
CHAPTER 1

Overview of frequently encountered PDE’s

1. PDE’s in the natural sciences

Ordinary and partial differential equations (ODE’s and PDE’s henceforth) are
frequently encountered in numerous areas of study. A knowledge of the basic sci-
entific background is necessary to write down equations of interest. Perhaps one
should not be surprised that the same background knowledge is useful in devising
solution methods. The typical procedures by which PDE’s are derived should be
known to researchers working on solution methods.

1.1. Conservation laws. A large number of PDE’s arise from the physi-
cal principle of conservation. Physicists have always been interested in describing
changes in the world surrounding us. By observation, theory and experiment cer-
tain concepts have been arrived at, among which the concept that one can define
physical quantities that remain the same during some process. These quantities are
said to be conserved. Typically a quantity is conserved in a hypothesized isolated
system. In reality no system is truly isolated and the most interesting applications
come about when we study the interaction of two or more systems. This leads to
the question of how one can follow the changes in physical quantities of the separate
systems. An extremely useful procedure is to set up an accounting procedure. To
start with a mundane example, consider the physical quantity of interest to be the
quantity of currency Q in a building B. If the building is a commonplace one, it
is to be expected that when completely isolated, the amount of currency in the
building is fixed

(1.1) Q = Q0 .

Q0 is some constant. Eq. (1.1) is self-evident but not particularly illuminating
– of course the amount of money is constant if nothing goes in or out! Similarly
in physics, statements such as “the total mass-energy of the universe is constant”
are not terribly useful, though one should note this particular statement is not
obviously true.

Things get more interesting when we consider a more realistic scenario in which
the system is not isolated. People might be coming and going from building B and
some might actually have money in their pockets. In more leisurely economic times,
one might be interested just in the amount of money in the building at the end of
the day. Just a bit of thought leads to

Qn = Qn−1 +ΔQn−1,n

where Qn is the amount of money at the end of day n, Qn−1 that from the previous
day and ΔQn−1,n the difference between money received and that paid in the
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building during day n

ΔQn−1,n = Rn−1,n − Pn−1,n .

Keeping track of Rn−1,n and Pn−1,n separately, for instance in two distinct columns
on a ledger, seems easier to people more inclined towards addition than subtraction,
and this leads to double entry accounting, an important discovery of Renaissance
Italy (see http://www.acaus.org/history/hs pac.html).

As economic activity picks up and we take building B to mean “bank” it be-
comes important to keep track of the money in the bank at all times, not just at the
end of the day. It then makes sense to think of the rate at which money is moving
in or out of the building so we can not only track the amount of currency at any
given time, but also be able to make some future predictions. Since some time
has passed in order for economic activity to pick up, we can assume that addition
and subtraction have become much more familiar and are actively taught to small
children. We’ll therefore use a single quantity F to denote the amount of money
leaving or entering building B during time interval Δt with the understanding that
positive values of F represent incomes and negative ones expenditures. Such under-
standings go by the name of sign conventions. They’re not especially meaningful
but it aids communication if we all stick to the same ones. The amount of currency
in the building then changes in accordance to

(1.2) Q(t+Δt) = Q(t) + F Δt .

By the time such equations were being written out fluid flow was a scientific
frontier investigated by the Bernoullis (see http://www.maths.tcd.ie/pub/ Hist-
Math/People/Bernoullis/RouseBall/RB Bernoullis.html) and F got to be referred
to as a flux, the Latin term for flow.

It is readily apparent that (1.2) is a good approximation for small intervals,
but probably a bad one if Δt is large since economic activity might change from
hour to hour. In order to better keep track of things one might think of F as being
defined at any given time t so we have F (t) the instantaneous flux of currency at
time t. By the time people were thinking along these lines Newton and Leibniz had
introduced calculus and sufficient time has since passed that the notions of calculus
are widely known at least among college students if not small children. We can
therefore write

(1.3) Q(t+Δt) = Q(t) +
� t+Δt

t

F (τ)dτ

and get a suitably impressive statement which, form nonewithstanding, carries the
same significance as (1.2).

On the verge of the modern era economic activity might really expand and
buildings become so large that it makes sense to keep track of the amount of money
in individual rooms and also track inflows and outflows through individual doors.
We can identify a room or door by its spatial position denoted by x = (x1, x2, x3)
but we encounter a problem in that position vectors such as x refer to a single
point and no matter how small we make the currency it still has to occupy some
space. This conceptual difficulty is overcome by introducing a fictitious “density
of currency” at time t which we shall denote by q(x, t). The only real meaning we
associate with this density is that if we sum up the values of q(x, t) in some volume
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ω we obtain the amount of currency in that volume

Q(ω, t) =
�

ω

q(x, t)dx .

On afterthought, we might observe that the same sort of question should have arisen
when we defined Q(t) as being defined at one instant in time. Ingrained psycholog-
ical perspectives make Q(t) more plausible, but were we to live our lives such that
quantum fluctuations are observable, Q(t) would be much more questionable.

If we have a spatial density for Q it seems natural to do the same for F and we
define f(x, t) as being the instantaneous flux of currency in a small region around
(x, t). A bit of thought suggests that the flux should be a vector quantity since
we have three directions along which a density can be defined. Along any given
direction a scalar flux is obtained by a scalar product; in particular along the
direction normal to a boundary n(x) the scalar flux is given by f(x, τ) · n(x). The
relation between the total flux and the flux densities is given by

(1.4) F (τ) =
�

∂B

f(x, τ) · n(x) dx .

Careful observers will notice the appearance of ∂B as defining the integration do-
main. By this we mean that the integration is to be taken over the boundary of the
domain B, or in everyday terms, the exterior walls and doors of building B. There
is a bit of inconsistency in the sciences as to what we mean by “flux”. Sometimes
it means the amount of some quantity passing through a finite region such as F
above. Other times it actually means “flux density” such as f . This possibility of
confusion shows the value of using the same conventions. Imposing such conven-
tions is however a social activity and subject to historical iteration. In this course
the convention “flux”=f shall be imposed by instructor fiat. Gathering together all
the above we can write a much more sophisticated-looking statement
(1.5)

Q(B, t+Δt) =
�

B

q(x, t+Δt)dx =
�

B

q(x, t)dx
� �� �

Q(B,t)

+
� t+Δt

t

�

∂B

f(x, τ) · n(x) dx dτ

which nonetheless is essentially the same as (1.2) or (1.3).
There are some special cases in which additional events affecting the balance of

Q can occur. For instance if by B we mean a reserve bank, money might be (legally)
printed and destroyed in the building. Again by analogy with fluid dynamics when
such an event occurs we say that there exist sources of Q within B, much like a
spring is a source of surface water. Let Σ(t) be the total sources at time t. By now
we know what to expect; Σ(t) might actually be obtained by summing over several
sources placed in a number of positions, for instance the separate printing presses
and furnaces that exist in B. It is useful to introduce a spatial density of sources
σ(x, t). Our conservation statement now becomes

�

B

q(x, t+Δt)dx−
�

B

q(x, t)dx =(1.6)

� t+Δt

t

�

∂B

f(x, τ) · n(x) dx dτ +
� t+Δt

t

�

B

σ(x, τ)dx dτ(1.7)

The statement above encompasses all physical conservation laws. It is however
quite straightforward in interpretation:
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change in money in B = net money coming in or going out of B + net money
produced or destroyed in B.

It should be emphasized that the above statement has true physical meaning
and is referred to as an integral formulation of a conservation law. The key term
is “integral” and refers to the fact that we are summing over some spatial domain.
Remember that the densities were artificial constructs that we introduced.

Eq. (1.6) is useful and often applied directly in the analysis of physical systems.
From an operational point of view it does have some inconveniences though. These
have mainly to do with pesky integration domains B which typically are difficult
to describe and over which it is difficult to perform integrations. To avoid this,
mathematicians and physicists have gone one further step and imagined f(x, t) as
being defined everywhere not only on ∂B (the doors and windows of B). These
internal fluxes can be shown to have a proper physical interpretation to which we
shall come back later. For now let’s see the implications of this extension. If we not
only assume that f(x, t) is defined everywhere, but also that it has nice properties
such like enough smoothness to ensure differentiability then we can apply the Gauss
theorem and transform the integral over ∂B into one over B

(1.8)
�

∂B

f(x, τ) · n(x) dx =
�

B

∇ · f(x, τ) dx .

Here we encounter another convention problem in that some disciplines use outward
pointing normals in which case (1.8) holds while other disciplines use an inward
pointing normal in which case we have

(1.9)
�

∂B

f(x, τ) · n(x) dx = −
�

B

∇ · f(x, τ) dx .

Fluid dynamics uses the second convention which leads to (1.9) and this is the one
we’ll adopt since so many developments in numerical methods for PDE’s initially
arose from fluid dynamics problems. Applying (1.9) to (1.6) leads to

�

B

�
q(x, t+Δt)− q(x, t) +

� t+Δt

t

∇ · f(x, τ) dτ
�
dx =(1.10)

� t+Δt

t

�

B

σ(x, τ)dx dτ .(1.11)

There was nothing special about the shape of the building B or the length of the
time interval Δt that we used in deriving (1.10). We can therefore consider special,
infinitesimal domains and intervals and obtain a differential form

(1.12)
∂q

∂t
+∇ · f = σ ,

where, as is customary, the dependence of q, f , σ on space and time is understood
but not written out explicitly. Eq. (1.12) is known as the local or differential form
of the conservation law for E. It is often easier to work with since there are no
complications arising from the domain shape that appear directly in the statement
of conservation.

In physics the above scenario is encountered many times. Physicists have ar-
rived at certain quantities which obey (1.6). In many situation it is permissible to
speak of local quantities and use (1.12). Classical physics arrived at mass, momen-
tum, energy and electrical charge as physical concepts that lead to quantities that
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satisfy conservation laws. Contemporary physics unified momentum and energy
in the theory of relativity and also gave new, microscopic quantities that satisfy
conservation such as lepton number.

1.2. Special forms of conservation laws.
1.2.1. Newton’s law. The full general form (1.12) often arises in real-world ap-

plications. Many times it is possible to carry out certain simplifications that lead
to equations that are easier to solve. As a simple example, consider the classic
problem of dynamics of studying the motion of a point mass m. It has no internal
structure and its motion is characterized by the second law of dynamics which is a
statement of conservation of momentum

(1.13)
d

dt
(mv) =

�
F .

Here we have the correspondence q ←→ (mv), σ ←→
�

F with (1.12), hence the
statement: “external forces are sources of momentum”. Instead of a PDE, the lack
of internal structure has led to an ODE.

1.2.2. Advection equations. Other special forms of (1.12) are not quite so triv-
ial. Often f , σ depend on q, that is we have f(q), σ(q). The specific form of this
dependence is given by physical analysis typically. But accounting for all physical
effects is so difficult that simple approximations are often used. For instance we
can assume that f(q) is sufficiently smooth to have a Taylor expansion

(1.14) f(q) = f0 + f �(q0)(q − q0) + . . . =

and consider what happens when we use various truncations of the Taylor expan-
sion.

Typically we can take f0 = 0 since it doesn’t affect the PDE (1.12) anyway.
Choosing a system of units such that q0 = 0, the simplest truncation is

(1.15) f(q) = f �(0)q = u q

and the σ = 0 form of (1.12) is

(1.16)
∂q

∂t
+∇ · (u q) = 0 .

If we consider that u does not depend on the spatial coordinates we obtain

(1.17)
∂q

∂t
+ u · ∇ q = 0

which goes by the name of the constant velocity advection equation. The name
comes from its use in modeling the transport of some substance by a flow; this
process is known as advection. Its one-dimensional form is the basis of much devel-
opment in numerical methods for PDE’s

(1.18)
∂q

∂t
+ u

∂q

∂x
= 0 ,

and we shall study it in detail.
If u does depend on x we have

(1.19)
∂q

∂t
+∇ · (u q) =

∂q

∂t
+ q ∇ · u+ u · ∇ q = 0

or

(1.20)
∂q

∂t
+ u · ∇ q = −q ∇ · u
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known as the variable velocity advection equation. In very many cases the advection
velocity field u is divergence free

(1.21) ∇ · u = 0 ,

so we have the simpler form

(1.22)
∂q

∂t
+ u · ∇ q = 0 .

1.2.3. Diffusion equations. Another widely encountered dependence of f on q
is of the form

(1.23) f(q) = −α∇q

and this leads to

(1.24)
∂q

∂t
−∇ · (α∇q) = σ(q) .

This is known as the heat equation or the diffusion equation. If α (the thermal
diffusivity) is a constant we have

(1.25)
∂q

∂t
= α∇2q + σ(q) ,

a widely encountered form of the heat equation. For many problems time evolution
is so slow that the ∂q/∂t derivative is negligible and (1.25) becomes

(1.26) ∇2q = −σ/α
known as the Poisson equation. If σ = 0 we obtain the special form

(1.27) ∇2q = 0

known as the Laplace or harmonic equation.
1.2.4. Advection-diffusion equations. As might be expected, the physical flux

dependence might combine the two forms (1.15), (1.23) encountered above

(1.28) f(q) = u q − α∇q ,

from which we obtain

(1.29)
∂q

∂t
+ u · ∇ q = σ(q) +∇ · (α∇q)− q ∇ · u ,

known, naturally enough, as the advection-diffusion equation. Again, in most ap-
plications u is divergence-free so (1.29) becomes

(1.30)
∂q

∂t
+ u · ∇ q = σ(q) +∇ · (α∇q) .

1.2.5. Vector valued conservation laws. Up to now we have considered that
the conserved quantity is a scalar q. Often it is more convenient to group scalars
together as a vector, for instance when thinking of the momentum of a body. The
generalization of the conservation law (1.12) is immediate

(1.31)
∂q(x, t)

∂t
+∇ · f(q(x, t), (x, t)) = σ(q(x, t), (x, t)) .

Here the explicit dependence on space x and time t of q has been pointed out, as
well as the possible dependence of the fluxes f and sources σ on both space and
time and the conserved variables q(x, t). Note that ∇ · f has a different meaning
in the present context. As a result of taking the divergence we should still obtain
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a vector quantity for (1.31) to be consistent. This means that f is now a tensor of
dimension n× n where n is the number of components of e (and σ).

1.2.6. Convection-diffusion equations. In fluid flow, among other applications,
the velocity field u is related to the conserved quantities

(1.32) u = u (x, t,q) .

This particular situation goes by the name of convection. Similar to (1.29) we can
write a convection-diffusion equation

(1.33)
∂q

∂t
+ u(q) · ∇ q = σ(q) +∇ · (α∇q)− q ∇ · u

and its vector valued generalization

(1.34)
∂q
∂t
+ u(q) · ∇ e = σ(q) +∇ · (α∇q)− q ∇ · u .

1.3. Conservative and non-conservative forms. We have seen that a
large class of differential equations are derived from conservation laws. The ba-
sic form of a conservation law is:

time change = -(difference in outward fluxes) + (sources).
In mathematical terms we have the local, differential formulation

(1.35)
∂q

∂t
= −∇ · f(q) + σ .

This is known as the conservative form of the law of conservation of q. The same
principle of conservation might be stated differently if ∇ · f(q) is expanded. For
instance, when f = u q we can derive from the conservative form

(1.36)
∂q

∂t
= −∇ · (u q) + σ

the mathematically equivalent form

(1.37)
∂q

∂t
= −q ∇ · u− u · ∇q + σ .

Eq. (1.37) is known as the non-conservative form of the conservation law for
q. Though equivalent from the analytical point of view, the numerical solution
procedures for the two forms show different characteristics as we shall see later on.

2. PDE’s in other disciplines

Historically, most of the effort in studying PDE’s has been directed at those
suggested by mathematical physics and that somehow arise from a conservation
law. Recently PDE’s have been introduced in a number of other fields of study
such as mathematical finance or ecology. For instance an important development
in mathematical finance is the Black-Scholes equation describing the trading of
European options

(2.1)
∂V

∂t
+
1
2
σ2S2

t

∂2V

∂s2
+ rSt

∂V

∂s
− rV = 0

with V the value of an option, t time and s an asset allocation. Though such
equations arise from different fundamental principles it is striking that they have
the same form as those arising in mathematical physics. The Black-Scholes equation
can be described as a mixed diffusion advection equation with a source term for
example. We shall concentrate on a mathematical physics background in discussing
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numerical solution of PDE’s but keep in mind that the same methods are widely
applicable.

3. Typical problems involving ODE’s and PDE’s

Now that we have arrived at the general form of PDE’s which are of interest
in many applications we can turn to actually finding solutions. An important first
observation is that specifying the equation to be solved does not allow a unique
solution. We must also specify additional boundary and/or initial conditions. Just
as we have important special equations such as the advection or the Laplace equa-
tion, there are a number of important, archetypal problems involving ODE’s and
PDE’s.

3.1. Initial value problem for ODE’s. The simplest problem is the initial
value problem for a first order system of ODE’s

(3.1)
�

q� = f(t,q)
q(t = 0) = q0

.

This also encompasses initial value problems for ODE’s of higher order since an
ODE of order p can always be rewritten as a system of p ODE’s of order 1. To
exemplify, consider

(3.2) q��� = g(t, q, q�, q��) .

By introducing the auxilliary functions

(3.3) r = q�, s = q��

we obtain the system

(3.4)
d

dt




q
r
s


 =




r
s

g(t, q, r, s)




which is of the form (3.1).

3.2. Boundary value problem for ODE’s. For ODE’s of order 2 or greater
or for systems of two or more ODE’s one can meaningfully impose boundary con-
ditions at distinct points within the computational domain. The archetypal ODE
boundary value problem is for a second order ODE with conditions at the end
points of the computational domain

(3.5)





q�� = f(t, q, q�)
q(a) = q1
q(b) = q2

.

Instead of the function values, its derivatives might be specified such as in

(3.6)





q�� = f(t, q, q�)
q�(a) = r1
q�(b) = r2

.
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3.3. Initial value problems for PDE’s. We can pose boundary and/or ini-
tial value conditions for PDE’s also. It should be noted that not all combinations
of PDE’s and boundary conditions are compatible. For a large class of phenom-
ena modeled by differential equations we have a reasonable expectation that small
changes in the boundary conditions should lead to small changes in the solution.
We would also expect the solution to exist and be unique. This means that the so-
lution should depend continuously on the boundary data. Problems for which this
holds are said to be well posed in the sense of Hadamard and we shall concentrate
almost exclusively on this type of problems. Note that not all phenomena modeled
need to behave this way as shown by the sensitive dependence on initial data shown
in chaotic behavior.

The PDE initial value problem (IVP) most closely related to (3.1) is that posed
for the scalar advection equation

�
∂q

∂t
+ u

∂q

∂x
= σ(x, t, q)

q(x, t = 0) = q0(x), −∞ < x <∞
.

This problem is well posed and straight forward to solve as we shall see later on. The
advection equation is the simplest example of the class of hyperbolic PDE’s. The
name is a result of historical accident; the first time PDE’s were actively studied
scientists were interested in second order PDE’s the classification of which can be
related to that of quadratic curves.

We can also consider PDE’s of similar form for vector variables

(3.7)

�
∂q
∂t
+A

∂q
∂x
= σ(x, t,q)

q(x, t = 0) = q0(x), −∞ < x <∞
.

This IVP is well posed if the eigenvectors of the matrix A form a complete set.

3.4. Boundary value problems for PDE’s. The archetypal boundary value
problems are posed for the Poisson equation. Here are the most commonly encoun-
tered problems exemplified for the 2D Poisson equation.

(1) Dirichlet problem, in which the values of the unknown function are given
along the solution domain’s boundary

(3.8)





∂2q

∂x2
+

∂2q

∂y2
= σ(x, y, q), (x, y) ∈ Ω

q(x, y) = F (x, y), (x, y) ∈ ∂Ω
.

Here, and in the following, Ω is the domain over which the problem is
defined and ∂Ω is its boundary.

(2) Neumann problem, in which the values of the normal derivative of the
unknown function are given along the solution domain’s boundary

(3.9)





∂2q

∂x2
+

∂2q

∂y2
= σ(x, y, q), (x, y) ∈ Ω

∂q

∂n
(x, y) = F (x, y), (x, y) ∈ ∂Ω

.
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(3) Robin problem, in which a linear combination of the function and its nor-
mal derivative are given on the boundary

(3.10)





∂2q

∂x2
+

∂2q

∂y2
= σ(x, y, q), (x, y) ∈ Ω

q(x, y) + k(x, y)
∂q

∂n
(x, y) = F (x, y), (x, y) ∈ ∂Ω

.

3.5. Mixed-type problems for PDE’s. A number of PDE’s require both
initial and boundary value conditions. The typical case is given by the problem of
solving the heat equation on a finite strip a ≤ x ≤ b

(3.11)





∂q

∂t
= α

∂2q

∂x2
+ σ(x, t, q),

q(a, t) = F1(t), q(b, t) = F2(t)
q(x, t = 0) = q0(x)


