In both of the above cases we obtain

u?
which is the general form of the Bernoulli equation. This equation is essentially an
expression of the conservation of energy and provides the final relation necessary
for solving the system of PDE’s describing the motion of an inviscid fluid. You may
be most familiar with the form of the Bernoulli equation for incompressible fluids
in a gravitation field for which U = —gz and P = p/p with z the height above some

reference line
2

(3.18) % +gz+ % = const .

3.1.2. The Crocco relation. Though we will not go into the detailed thermody-
namics of fluid flow there is one relation that is very useful that should be mentioned.
It provides a link between kinematic and thermodynamic parameters and is known
as the Crocco relation. We start from the first principle of thermodynamics in
differential form

(3.19) de = dg — dl

with e - the internal energy, q - heat transfer from the fluid to surrounding systems
and [ - the mechanical work exchanged between the fluid and the surroundings.
The definition of entropy s is given differentially by

_dg
T
with T the temperature. Mechanical work is given by

(3.21) dl = pd C})

so we have

(3.20) ds

1
(3.22) de =Tds — pd (p)
from where

1
(3.23) Ve=T Vs—pV (p) .

In the Euler equations we have the term Vp/p which can be rewritten

(3.24) % —v (i) —pV <;) -V (e + 2;) —TVs

so the Euler equations become

= 2
(3.25) aazt+v(1;)+ﬁxﬁv<6+i>+TVS
or
7 2
(3.26) TVszaath+V<e+z+u2>+ﬁxﬁ,

the Crocco relation. The quantity h = e + p/p is known as the enthalpy of a fluid
and expresses its internal energy including the work necessary to form the fluid
from its constituent particles. Energy in a fluid may be transferred between kinetic
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and internal forms. In an inviscid fluid this process is lossless and it is convenient
to have a measure of the overall constant total energy available to the fluid. For
this we define the stagnation energy

2

(3.27) E:eJr%,

and the stagnation enthalpy
2

(3.28) H=h+ % .
Using these quantities Crocco’s relation can be written as
(3.29) TVS:%—FVH—HD’XQ.

Notice that for a steady motion (9@/0t = 0) of a lossless fluid (VH = 0) the change
in entropy is given only by the vector product of vorticity and velocity
(3.30) TVs=d xu.

3.1.3. Inwviscid, incompressible fluids - Potential flow. If the fluid is both in-
compressible p = const, and inviscid n = 0 the equations of motion simplify con-
siderably. The continuity equation becomes

(3.31) Ui =0.

The momentum equations are

(3.32) Uit +UjU; 5 = =Dy

in the absence of external forces. In vector notation form the equations are
(3.33) V-i=0

(3.34) % + (@ -V)i=-Vp

with the density assumed to be equal to 1 (always possible through a change of
units of measurement). Taking the curl of the incompressible Euler equations leads
to the following special form of the vorticity transport equation
o]

(3.35) Fn + (@ - V)d=(d-V)u .
This shows that if the initial vorticity of an inviscid fluid is zero it remains zero at
all later times within the interior of the fluid domain

o]
3.36 Wo=0=—=0.
(336) =0
The velocity field is said to be irrotational or solenoidal and can be expressed as
the gradient of a scalar function known as the velocity potential ¢

(3.37) i=Veo.

This leads to a great simplification of the system of PDE’s describing fluid motion
since we only seek a single scalar function and furthermore we see that this function
is harmonic

(3.38) Vi =0

as a result of the continuity equation. Since the fluid velocity is determined from
a single scalar potential such flows are called potential flows and we can apply the
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full range of methods known to be applicable to the Laplace equation to determine
the fluid motion. From the Crocco relation we see that such motions are isentropic,
i.e. they preserve constant entropy

(3.39) Vs=0.

We must also specify boundary conditions to be satisfied by the velocity poten-
tial. Typically these will involve imposing the normal velocity along some surface.
Along solid walls we would have

dp
%—0

which is known as the no through-flow condition. At computational interfaces
typically the velocity is assumed to be given

do
dn
Singularity methods in two dimensions.
Integral formulas for solutions to the Poisson equation. A typical problem one en-
counters in potential flow is determining the velocity field around some body 2,
moving through a fluid - this is known as an exterior flow problem. Let us consider
the simplest case first, that when the body is moving with a constant velocity Use.
We can orient our z-axis parallel to this velocity direction and also choose to work
in a reference frame attached to the body so that the body appears motionless
and the fluid far away from the body’s influence has the constant velocity —Uy.€
(note that this implies that the presence of the body induces perturbations which
decay sufficiently fast away from the body, a point we shall return to later). We
typically choose a computational domain of fluid around the body 2 = Q. —
such that on the far-field boundary of this computational domain Y., = Q. we
have U & —U..&, to whatever degree of precision required. The problem we wish
to solve is therefore

(3.40) @i =

(3.41) Q- i= U .

(3.42) V¢ =0in
do S
hotst =_-U. -
dn S oo 1t
d
el _y
dn ol

where the first boundary condition is given by the flow far away from the body and
the second expresses no through-flow at the body surface.

Potential theory gives us analytical expressions for the solution that are useful
computationally. For example, a function which is harmonic in {2 may always be
expressed as an integral over the surfaces bounding ¥ = 02 as

(3.43) oP) = = [ |0 (2) —o0n g (3)] ez

in three-dimensional space. For two dimensional flows this becomes

(3.44) o(P) = i/Z [d¢(M) Inr — gi)(M)di (lnr)} s .

o dn n
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=0Q

Here P denotes some point within €2 and M a point on the surface ¥. The vector
7 is the relative position of P from the viewpoint of P

(3.45) 7 =Fp —Fur

and r = |7] so the two above formulas can be rewritten as
(3.46)

o) = [ [0 (L) oL (L] s o),

@a1) o(P) = - [ | i — sl - 9(00) 5 (e~ i) | asi 20).

Relation to general operator theory methods. The above forms are examples of the
general method of solving a linear differential equation through the fundamental
solution technique, a topic we shall return to in some detail. In brief, if we wish to
solve the general linear PDE

(3.48) =0

one approach is to first determine the generalized fundamental solution or Green’s
function G, i.e. the solution to the problem

(3.49) LG =56

where § is a Dirac delta distribution placed at the origin. Since the rhs involves
distribution we shall say that G is a generalized solution if it satisfies

(3.50) (G, L%) = (6, ¢)

for some suitable space of trial functions . Here L* is the dual operator of L and
(+,-) is some scalar product. The solution to the original problem can then be
expressed as a convolution product

(3.51) Yv=Gxo.
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Written out explicitly the value of ¢ at some z is

(3.52) b(x) = / Gz — y)o(y)dy .

That the above formula is indeed a solution is easy to verify formally
(3.53)

Lp= L/G(x —y)o(y)dy = /LG(x —y)o(y)dy = /5(50 —y)o(y)dy = o(z) .

Generally, solving the equation L) = ¢ involves applying certain boundary condi-
tions which lead to specific forms for the general integration operation shown above
- these difficulties have been glossed over for now.

This general analytical procedure has many computational implementations.
All of these depend on the ease with which the fundamental solution G can be
found. In general the Green’s function also depends on the particular shape of the
domain over which the operator L is defined.

Example 1.: Consider as a first, simple example the initial value problem
given by: L = % +3,0=¢"%

(3.54) Lp=0s % +3p=e?,

with the initial condition 1(0) = 0. We can easily find the solution by
classical techniques to be

(3.55) Pt) = e 2 — 73,

Let us rediscover this solution through the fundamental solution approach
by first solving

(3.56) LG =o.
We'll use the property
do
(3.57) i 0
where 6 is the Heaviside function, to quickly verify that the fundamental
solution is
(3.58) G(t) = 0(t)e ™
since
(3.59) G'(t) =0 (t)e ™ — 3 0(t)e
so that

(3.60) LG = G'(t)+3G(t) = 0'(t)e 3 =3 0(t)e 3 +3 0(t)e 3 = 5(t)e 3 = 6(t) .

The last equality might seem a bit puzzling but recall that solutions are
considered in a generalized sense so that §(t)e=3! = §(t) is understood as
stating that

(3.61) (6(t)e™, ) = (8(1), )

for some space of test functions ¢ and this is true since

(3.62) /5(t)e_3t<p(t) dt = (0) = /5(t)go(t) dt .
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Having determined the fundamental solution we can immediately write
down the solution to the initial value problem as

(3.63) p=Gro )= [ 0= eI dr
0

(3.64) P(t) = /000 O(t — 1)e e dr = e /OOO Ot —T)e” dr

e 3t [/0 O(t — 1)e” dr + /too O(t — 1)e” dT}

(3.66) =e 3 [eT|T:6 + 0] =e (el —1)=e -,

(3.65)

T=

Example 2.: For L = %4—&2 the fundamental solution is G (z) = 6(z) =2z
so the solution to ¥ (z) + a?y¥(z) = f(x) is

(3.67) vla) = 5 [ 0w~ y)sinaa ~y) ) dy

Green’s functions for the Laplace operator. For the Laplace equation the Green’s
function for an arbitrary domain 2 is typically hard to find, involving a complexity
comparable to solving the full problem (3.42). Transforming the problem to an
equivalent problem in free space is useful because we know the Green functions for
R? or R? analytically for problems in which the solution decays to zero at infinity.
In two dimensions, the solution to

(3.68) NGy =0

(3.69) lim Go =0

is
1 1

(3.70) GQA‘ = —logr = — log(z* +¢?) .
2m 4

This corresponds to what is known as a unit source singularity placed at the origin,
since the integral of the fluid flux over any curve that encloses the origin is a constant
equal to 1 (for a fluid of unit density) and represents the amount of fluid injected
into the domain by the point singularity. The elementary fluid flux is given by

(3.71) dQ = @ dY .

For the unit source singularity we have

—

7
3.72 i=VGhy = .
( ) u v 2 27_”,,2
Integrate this over a unit circle centered on the origin to obtain the total flux
(3.73) Q / RN
. = r —df =
0o 2mr? r

where we used dS = r(7/r) df, with 7/r representing the outward pointing unit
normal. It is easy to see that the integral over any other curve enclosing the origin
would be the same (use integration in the complex plane and notice that the origin

is a pole).
In three dimensions the solution to the analogous problem is
11 1 1
(3.74) GY=——-=

drr 7E(x2+y2+z2)1/2 '
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FI1GURE 1. Flow field induced by a unit source singularity placed
at the origin. also drawn are lines of constant potential.

Panel methods in 2D. The integral form of the solution can be used directly to gen-
erate useful numerical algorithms, a point that shall be investigated in conjunction
with various fast summation algorithms we’ll consider later on. To get some initial
experience with integral equation methods for potential flow we’ll consider one of
the simplest, but still widely used, algorithms - the panel method.

Consider the 2D representation formula

1
o

(3.75) o(P) /z: {q(M) Inr — V(M)% (Inr)| d> .

One can read this as stating that the potential at some point is given by summing
the contribution of the infinitesimal sources g(M)dY and the infinitesimal dipoles
~v(M)dX. A straightforward discretization suggested by this observation is to replace

the curve ¥ by a piecewise linear approximation and to specify some simple func-
tion q(M),v(M) on each segment. The simplest case is when we take q(M),y(M)
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(xj , yj) (x_/+1 > y_/+1)

constants over each segment thus leading to what is known as a constant inten-
sity source panel or dipole panel, respectively. Global boundary conditions dictate
whether both kinds of panels are needed, a detail we won’t go into for now. Let us
present a typical method based upon source panels only.

A 2D body is placed in a uniform current of velocity U =U &, The body’s
shape is approximated by a sequence of N linear segments with a specified ordering
of the panels. Each segment has a uniform source distribution of intensity g;.
These intensities are the unkowns of the problem and have to be determined from
boundary conditions imposed on the body. Since boundary conditions on the body
are given in terms of velocity (the no-through flow condition) we compute the
velocity induced by all panels at a point 7 on the body’s surface

N
(3.76) V() =U+> U

where (7](7:’) is the velocity induced by panel j at position 7. To compute the
induced velocity it is convenient to use a local coordinate system for each panel
that has axis ¢ aligned with the panel. In this coordinate system the elementary
velocity induced by the source d@Q = ¢;d§ at position (£, 0) along the panel at a
point 7y = &€ + Mi€, is given by

- idE T — e
(3.77) al = % T = %

2|7 — €|

Integration along the panel length from £ = —1;/2 to & = 1;/2 leads to
(3.78)

1,2
S 4q; ! (& — &) 4q; 2 27 16=15/2
. :U cCr = — 7d :——ln — =+
q5 Hjk jk 3 o 1,/ (é—k — 5)2 _’_n’% g Ar [(€ gk) 771@} E=—1;/2
(3.79)
_ 4, G2 &) i
(/2 + &) +
- o q; ’ Tk
(3.80 g vin = U - @ :—/ S
) j Vi gk En = 5 12 (& O
; —1;/2 41 /2
(3.81) =% |arctan S li/2 arctan &+ 1/2
2m u Mk

These velocities are easily transformed back into the global coordinate system
(3.82) ; win = Uy - € = @ [jn(e - €2) + vji(@, - &)

(3.83) g5 vik = Uji - €y = ¢; [1n(C - &) + vjr(€y - &)
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AN
du—;(;k )
Erni)
dg g
—<—e >
(~1/2,0) 40 = (1/2,0)
qj'd&

The no-through flow boundary condition is now imposed leading to a linear
system for the unknown panel source intensities g;

N
(3.84) V() iy =0=0U i + > _U;(F) - fix
j=1
where 7 is the unit vector normal to panel k. The explicit form of the system is
N
(3.85) Z (Wjknk,z + VjEne,y) ¢ = —U -7
j=1
Complex variable techniques. Complex function methods are extremely useful
in studying two-dimensional potential (inviscid, incompressible) flows with no initial

vorticity. Recall that for these types of flows the velocity field can be expressed as
a scalar potential

(3.86) V=vV¢,

and that the potential function is harmonic because of the incompressibility con-
straint V - V' = 0 arising from the continuity equation

(3.87) ANp=0.
Componentwise we have

(3.88) V = ué, + &,
(3.89) U= g, V=~qby

and since ¢ is harmonic
(3.90) Uy = —Uy .
A curve to which the velocity vector is always tangent is called a streamline
and determined by
do _ dy

(3.91) — =

Note that the above relation can be expressed as

(3.92) —vdr +udy=0.
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This a differential expression
(3.93) A(z,y)dx + B(z,y)dy

which may be expressed as the total differential of some function v if A, = B, or
in this particular case

(3.94) —Uy = Uy

This is exactly the incompressibility constraint u, + v, = 0 so there does exist a
total (exact) differential ¢ with the properties

(3.95) dy = —v dz + u dy,
(3.96) Yy = —v, Yy =1u .

Furthermore, along streamlines we see that
(3.97) dyp=0.

Since the fluid is assumed to be irrotational, the component of the vorticity
V x V perpendicular to the xy-plane must be zero

(3.98) Uy — Uy =0,
which implies

so the function 1) is also harmonic.
We know that holomorphic functions in the complex z = z + iy plane have
harmonic real and imaginary parts so we can define a complex potential

(3.100) f(z) = oz, y) +iv(z,y) .
Since f is holomorphic we have

i of of
(3.102) % = ¢y + iy =u—1iv
(3.103) _i% = —i(py +i0y) = u —v

so we see that the derivative of the complex potential leads to quantity similar to
the velocity field vector, albeit with a change of sign in the y-component. We shall
call this quantity the complex velocity

daf
3.104 w=—.
(3.104) 7
The conjugate complex velocity w is equivalent to the velocity vector V.
3.1.4. Inviscid, compressible flow - Euler equations of gas dynamics.
One-dimensional flow.
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Eigenstructure of the 1D Euler equations. In the absence of viscosity the conserva-
tion form of the fluid dynamic equations in 1D is

(3.105) g+ f(@)z =0
(3.106) g=1[p pu pE]"
(3.107) f=[pu pu*+p puH ]T

Faced with the task of devising a numerical method to solve the above system of
equations, our first goal is to determine the type of PDE system we have. We do
this by computing the eigenvalues of the local linearization

(3.108) qt + f¢q: =0

with the coefficients within the Jacobian matrix f; assumed to be frozen (this is
the linearization). Though one could directly compute the eigenstructure of f; it
is typically more convenient to work with the primitive variables

T
(3.109) w=[p u p]
Through the general equations for an gas we know that a relationship g(w) ex-
ists and physical considerations imply the existence of an inverse also w(q). The
conservation equations can be rewritten as

(3.110) QuWt + fequwe =0
or

(3.111) wy + Aw, =0
with

(3.112) A= (qw) " fow -

Note that the above relation is a similarity transform from the conservative variable
Jacobian f, to a new matrix A. The form of A is most easily determined by replacing
q with w and applying thermodynamic relations in the original conservative system.
The conservation form of the continuity equation

(3.113) pt+ (pu), =0
immediately leads to the primitive variable form

(3.114) Pt + upz + puy =0 .

The conservative momentum equation

(3.115) (pu)i + (pu® +p)x =0
likewise gives

(3.116) u([pe + (pu)a] + pur + putiy + pe =0

with the quantity in the brackets being null by the conservative continuity equation.
The energy equation is the only equation that requires a bit more work. The
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equations
(3.117) (PE): + (puH)z =0
1 p  u?
A1 F=—=4—
(3.118) 1p + 5
(3.119) H=E+2 a2=4L
P P
lead to
(3.120) Pt + up, + ypu, = 0.
The final form we obtain for A is therefore
u P 0
(3.121) A=10 u 1/p
0 pa® wu
The eigenvalues are given by
(3.122) det(A—A) = (u—A) [(u—A)?+a*] =0
leading to
(3.123) M=uta a=u, \3=u—a.
The associated eigenmode matrix is
p 1 p
(3.124) R= [ T T T3 ] = a 0 —a
pa? 0 pa?

The determinant of R is
(3.125) det R = —2a%p

which is nonzero since a and p are physical, positive quantities so the eigenvectors
form a basis for 3-space and the primitive variable system w; + Aw, = 0 is hyper-
bolic. Because of the existence of the similarity transform, the original conservative
variable system is also hyperbolic.

Since the system is hyperbolic, we know that one way of seeking a solution is
by marching along characteristic curves. In preparation for this let us determine
the characteristic form of the equation. We write

(3.126) A= RAR™!
with
u+a
(3.127) A= U
uU—a
0 a 1/p
-1 1 2
@ 0 —a 1/p
The primitive variable system is therefore
(3.129) w; + RAR w, =0

leading to the characteristic system
(3.130) 2t + Az =0
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with the characteristic variables
(3.131) z=R'w= p—

Note that up to now we’'ve assumed that the system was linearized by freezing
the local values of coeeficients of the derivatives. This can be motivated as a
pertubation expansion of the flow variables

(3.132) w=1w+w

in which w is some average state that corresponds to the frozen coefficients and w
are perturbations around this state. If the perturbations are small we have

(3.133) (@ +w'); + (A + A') (w0 +w')y =0
which gives
(3.134) wi 4+ Aw!, =0

since derivatives of w are zero, and neglecting second order quantitites (i.e. A'w.).
The small-perturbation characteristic variables are now

1,7 /
) Lo oa 1yp[e 2" T 5a,P
(3.135) 2 =R ' = 5 2a> 0 -2 u | = P — &y
a 0 —a 1/p 4 BV V
2a 2@25

an entity of considerable physical importance. Recall that for a linear system of
hyperbolic variables, the characteristic variables remain constant along their re-
spective characteristic curves. For the non-linear system of 1D Euler equations
this is no longer strictly the case, but for small perturbations components of 2’
remain constant along the respective characteristic curves. Hence, small perturba-
tions propagate in accordance with one of the three modes above. The physical
nature of the above waves is determined by applying thermodynamic relations; we
will skip the details and just list the physical nature of the eigenmodes:

(1) +u'/(2a) + p'/(2yD) corresponds to the propagation of sound waves with
velocity u £ a

(2) p' —p'/a® corresponds to the propagation of entropy waves with the flow
velocity u

The Riemann problem for 1D Euler equations. A number of numerical methods for
hyperbolic PDE’s rely on the solution to a specific initial-value problem

q =<0

(3.136) q(z,t =0) = { o x>0

known as the Riemann problem. To solve a system of linear hyperbolic PDE’s with

the above initial condition we would expand the jump in ¢ at the origin on the basis
formed by the eigenvectors of the system matrix

(3.137) G —q = Zakm
k=1
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F1GURE 2. Typical geometry of characteristic curves for the 1D
Euler equations showing the slopes and Riemann invariants.

and then follow the propagation of each eigenmode independently of the others.
This is no longer possible for non-linear systems since pasage of the perturbations
associated with one eigenmode affects all the other modes.

Nonetheless, there exist some systems, the representative example of which
is the Euler equations, for which a complete solution for the Riemann problem
is available. The crucial aspect is that there exist quantities that remain constant
along characteristic curves, somewhat similar to how characteristic variables remain
constant along characteristic lines for linear problems. These are called Riemann
invariants and the Riemann invariants for the 1D Euler equations are

(1) along sound propagation characteristics

2a

3.138 +
( ) S, U =1

(2) along the entropy propagation characteristic
(3.139) U, P

Note that there are two quantities that remain constant along each character-
istic curve. One can plot the surfaces defined by constant values of the Riemann
invariants in (p, u, p) space and seek intersections between these families that cor-
respond to finding a physical path between (p;,u;, p1) and (pr, wr, Dr).

Godunov type methods for the Euler equations. The knowledge of the characteristic
structure of the equations and of the solution to the Riemann problem makes it
straightforward to construct a Godunov type method for the Euler equations. Let us
consider a finite volume method. The same ideas can be implemented also in a finite
difference or a finite element context. We introduce a grid {a = zg,x1...,xp = b}
partitioning the domain [a,b] into finite volume cells C; = [z;_1,z;]. Integrating
the conservative form of the Euler equations over a time step [t",#"*1] and over a
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—
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FicURE 3. Typical aspect of characterisitic lines near the discon-
tinuity at the origin in a Riemann problem.
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FicURE 4. Typical pattern of discontinuities formed by interaction
of the characteristics from the left and right states in the Riemann
problem for the 1D Euler equations.

cell C; leads to

n . At
(3.140) QjH =Qj - N (Fj — Fj-1)
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with
1 x; 1 tn+1
3.141 n=— t"dzx, F; = — 1)) dt.
(3.141) G =xy | atwein F= g [ Sate0)
The main problem faced in constructing a Godunov method is to establish a
procedure to compute the numeric fluxes Fj}.



