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• Nonlinear hyperbolic systems
• Shallow water equations
• Shock waves and Hugoniot loci
• Integral curves in phase plane
• Compression and rarefaction
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Shallow water equations

h(x, t) = depth
u(x, t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u+ p where p = hydrostatic pressure

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2

)

x

= 0

Jacobian matrix:

f ′(q) =
[

0 1
gh− u2 2u

]
, λ = u±

√
gh.
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Shallow water equations

ht + (hu)x = 0 =⇒ ht + µx = 0

(hu)t +
(
hu2 +

1
2
gh2

)

x

= 0 =⇒ µt + φ(h, µ)x = 0

where µ = hu and φ = hu2 + 1
2gh

2 = µ2/h+ 1
2gh

2.

Jacobian matrix:

f ′(q) =
[
∂µ/∂h ∂µ/∂µ
∂φ/∂h ∂φ/∂µ

]
=
[

0 1
gh− u2 2u

]
,

Eigenvalues:

λ1 = u−
√
gh, λ2 = u+

√
gh.

Eigenvectors:

r1 =
[

1
u−√gh

]
, r2 =

[
1

u+
√
gh

]
.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.1]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.1]



Shallow water equations

Hydrostatic pressure:

Pressure at depth z > 0 below the surface is gz from weight of
water above.

Depth-averaged pressure is

p =
∫ h

0
gz dz

=
1
2
gz2

∣∣∣∣
h

0

=
1
2
gh2.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.1]
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Compressible gas dynamics

In one space dimension (e.g. in a pipe).
ρ(x, t) = density, u(x, t) = velocity,
p(x, t) = pressure, ρ(x, t)u(x, t) = momentum.

Conservation of:

mass: ρ flux: ρu
momentum: ρu flux: (ρu)u+ p
(energy)

Conservation laws:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Equation of state:
p = P (ρ).

(Later: p may also depend on internal energy / temperature)
R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Chap. 14]

Notes:
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Two-shock Riemann solution for shallow water

Initially hl = hr = 1, ul = −ur = 0.5 > 0

Solution at later time:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.7]

Notes:
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Two-shock Riemann solution for shallow water

Characteristic curves X ′(t) = u(X(t), t)±
√
gh(X(t), t)

Slope of characteristic is constant in regions where q is
constant. (Shown for g = 1 so

√
gh = 1 everywhere initially.)

Note that 1-characteristics impinge on 1-shock,
2-characteristics impinge on 2-shock.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.8]

Notes:
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An isolated shock

If an isolated shock with left and right states ql and qr is
propagating at speed s

then the Rankine-Hugoniot condition must be satisfied:

f(qr)− f(ql) = s(qr − ql)

For a system q ∈ lRm this can only hold for certain pairs ql, qr:

For a linear system, f(qr)− f(ql) = Aqr −Aql = A(qr − ql).
So qr − ql must be an eigenvector of f ′(q) = A.

A ∈ lRm×m =⇒ there will be m rays through ql in state space
in the eigen-directions, and qr must lie on one of these.

For a nonlinear system, there will be m curves through ql called
the Hugoniot loci.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.7]

Notes:
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Hugoniot loci for shallow water

q =
[
h
hu

]
, f(q) =

[
hu

hu2 + 1
2gh

2

]
.

Fix q∗ = (h∗, u∗).

What states q can be connected to q∗ by an isolated shock?

The Rankine-Hugoniot condition s(q − q∗) = f(q)− f(q∗) gives:

s(h∗ − h) = h∗u∗ − hu,

s(h∗u∗ − hu) = h∗u2
∗ − hu2 +

1
2
g(h2
∗ − h2).

Two equations with 3 unknowns (h, u, s), so we expect
1-parameter families of solutions.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:
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Hugoniot loci for shallow water

Rankine-Hugoniot conditions:

s(h∗ − h) = h∗u∗ − hu,

s(h∗u∗ − hu) = h∗u2
∗ − hu2 +

1
2
g(h2
∗ − h2).

For any h > 0 we can solve for

u(h) = u∗ ±
√
g

2

(
h∗
h
− h

h∗

)
(h∗ − h)

s(h) = (h∗u∗ − hu)/(h∗ − h).

This gives 2 curves in h–hu space (one for +, one for −).

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:
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Hugoniot loci for shallow water

For any h > 0 we have a possible shock state. Set

h = h∗ + α,

so that h = h∗ at α = 0, to obtain

hu = h∗u∗ + α

[
u∗ ±

√
gh∗ +

1
2
gα(3 + α/h∗)

]
.

Hence we have
[
h
hu

]
=
[

h∗
h∗u∗

]
+ α

[
1

u∗ ±
√
gh∗ +O(α)

]
as α→ 0.

Close to q∗ the curves are tangent to eigenvectors of f ′(q∗)
Expected since f(q)− f(q∗) ≈ f ′(q∗)(q − q∗).

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Hugoniot loci for one particular q∗

States that can be connected to q∗ by a “shock”

Note: Might not satisfy entropy condition.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:
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Hugoniot loci for two different states

“All-shock” Riemann solution:

From ql along 1-wave locus to qm,
From qr along 2-wave locus to qm,

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:
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All-shock Riemann solution

From ql along 1-wave locus to qm,
From qr along 2-wave locus to qm,

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:
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All-shock Riemann solution

From ql along 1-wave locus to qm,
From qr along 2-wave locus to qm,

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]



2-shock Riemann solution for shallow water

Given arbitrary states ql and qr, we can solve the Riemann
problem with two shocks.

Choose qm so that qm is on the 1-Hugoniot locus of ql
and also qm is on the 2-Hugoniot locus of qr.

This requires

um = ur+(hm − hr)

√
g

2

(
1
hm

+
1
hr

)

and

um = ul−(hm − hl)

√
g

2

(
1
hm

+
1
hl

)
.

Equate and solve single nonlinear equation for hm.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Hugoniot loci for one particular q∗

Green curves are contours of λ1

Note: Increases in one direction only along blue curve.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.7]

Hugoniot locus for shallow water

States that can be connected to the given state by a 1-wave or
2-wave satisfying the R-H conditions:

Solid portion: states that can be connected by shock satisfying
entropy condition.

Dashed portion: states that can be connected with R-H
condition satisfied but not the physically correct solution.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.9]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.9]



2-shock Riemann solution for shallow water

Colliding with ul = −ur > 0:

Entropy condition: Characteristics should impinge on shock:
λ1 should decrease going from ql to qm,
λ2 should increase going from qr to qm,

This is satisfied along solid portions of Hugoniot loci above,
not satisfied on dashed portions (entropy-violating shocks).

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.10]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.10]

Two-shock Riemann solution for shallow water

Characteristic curves X ′(t) = u(X(t), t)±
√
gh(X(t), t)

Slope of characteristic is constant in regions where q is
constant. (Shown for g = 1 so

√
gh = 1 everywhere initially.)

Note that 1-characteristics impinge on 1-shock,
2-characteristics impinge on 2-shock.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.8]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.8]

2-shock Riemann solution for shallow water

Colliding with ul = −ur > 0: Dam break:

Entropy condition: Characteristics should impinge on shock:
λ1 should decrease going from ql to qm,
λ2 should increase going from qr to qm,

This is satisfied along solid portions of Hugoniot loci above,
not satisfied on dashed portions (entropy-violating shocks).

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.10]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.10]



Entropy-violatiing Riemann solution for dam break

Characteristic curves X ′(t) = u(X(t), t)±
√
gh(X(t), t)

Slope of characteristic is constant in regions where q is
constant.

Note that 1-characteristics do not impinge on 1-shock,
2-characteristics impinge on 2-shock.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.11]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.11]

The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= 0

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Chap. 13]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Chap. 13]

Simple waves

After separation, before shock formation:

Left- and right-going waves look like solutions to scalar
equation.

Simple waves: q varies along an integral curve of rp(q).

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.8]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.8]



Integral curves of rp

Curves in phase plane that are tangent to rp(q) at each q.

q̃(ξ): curve through phase space parameterized by ξ ∈ lR.

Satisfying q̃′(ξ) = α(ξ)rp(q̃(ξ)) for some scalar α(ξ).

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.12]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.12]

1-waves: integral curves of r1

q̃(ξ): curve through phase space parameterized by ξ ∈ lR.

Satisfies q̃′(ξ) = α(ξ)r1(q̃(ξ)) for some scalar α(ξ).

Choose α(ξ) ≡ 1 and obtain
[

(q̃1)′

(q̃2)′

]
= q̃′(ξ) = r1(q̃(ξ)) =

[
1

q̃2/q̃1 −
√
gq̃1

]

This is a system of 2 ODEs

First equation: q̃1(ξ) = ξ =⇒ ξ = h.
Second equation =⇒ (q̃2)′ = q̃2(ξ)/ξ −√gξ.
Require q̃2(h∗) = h∗u∗ =⇒

q̃2(ξ) = ξu∗ + 2ξ
(√

gh∗ −
√
gξ
)
.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.8.1]

Notes:
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1-wave integral curves of rp

So

q̃1(ξ) = ξ,

q̃2(ξ) = ξu∗ + 2ξ
(√

gh∗ −
√
gξ
)
.

and hence
hu = hu∗ + 2h

(√
gh∗ −

√
gh
)
.

Similarly, 2-wave integral curves satisfy

hu = hu∗ − 2h
(√

gh∗ −
√
gh
)
.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Sec. 13.8.1]
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Integral curves of rp versus Hugoniot loci

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.7]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.7]

Integral curves of rp versus Hugoniot loci

Solution to Riemann problem depends on which state is ql, qr.

Also need to choose correct curve from each state.

R.J. LeVeque, University of Washington IPDE 2011, July 6, 2011 [FVMHP Fig. 13.7]

Notes:
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