
Outline

• Simple waves, rarefaction waves
• Integral curves in phase plane
• Approximate Riemann solvers
• Dam break and tsunami modeling
• Adaptive mesh refinement

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Simple waves

After separation, before shock formation:

Left- and right-going waves look like solutions to scalar
equation.

Simple waves: q varies along an integral curve of rp(q).

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8]

Integral curves of rp

Curves in phase plane that are tangent to rp(q) at each q.

q̃(ξ): curve through phase space parameterized by ξ ∈ lR.

Satisfying q̃′(ξ) = α(ξ)rp(q̃(ξ)) for some scalar α(ξ).

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.12]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.12]



Integral curves of rp versus Hugoniot loci

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.7]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.7]

The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= 0

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 13]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 13]

2-shock Riemann solution for shallow water

Colliding with ul = −ur > 0: Dam break:

Entropy condition: Characteristics should impinge on shock:
λ1 should decrease going from ql to qm,
λ2 should increase going from qr to qm,

This is satisfied along solid portions of Hugoniot loci above,
not satisfied on dashed portions (entropy-violating shocks).

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.10]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.10]



Entropy-violatiing Riemann solution for dam break

Characteristic curves X ′(t) = u(X(t), t)±
√
gh(X(t), t)

Slope of characteristic is constant in regions where q is
constant.

Note that 1-characteristics do not impinge on 1-shock,
2-characteristics impinge on 2-shock.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.11]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.11]

Integral curves of rp versus Hugoniot loci

Solution to Riemann problem depends on which state is ql, qr.

Also need to choose correct curve from each state.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.7]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.7]

Rarefaction waves

Centered rarefaction wave:

Similarity solution with piecewise constant initial data:

q(x, t) =





ql if x/t ≤ ξ1

q̃(x/t) if ξ1 ≤ x/t ≤ ξ2

qr if x/t ≥ ξ2,

where ql and qr are two points on a single integral curve with
λp(ql) < λp(qr).

Required so that characteristics spread out as time advances.

Also want λp(q) monotonically increasing from ql to qr.

This genuine nonlinearity generalizes convexity of scalar flux.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8.5]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8.5]



Genuine nonlinearity

For scalar problem qt + f(q)x = 0, want f ′′(q) 6= 0 everywhere.

This implies that f ′(q) is monotonically increasing or
decreasing between ql and qr.

Shock if decreasing, Rarefaction if increasing.

For system we want λp(q) to be monotonically varying along
integral curve of rp(q).

If so then this field is genuinely nonlinear.

This requires ∇λp(q) · rp(q) 6= 0.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8.4]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8.4]

Genuine nonlinearity of shallow water equations

Integral curves (heavy line) and contours of λ1:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.13]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Fig. 13.13]

Genuine nonlinearity of shallow water equations

1-waves: Requires ∇λ1(q) · r1(q) 6= 0.

λ1 = u−
√
gh = q2/q1 −

√
gq1,

∇λ1 =
[
−q2/(q1)2 − 1

2

√
g/q1

1/q1

]
,

r1 =
[

1
q2/q1 −

√
gq1

]
,

and hence

∇λ1 · r1 = −3
2

√
g/q1 = −3

2

√
g/h

< 0 for all h > 0.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8.4]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8.4]



Linearly degenerate fields

Scalar advection: qt + uqx = 0 with u = constant.

Characteristics X(t) = x0 + ut are parallel.

Discontinuity propagates along a characteristic curve.

Characteristics on either side are parallel so not a shock!

For system the analogous property arises if

∇λp(q) · rp(q) ≡ 0

holds for all q, in which case
λp is constant along each integral curve.

Then pth field is said to be linearly degenerate.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8.4]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.8.4]

The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= 0

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 13.12.1]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 13.12.1]

Shallow water with passive tracer

Let φ(x, t) be tracer concentration and add equation

φt + uφx = 0 =⇒ (hφ)t + (uhφ)x = 0.

Gives:

q =

[
h
hu
hφ

]
=

[
q1

q2

q3

]
, f(q) =

[
hu

hu2 + 1
2gh

2

uhφ

]
=

[
q2

(q2)/q1 + 1
2g(q1)2

q2q3/q1

]
.

Jacobian:

f ′(q) =




0 1 0
−u2 + gh 2u 0
−uφ φ u


 .

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.12.1]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.12.1]



Shallow water with passive tracer

f ′(q) =

[
0 1 0

−u2 + gh 2u 0
−uφ φ u

]
.

λ1 = u−√gh, λ2 = u, λ3 = u+
√
gh,

r1 =

[
1

u−√gh
φ

]
, r2 =

[ 0
0
1

]
, r3 =

[
1

u+
√
gh

φ

]
.

λ2 = u = (hu)/h =⇒ ∇λ2 =



−u/h
1/h
0


 =⇒ λ2 · r2 ≡ 0.

So 2nd field is linearly degenerate.
(Fields 1 and 3 are genuinely nonlinear.)

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.12.1]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.12.1]

Euler equations of gas dynamics

Conservation of mass, momentum, energy: qt + f(q)x = 0 with

q =




ρ
ρu
E


 , f(q) =




ρu
ρu2 + p
u(E + p)




where

p = pressure = p(ρ,E) (Equation of state)

The Jacobian f ′(q) has eigenvalues u− c, u, u+ c where

c =

√
dp

dρ
at constant entropy

Eigenvalues vary with q =⇒ shocks, rarefactions.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 14]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 14]

Riemann Problem for Euler equations

Initial data:

q(x, 0) =
{
ql if x < 0
qr if x > 0

Shock tube problem: ul = ur = 0, jump in ρ and p.

Pressure:

This is also solution to dam break problem for shallow water
equations.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 14]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 14]



Riemann Problem for gas dynamics

Waves propagating in x–t space:

Similarity solution (function of x/t alone).

Waves can be approximated by discontinuties:
Approximate Riemann solvers

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 14]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Chap. 14]

Approximate Riemann Solvers

Approximate true Riemann solution by set of waves consisting
of finite jumps propagating at constant speeds.

Local linearization:

Replace qt + f(q)x = 0 by

qt + Âqx = 0,

where Â = Â(ql, qr) ≈ f ′(qave).

Then decompose

qr − ql = α1r̂1 + · · ·αmr̂m

to obtain wavesWp = αpr̂p with speeds sp = λ̂p.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [Sec. 15.3]

Approximate Riemann Solvers

How to use?

One approach: determine Q∗ = state along x/t = 0,

Q∗ = Qi−1 +
∑

p:sp<0

Wp, Fi−1/2 = f(Q∗),

A−∆Q = Fi−1/2 − f(Qi−1), A+∆Q = f(Qi)− Fi−1/2.

Or, sometimes can use:

A−∆Q =
∑

p:sp<0

spWp, A+∆Q =
∑

p:sp>0

spWp.

Conservative only if A−∆Q+A+∆Q = f(Qi)− f(Qi−1).

This holds for Roe solver.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [Sec. 15.3]



Roe Solver

Solve qt + Âqx = 0 where Â satisfies

Â(qr − ql) = f(qr)− f(ql).

Then:

• Good approximation for weak waves (smooth flow)

• Single shock captured exactly:

f(qr)− f(ql) = s(qr− ql) =⇒ qr− ql is an eigenvector of Â

• Wave-propagation algorithm is conservative since

A−∆Qi−1/2+A+∆Qi−1/2 =
∑

sp
i−1/2W

p
i−1/2 = A

∑
Wp

i−1/2.

Roe average Â can be determined analytically for many
important nonlinear systems (e.g. Euler, shallow water)

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [Sec. 15.3]

Shallow water equations

h(x, t) = depth
u(x, t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two
equations.

mass flux = hu,
momentum flux = (hu)u+ p where p = hydrostatic pressure

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2

)

x

= 0

Jacobian matrix:

f ′(q) =
[

0 1
gh− u2 2u

]
, λ = u±

√
gh.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.1]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 13.1]

Roe solver for Shallow Water

Given hl, ul, hr, ur, define

h̄ =
hl + hr

2
, û =

√
hlul +

√
hrur√

hl +
√
hr

Then

Â = Jacobian matrix evaluated at this average state

satisfies
A(qr − ql) = f(qr)− f(ql).

• Roe condition is satisfied,
• Isolated shock modeled well,
• Wave propagation algorithm is conservative,
• High resolution methods obtained using corrections with

limited waves.
R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 15.3.3]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 15.3.3]



Roe solver for Shallow Water

Given hl, ul, hr, ur, define

h̄ =
hl + hr

2
, û =

√
hlul +

√
hrur√

hl +
√
hr

Eigenvalues of Â = f ′(q̂) are:

λ̂1 = û− ĉ, λ̂2 = û+ ĉ, ĉ =
√
gh̄.

Eigenvectors:

r̂1 =
[

1
û− ĉ

]
, r̂2 =

[
1

û+ ĉ

]
.

See $CLAW/examples/shallow/1d.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 15.3.3]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [FVMHP Sec. 15.3.3]

HLL Solver

Harten – Lax – van Leer (1983): Use only 2 waves with
s1 =minimum characteristic speed
s2 =maximum characteristic speed

W1 = Q∗ − ql, W2 = qr −Q∗

Conservation implies unique value for middle state Q∗:

s1W1 + s2W2 = f(qr)− f(ql)

=⇒ Q∗ =
f(qr)− f(ql)− s2qr + s1ql

s1 − s2
.

Einfeldt (HLLE): Formulas for speeds in gas dynamics based
on characteristic speeds and Roe averages that gives positivity.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [Sec. 15.3]

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011 [Sec. 15.3]

Malpasset Dam Failure

Catastrophic failure in 1959

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Malpasset Dam Failure

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Modeling work by David George, using GeoClaw

Coarse: 400m cell side, Level 2: 50m, Level 3: 12m, Level 4: 3m

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Malpasset survey locations

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Malpasset survey locations

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Grid convergence study

Water depth gauge at location P2 computed with two different
resolutions (using 4 levels or only 3):

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Tsunamis

Generated by
• Earthquakes,
• Landslides,
• Submarine landslides,
• Volcanoes,
• Meteorite or asteroid impact

There were 97 significant tsunamis during the 1990’s,
causing 16,000 casualties.

There have been approximately 28 tsunamis with run-up
greater than 1m on the west coast of the U.S. since 1812.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Sumatra event of December 26, 2004
Magnitude 9.1 quake near Sumatra, where Indian tectonic plate
is being subducted under the Burma platelet.

Rupture along subduction zone
≈ 1200 km long, 150 km wide

Propagating at ≈ 2 km/sec (for ≈ 10 minutes)

Fault slip up to 15 m, uplift of several meters.
(Fault model from Caltech Seismolab.)

www.livescience.com

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Tsunamis

• Small amplitude in ocean (< 1 meter) but can grow to
10s of meters at shore.

• Run-up along shore can inundate 100s of meters inland

• Long wavelength (as much as 200 km)

• Propagation speed
√
gh (much slower near shore)

• Average depth of Pacific or Indian Ocean is 4000 m
=⇒ average speed 200 m/s ≈ 450 mph

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Great Tohoku Tsunami, 11 March 2011

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Great Tohoku Tsunami, 11 March 2011

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

27 February 2010 tsunami

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Inundation of Hilo, Hawaii

Using 5 levels of refinement with ratios 8, 4, 16, 32.

Resolution ≈ 160 km on Level 1 and ≈ 10m on Level 5.

Total refinement factor: 214 = 16, 384 in each direction.

With 15 m displacement at fault:
With 90 m displacement at fault:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Shallow water equations with bathymetry B(x, y)

ht + (hu)x + (hv)y = 0

(hu)t +
(
hu2 +

1
2
gh2

)

x

+ (huv)y = −ghBx(x, y)

(hv)t + (huv)x +
(
hv2 +

1
2
gh2

)

y

= −ghBy(x, y)

Some issues:

• Delicate balance between flux divergence and bathymetry:
h varies on order of 4000m, rapid variations in ocean
Waves have magnitude 1m or less.

• Cartesian grid used, with h = 0 in dry cells:
Cells become wet/dry as wave advances on shore
Robust Riemann solvers needed.

• Adaptive mesh refinement crucial
Interaction of AMR with source terms, dry states

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Tsunami from 27 Feb 2010 quake off Chile

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Transect of 27 February 2010 tsunami

Bathymetry, depth change by > 1000 m from one cell to next,

Surface elevation changes on order of a few cm.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Source terms and quasi-steady solutions

qt + f(q)x = ψ(q)

Steady-state solution:

qt = 0 =⇒ f(q)x = ψ(q)

Balance between flux gradient and source.

Quasi-Steady solution:

Small perturbation propagating against steady-state background.

qt � f(q)x ≈ ψ(q)

Want accurate calculation of perturbation.

Examples:
• Shallow water equations with bottom topography and flat surface
• Stationary atmosphere where pressure gradient balances gravity

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Fractional steps for a quasisteady problem
Alternate between solving homogeneous conservation law

qt + f(q)x = 0 (1)

and source term
qt = ψ(q). (2)

When qt � f(q)x ≈ ψ(q):

• Solving (??) gives large change in q

• Solving (??) should essentially cancel this change.

Numerical difficulties:

• (??) and (??) are solved by very different methods. Generally
will not have proper cancellation.

• Nonlinear limiters are applied to f(q)x term, not to
small-perturbation waves. Large variation in steady state hides
structure of waves.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Incorporating source term in f-waves

qt + f(q)x = ψ with f(q)x ≈ ψ.

Concentrate source at interfaces: Ψi−1/2 δ(x− xi−1/2)

Split f(Qi)− f(Qi−1)−∆xΨi−1/2 =
∑

pZ
p
i−1/2

Use these waves in wave-propagation algorithm.

Steady state maintained: (Well balanced)

If f(Qi)−f(Qi−1)
∆x = Ψi−1/2 then Zp ≡ 0

Near steady state:

Deviation from steady state is split into waves and limited.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Incorporating source term in f-waves

qt + f(q)x = ψ(q)σx(x) =⇒ Ψi−1/2(σi − σi−1)

Question: How to average ψ(q) between cells to get Ψi−1/2?

A Well-Balanced Path-Integral f-wave Method for Hyperbolic
Problems with Source Terms , to appear in J. Sci. Comput.

For some problems (e.g. ocean-at-rest) can simply use
arithmetic average.

Ψi−1/2 =
1
2

(ψ(Qi−1) + ψ(Qi)).

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

The Riemann problem over topography

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= −ghBx(x)

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

The Riemann problem with dry state

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= −ghBx(x)

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



The Riemann problem with dry state

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= −ghBx(x)

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Cascadia subduction fault

• 1200 km long off-shore fault stretching from northern California to
southern Canada.

• Last major rupture: magnitude 9.0 earthquake on January 26, 1700.

• Tsunami recorded in Japan with run-up of up to 5 meters.

• Historically there appear to be magnitude 8 or larger quakes every 500
years on average.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Tsunami Deposits

From: J. Bourgeois, Chapter 3 of The Sea, Volume 15:
Tsunamis, Harvard University Press, 2009.

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Cascadia event simulations

Magnitude 9.0 earthquake similar to 1700 event.

Dave Alexander, Bill Johnstone, SpatialVision, Vancouver, BC

Barbara Lence, Civil Engineering, UBC

Movies:

Vancouver Island and Olympic Penninsula

Ucluelet

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Hazard Study for Tofino, BC

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Hazard Study for Tofino, BC

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011



Hazard Study for Tofino, BC

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Comparison to NOAA model

Thanks to Tim Walsh (WA State DNR)

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011

Notes:

R.J. LeVeque, University of Washington IPDE 2011, July 7, 2011


