

mass flux = hu, momentum flux = (hu)u + p where p = hydrostatic pressure

$$h_t + (hu)_x = 0$$
$$(hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x = 0$$

Jacobian matrix:

$$f'(q) = \begin{bmatrix} 0 & 1\\ gh - u^2 & 2u \end{bmatrix}, \qquad \lambda = u \pm \sqrt{gh}.$$

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.1]

Shallow water equations

$$\begin{split} h_t + (hu)_x &= 0 \implies h_t + \mu_x = 0 \\ (hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x &= 0 \implies \mu_t + \phi(h,\mu)_x = 0 \\ \end{split}$$
 where $\mu = hu$ and $\phi = hu^2 + \frac{1}{2}gh^2 = \mu^2/h + \frac{1}{2}gh^2.$ Jacobian matrix:

$$f'(q) = \left[\begin{array}{cc} \partial \mu / \partial h & \partial \mu / \partial \mu \\ \partial \phi / \partial h & \partial \phi / \partial \mu \end{array} \right] = \left[\begin{array}{cc} 0 & 1 \\ gh - u^2 & 2u \end{array} \right],$$

Eigenvalues:

$$\lambda^1 = u - \sqrt{gh}, \qquad \lambda^2 = u + \sqrt{gh}.$$

Eigenvectors:

$$r^1 = \begin{bmatrix} 1\\ u - \sqrt{gh} \end{bmatrix}, \qquad r^2 = \begin{bmatrix} 1\\ u + \sqrt{gh} \end{bmatrix}.$$

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.1]

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.1]

Notes: R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.1]

Shallow water equations

Hydrostatic pressure:

Pressure at depth z > 0 below the surface is gz from weight of water above.

Depth-averaged pressure is

$$p = \int_0^h gz \, dz$$
$$= \frac{1}{2}gz^2 \Big|_0^h$$
$$= \frac{1}{2}gh^2.$$

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.1]

Compressible gas dynamics

In one space dimension (e.g. in a pipe). $\rho(x,t) = \text{density}, \quad u(x,t) = \text{velocity},$ p(x,t) =pressure, $\rho(x,t)u(x,t) =$ momentum.

Conservation of:

flux: ρu mass: ρ momentum: ρu flux: $(\rho u)u + p$ (energy)

Conservation laws:

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x = 0$$

Equation of state:

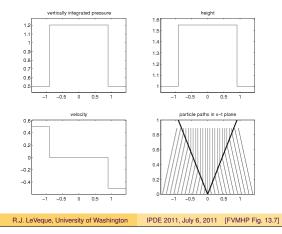
 $p = P(\rho).$

(Later: *p* may also depend on internal energy / temperature) R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Chap. 14]

Two-shock Riemann solution for shallow water

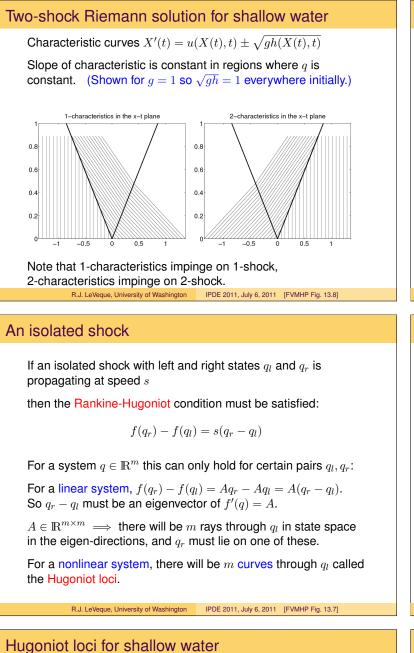
Initially $h_l = h_r = 1$, $u_l = -u_r = 0.5 > 0$

Solution at later time:



Notes:			
	R.J. LeVeque, University of Washington	IPDE 2011, July 6, 2011	EVMHP Sec 13.1
	R.J. Leveque, Oniversity of Washington	IFDE 2011, July 0, 2011	[FVIVIER Sec. 10.1]

Notes:			
	R.J. LeVeque, University of Washington	IPDE 2011, July 6, 2011	[FVMHP Chap. 14]
Notes:			



$$q = \begin{bmatrix} h \\ hu \end{bmatrix}, \qquad f(q) = \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \end{bmatrix}.$$

Fix $q_* = (h_*, u_*)$.

What states q can be connected to q_* by an isolated shock?

The Rankine-Hugoniot condition $s(q - q_*) = f(q) - f(q_*)$ gives:

$$s(h_* - h) = h_* u_* - hu,$$

$$s(h_* u_* - hu) = h_* u_*^2 - hu^2 + \frac{1}{2}g(h_*^2 - h^2).$$

Two equations with 3 unknowns (h, u, s), so we expect 1-parameter families of solutions.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.7]

Notes: R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Hugoniot loci for shallow water

Rankine-Hugoniot conditions:

$$s(h_* - h) = h_* u_* - hu,$$

$$s(h_* u_* - hu) = h_* u_*^2 - hu^2 + \frac{1}{2}g(h_*^2 - h^2)$$

For any h > 0 we can solve for

$$u(h) = u_* \pm \sqrt{\frac{g}{2} \left(\frac{h_*}{h} - \frac{h}{h_*}\right) (h_* - h)}$$

$$s(h) = (h_* u_* - hu)/(h_* - h).$$

This gives 2 curves in h-hu space (one for +, one for -).

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Hugoniot loci for shallow water

For any h > 0 we have a possible shock state. Set

$$h = h_* + \alpha,$$

so that $h = h_*$ at $\alpha = 0$, to obtain

$$hu = h_* u_* + \alpha \left[u_* \pm \sqrt{gh_* + \frac{1}{2}g\alpha(3 + \alpha/h_*)} \right].$$

Hence we have

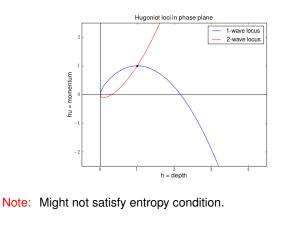
$$\left[\begin{array}{c} h\\ hu \end{array}\right] = \left[\begin{array}{c} h_*\\ h_*u_* \end{array}\right] + \alpha \left[\begin{array}{c} 1\\ u_* \pm \sqrt{gh_* + \mathcal{O}(\alpha)} \end{array}\right] \qquad \text{as } \alpha \to 0.$$

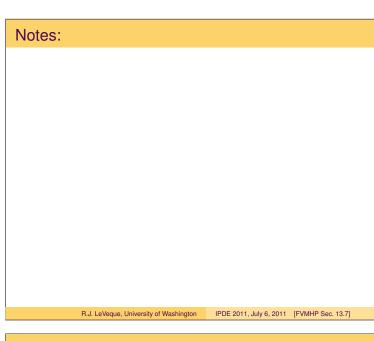
Close to q_* the curves are tangent to eigenvectors of $f'(q_*)$ Expected since $f(q) - f(q_*) \approx f'(q_*)(q - q_*)$.

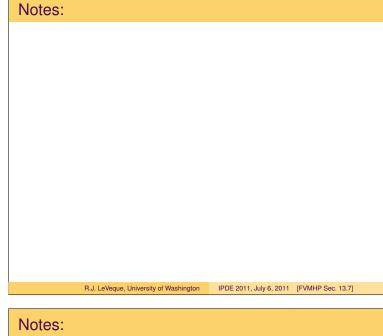
R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

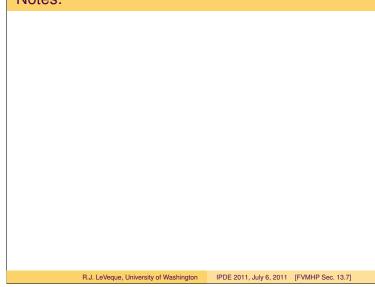
Hugoniot loci for one particular q_*

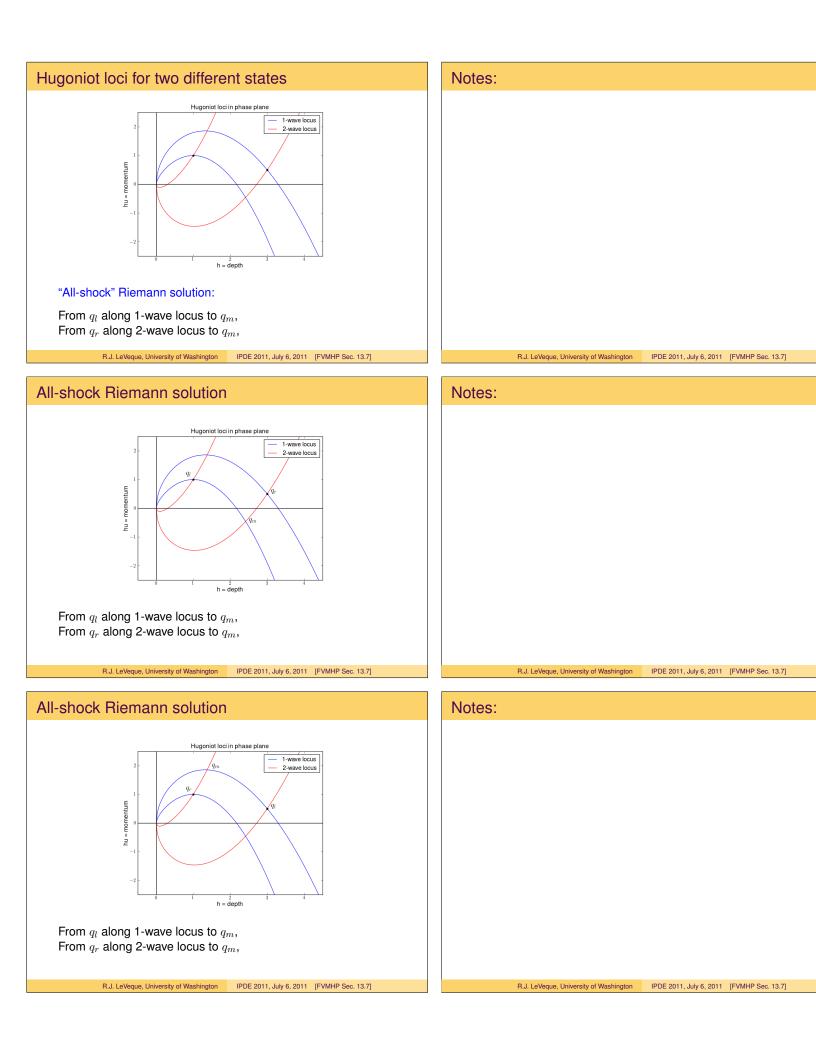
States that can be connected to q_* by a "shock"











2-shock Riemann solution for shallow water

Given arbitrary states q_l and q_r , we can solve the Riemann problem with two shocks.

Choose q_m so that q_m is on the 1-Hugoniot locus of q_l and also q_m is on the 2-Hugoniot locus of q_r .

This requires

$$u_m = u_r + (h_m - h_r) \sqrt{\frac{g}{2} \left(\frac{1}{h_m} + \frac{1}{h_r}\right)}$$

and

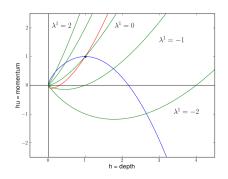
$$u_m = u_l - (h_m - h_l) \sqrt{\frac{g}{2} \left(\frac{1}{h_m} + \frac{1}{h_l}\right)}.$$

Equate and solve single nonlinear equation for h_m .

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Hugoniot loci for one particular q_*

Green curves are contours of λ^1

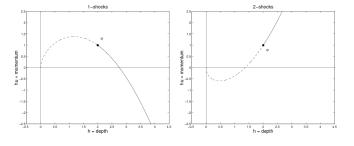


Note: Increases in one direction only along blue curve.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Hugoniot locus for shallow water

States that can be connected to the given state by a 1-wave or 2-wave satisfying the R-H conditions:



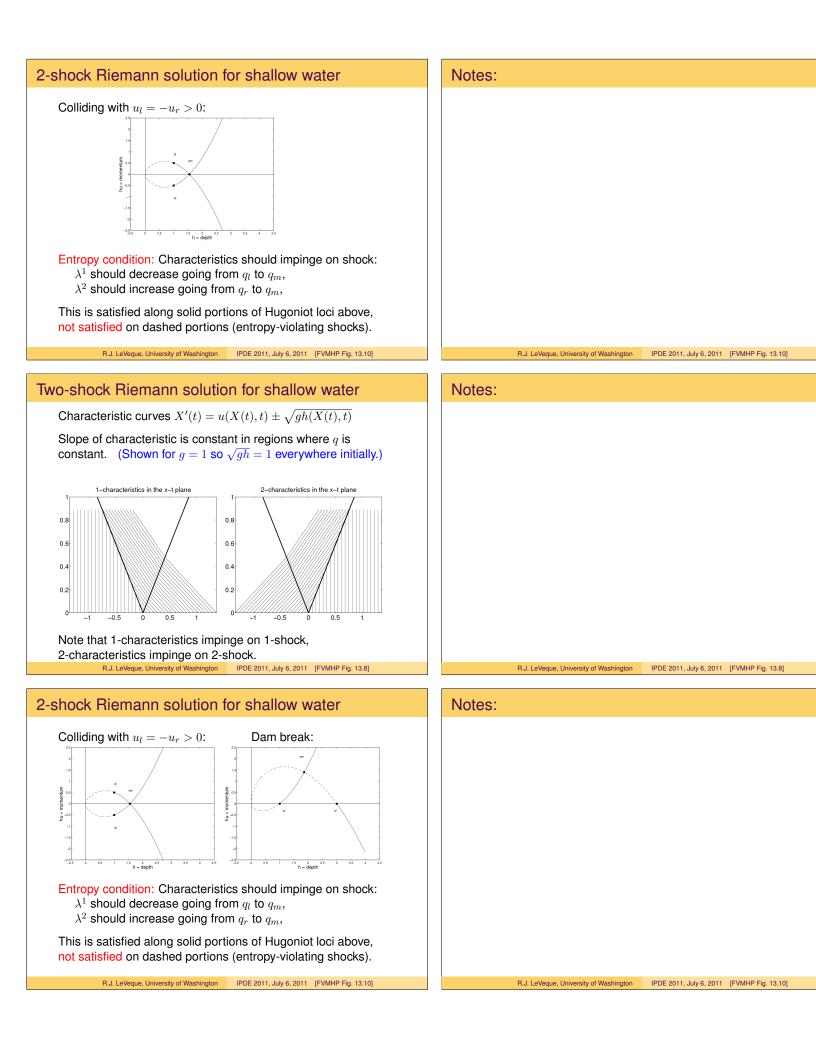
Solid portion: states that can be connected by shock satisfying entropy condition.

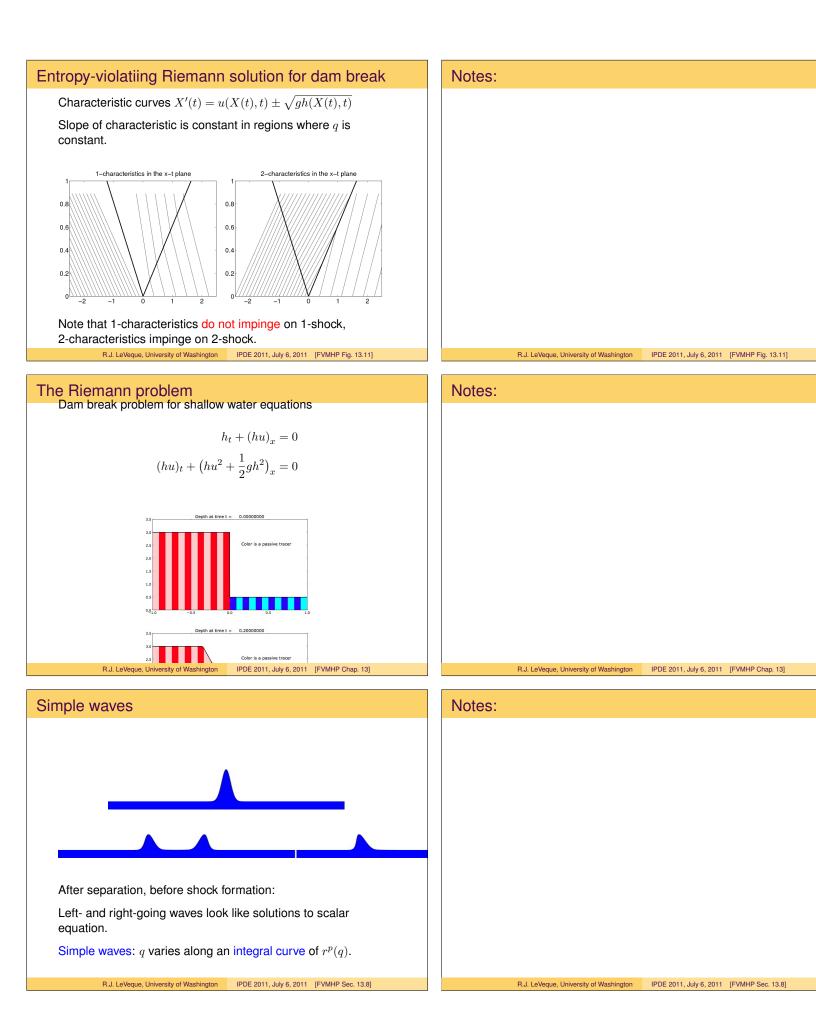
Dashed portion: states that can be connected with R-H condition satisfied but not the physically correct solution.

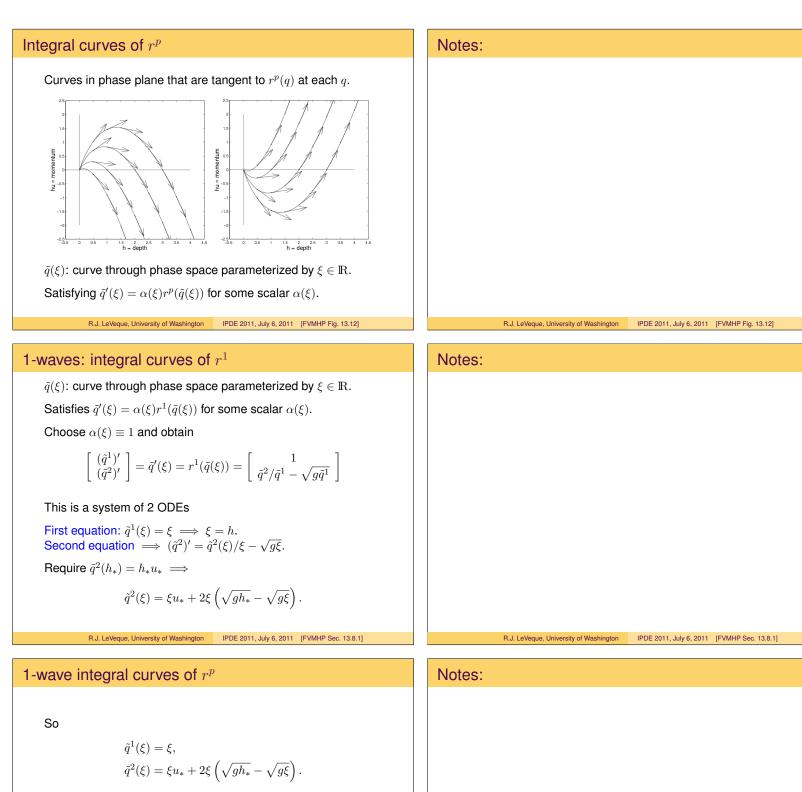
R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.9]

Notes:			
	R.J. LeVeque, University of Washington	IPDE 2011, July 6, 2011	[FVMHP Sec. 13.7]
Notes:			

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7] Notes:







and hence

$$hu = hu_* + 2h\left(\sqrt{gh_*} - \sqrt{gh}\right).$$

Similarly, 2-wave integral curves satisfy

$$hu = hu_* - 2h\left(\sqrt{gh_*} - \sqrt{gh}\right)$$

