
i i

i

i

i

i

Chapter 6

Finite Element Methods

for 1D Boundary Value

Problems

The finite element (FE) method was developed to solve complicated problems in
engineering, notably in elasticity and structural mechanics modeling involving el-
liptic PDEs and complicated geometries. But nowadays the range of applications is
quite extensive. We will use the following 1D and 2D model problems to introduce
the finite element method

1D: − u′′(x) = f(x) , 0 < x < 1 , u(0) = 0 , u(1) = 0 ;

2D: − (uxx + uyy) = f(x, y) , (x, y) ∈ Ω, u(x, y)
∣∣∣
∂Ω

= 0 ,

where Ω is a bounded domain in (x, y) plane with the boundary ∂Ω.

6.1 The Galerkin FE method for the 1D model

We illustrate the finite element method for the 1D two-point BVP

−u′′(x) = f(x) , 0 < x < 1 , u(0) = 0 , u(1) = 0 ,

using the Galerkin finite element method described in the following steps.

1. Construct a variational or weak formulation, by multiplying both sides of the
differential equation by a test function v(x) satisfying the boundary conditions
(BC) v(0) = 0, v(1) = 0 to get

−u′′v = fv ,

and then integrating from 0 to 1 (using integration by parts) to have the

133

i i

i

i

i

i

134 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

following,

∫ 1

0

(−u′′v) dx = − u′v
∣∣∣
1

0
+

∫ 1

0

u′v′dx

=

∫ 1

0

u′v′dx

=⇒
∫ 1

0

u′v′dx =

∫ 1

0

fv dx , the weak form.

2. Generate a mesh, e.g., a uniform Cartesian mesh xi = i h, i = 0, 1, · · · , n,
where h = 1/n, defining the intervals (xi−1, xi), i = 1, 2, · · · , n.

3. Construct a set of basis functions based on the mesh, such as the piecewise
linear functions (i = 1, 2, · · · , n− 1)

φi(x) =





x− xi−1

h
if xi−1 ≤ x < xi,

xi+1 − x

h
if xi ≤ x < xi+1,

0 otherwise , xixi−1 xi+1

often called the hat functions, see the right diagram for a hat function.

4. Represent the approximate (FE) solution by a linear combination of the basis

functions

uh(x) =
n−1∑

j=1

cjφj(x) ,

where the coefficients cj are the unknowns to be determined. On assuming
the hat basis functions, obviously uh(x) is also a piecewise linear function,
although this is not usually the case for the true solution u(x). Other basis
functions are considered later. We then derive a linear system of equations for
the coefficients by substituting the approximate solution uh(x) for the exact

solution u(x) in the weak form
∫ 1

0 u
′v′dx =

∫ 1

0 fv dx, i.e.,

∫ 1

0

u′
hv

′dx =

∫ 1

0

fvdx , (noting that errors are introduced!)

=⇒
∫ 1

0

n−1∑

j=1

cjφ
′
jv

′dx =

n−1∑

j=1

cj

∫ 1

0

φ′
jv

′dx

=

∫ 1

0

fv dx .

i i

i

i

i

i

6.1. The Galerkin FE method for the 1D model 135

Next, choose the test function v(x) as φ1, φ2, · · · , φn−1 successively, to get
the system of linear equations (noting that further errors are introduced):

(∫ 1

0

φ′
1φ

′
1dx

)
c1 + · · · +

(∫ 1

0

φ′
1φ

′
n−1dx

)
cn−1 =

∫ 1

0

fφ1dx

(∫ 1

0

φ′
2φ

′
1dx

)
c1 + · · · +

(∫ 1

0

φ′
2φ

′
n−1dx

)
cn−1 =

∫ 1

0

fφ2dx

· ·
(∫ 1

0

φ′
iφ

′
1dx

)
c1 + · · · +

(∫ 1

0

φ′
iφ

′
n−1dx

)
cn−1 =

∫ 1

0

fφidx

· ·
(∫ 1

0

φ′
n−1φ

′
1dx

)
c1 + · · · +

(∫ 1

0

φ′
n−1φ

′
n−1dx

)
cn−1 =

∫ 1

0

fφn−1dx ,

or in the matrix-vector form:



a(φ1, φ1) a(φ1, φ2) · · · a(φ1, φn−1)

a(φ2, φ1) a(φ2, φ2) · · · a(φ2, φn−1)

...
...

...
...

a(φn−1, φ1) a(φn−1, φ2) · · · a(φn−1, φn−1)







c1

c2

...

cn−1




=




(f, φ1)

(f, φ2)

...

(f, φn−1)



,

where

a(φi, φj) =

∫ 1

0

φ′
iφ

′
jdx , (f, φi) =

∫ 1

0

fφidx .

The term a(u, v) is called a bilinear form since it is linear with each variable
(function), and (f, v) is called a linear form. If φi are the hat functions, then
in particular we get




2
h − 1

h

− 1
h

2
h − 1

h

− 1
h

2
h − 1

h

. . .
. . .

. . .

− 1
h

2
h − 1

h

− 1
h

2
h







c1

c2

c3

...

cn−2

cn−1




=




∫ 1

0
fφ1dx

∫ 1

0 fφ2dx
∫ 1

0
fφ3dx

...
∫ 1

0
fφn−2dx

∫ 1

0 fφn−1dx




.

5. Solve the linear system of equations for the coefficients and hence obtain the
approximate solution uh(x) =

∑
i ciφi(x).

i i

i

i

i

i

136 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

6. Carry out the error analysis (a prior or a posteriori error analysis).

Questions are often raised about how to appropriately

• represent ODE or PDE problems in a weak form;

• choose the basis functions φ, e.g., in view of ODE/PDE, mesh, and the bound-
ary conditions, etc.;

• implement the finite element method;

• solve the linear system of equations; and

• carry out the error analysis,

which will be addressed in subsequent chapters.

6.2 Different mathematical formulations for the 1D

model

Let us consider the 1D model again,

−u′′(x) = f(x), 0 < x < 1,

u(0) = 0, u(1) = 0.
(6.1)

There are at least three different formulations to consider for this problem:

1. the (D)-form, the original differential equation;

2. the (V)-form, the variational form or weak form

∫ 1

0

u′v′dx =

∫ 1

0

fv dx (6.2)

for any test function v ∈ H1
0 (0, 1), the Sobolev space for functions in integral

forms like the C1 space for functions (see later), and as indicated above, the
corresponding finite element method is often called the Galerkin method; and

3. the (M)-form, the minimization form

min
v(x)∈H1

0
(0,1)

{∫ 1

0

(
1

2
(v′)2 − fv

)
dx

}
, (6.3)

when the corresponding finite element method is often called the Ritz method.

As discussed in subsequent subsections, under certain assumptions these three
different formulations are equivalent.

i i

i

i

i

i

6.2. Different mathematical formulations for the 1D model 137

6.2.1 A physical example

From the viewpoint of mathematical modeling, both the variational (or weak) form
and the minimization form are more natural than the differential formulation. For
example, suppose we seek the equilibrium position of an elastic string of unit length,
with two ends fixed and subject to an external force.

The equilibrium is the state that minimizes the total energy. Let u(x) be the
displacement of the string at a point x, and consider the deformation of an element
of the string in the interval (x, x+∆x), see Fig. 6.1 for an illustration. The potential
energy of the deformed element is

τ · increase in the element length

= τ

(√
(u(x+ ∆x) − u(x))

2
+ (∆x)2 − ∆x

)

= τ



√(

u(x) + ux(x)∆x +
1

2
uxx(x)(∆x)2 + · · · − u(x)

)2

+ (∆x)2 − ∆x




≃ τ
(√

[1 + u2
x(x)] (∆x)2 − ∆x

)

≃ 1

2
τu2

x(x)∆x ,

where τ is the coefficient of the elastic tension that we assume to be constant. If
the external force is denoted by f(x), the work done by this force is −f(x)u(x) at
every point x. Consequently, the total energy of the string (over 0 < x < 1) is

F (u) =

∫ 1

0

1

2
τu2

x(x) dx −
∫ 1

0

f(x)u(x) dx ,

from work-energy principle: the change in the kinetic energy of an object is equal
to the net work done on the object. Thus to minimize the total energy, we seek the
extremal u∗ such that

F (u∗) ≤ F (u)

for all admissible u(x), i.e.., the “minimizer" u∗ of the functional F (u) (a function
of functions).

Using the principal of the virtual work, we also have
∫ 1

0

u′v′dx =

∫ 1

0

fvdx

for any admissible function v(x).
On the other hand, the force balance yields the relevant differential equation.

The external force f(x) is balanced by the tension of the elastic string given by
Hooke’s law, see Fig. 6.1 for an illustration, such that

τ (ux(x+ ∆x) − ux(x)) ≃ −f(x)∆x

or τ
ux(x + ∆x) − ux(x)

∆x
≃ −f(x) ,

i i

i

i

i

i

138 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

f(x)

u(x)

x = 0 x x+∆x

∆x

u(x) u(x+∆x)

Figure 6.1. A diagram of elastic string with two ends fixed, the displace-

ment and force.

thus, for ∆x → 0 we get the PDE

−τuxx = f(x) ,

along with the boundary condition u(0) = 0 and u(1) = 0 since the string is fixed
at the two ends.

The three formulations are equivalent representations of the same problem.
We show the mathematical equivalence in the next sub-section.

6.2.2 Mathematical equivalence

At the beginning of this chapter, we proved that (D) is equivalent to (V) using inte-
gration by parts. Let us now prove that under certain conditions (V) is equivalent
to (D), and that (V) is equivalent to (M), and that (M) is equivalent (V).

Theorem 6.1. (V) → (D). If uxx exists and is continuous, then

∫ 1

0

u′v′dx =

∫ 1

0

fvdx, ∀ v(0) = v(1) = 0, v ∈ H1(0, 1),

implies that −uxx = f(x).

Recall that H1(0, 1) denotes a Sobolev space, which here we can regard as the space
of all functions that have a first order derivative.

Proof: From integration by parts, we have

∫ 1

0

u′v′dx = u′v|10 −
∫ 1

0

u′′v dx,

=⇒ −
∫ 1

0

u′′vdx =

∫ 1

0

fv dx,

or

∫ 1

0

(u′′ + f) v dx = 0 .

Since v(x) is arbitrary and continuous, and u′′ and f are continuous, we must have

u′′ + f = 0, i.e., − u′′ = f.

i i

i

i

i

i

6.2. Different mathematical formulations for the 1D model 139

Theorem 6.2. (V) → (M). Suppose u∗(x) satisfies

∫ 1

0

u∗′v′dx =

∫ 1

0

vfdx

for any v(x) ∈ H1(0, 1), and v(0) = v(1) = 0. Then

F (u∗) ≤ F (u) or

1

2

∫ 1

0

(u∗)
2
xdx −

∫ 1

0

fu∗dx ≤ 1

2

∫ 1

0

u2
xdx−

∫ 1

0

fudx.

Proof:

F (u) = F (u∗ + u− u∗) = F (u∗ + w) (where w = u− u∗, w(0) = w(1) = 0) ,

=

∫ 1

0

(
1

2
(u∗ + w)2

x − (u∗ + w)f

)
dx

=

∫ 1

0

(
(u∗)

2
x + w2

x + 2(u∗)xwx

2
− u∗f − wf

)
dx

=

∫ 1

0

(
1

2
(u∗)2

x − u∗f

)
dx+

∫ 1

0

1

2
w2

xdx +

∫ 1

0

((u∗)xwx − fw) dx

=

∫ 1

0

(
1

2
(u∗)

2
x − u∗f

)
dx+

∫ 1

0

1

2
w2

xdx + 0

= F (u∗) +

∫ 1

0

1

2
w2

xdx

> F (u∗).

The proof is completed.

Theorem 6.3. (M) → (V). If u∗(x) is the minimizer of F (u∗), then

∫ 1

0

(u∗)xvxdx =

∫ 1

0

fvdx

for any v(0) = v(1) = 0 and v ∈ H1(0, 1).

Proof: Consider the auxiliary function:

g(ǫ) = F (u∗ + ǫv) .

Since F (u∗) ≤ F (u∗ + ǫv) for any ǫ, g(0) is a global or local minimum such that

i i

i

i

i

i

140 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

g′(0) = 0. To obtain the derivative of g(ǫ), we have

g(ǫ) =

∫ 1

0

{
1

2
(u∗ + ǫv)2

x − (u∗ + ǫv)f

}
dx

=

∫ 1

0

{
1

2

(
(u∗)

2
x + 2(u∗)xvxǫ+ v2

xǫ
2
)

− u∗f − ǫvf

}
dx

=

∫ 1

0

(
1

2
(u∗)

2
x − u∗f

)
dx+ ǫ

∫ 1

0

((u∗)xvx − fv) dx+
ǫ2

2

∫ 1

0

v2
xdx .

Thus we have

g′(ǫ) =

∫ 1

0

((u∗)xvx − fv) dx+ ǫ

∫ 1

0

v2
xdx

and

g′(0) =

∫ 1

0

((u∗)xvx − fv) dx = 0

since v(x) is arbitrary, i.e., the weak form is satisfied.

However, the three different formulations may not be equivalent for some
problems, depending on the regularity of the solutions. Thus although

(D) =⇒ (M) =⇒ (V) ,

in order for (V) to imply (M) the differential equation is usually required to be self-
adjoint, and for (M) or (V) to imply (D) the solution of the differential equation
must have continuous second order derivatives.

6.3 Key components of the FE method for the 1D

model

In this section, we discuss the model problem (6.1) using the following methods:

• Galerkin method for the variational or weak formulation;

• Ritz method for the minimization formulation.

We also discuss another important aspect of finite element methods, namely, how
to assemble the stiffness matrix using the element by element approach. The first
step is to choose an integral form, usually the weak form, say∫ 1

0 u
′v′dx =

∫ 1

0 fv dx for any v(x) in the Sobolev space H1(0, 1) with v(0) =
v(1) = 0.

i i

i

i

i

i

Key components of FE method for the 1D model 141

x0 = 0 x1 x2 xi

φ1 φi φM

xM = 1

φ0

Figure 6.2. Diagram of a mesh and hat basis functions.

6.3.1 Mesh and basis functions

For a 1D problem, a mesh is a set of points in the interval of interest, say, x0 = 0,
x1, x2, · · · , xM = 1. Let hi = xi+1 − xi, i = 0, 1, · · · ,M − 1.

• xi is called a node, or nodal point.

• (xi, xi+1) is called an element.

• h = max
0≤i≤M−1

{hi} is the mesh size, a measure of how fine the partition is.

Define a finite dimensional space on the mesh

Let the solution be in the space V , which is H1
0 (0, 1) in the model problem. Based

on the mesh, we wish to construct a subspace

Vh (a finite dimensional space) ⊂ V (the solution space) ,

such that the discrete problem is contained in the continuous problem.

Any such a finite element method is called conforming one. Different finite di-
mensional spaces generate different finite element solutions. Since Vh has finite
dimension, we can find a set of basis functions

φ1, φ2, · · · , φM−1 ⊂ Vh

that are linearly independent, i.e., if

M−1∑

j=1

αjφj = 0 ,

then α1 = α0 = · · · = αM−1 = 0. Thus Vh is the space spanned by the basis
functions:

Vh =



 vh(x), vh(x) =

M−1∑

j=1

αjφj



 .

The simplest finite dimensional space is the piecewise continuous linear func-
tion space defined over the mesh:

Vh =
{
vh(x), vh(x) is continuous piecewise linear, vh(0) = vh(1) = 0

}
.

i i

i

i

i

i

142 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

It is easy to show that Vh has a finite dimension, even though there are an infinite
number of elements in Vh.

Find the dimension of Vh

A linear function l(x) in an interval (xi, xi+1) is uniquely determined by its values
at xi and xi+1:

l(x) = l(xi)
x− xi+1

xi − xi+1
+ l(xi+1)

x− xi

xi+1 − xi
.

There are M − 1 nodal values l(xi)’s, l(x1), l(x2), · · · , l(xM−1) for a piecewise
continuous linear function over the mesh, in addition to l(x0) = l(xM) = 0. Given
a vector [l(x1), l(x2), · · · , l(xM−1)]T ∈ RM−1, we can construct a vh(x) ∈ Vh by
taking vh(xi) = l(xi), i = 1, · · · ,M − 1. On the other hand, given vh(x) ∈ Vh,
we get a vector [v(x1), v(x2), · · · , v(xM−1)]T ∈ RM−1. Thus there is a one to one
relation between Vh and RM−1, so Vh has the finite dimension M−1. Consequently,
Vh is considered to be equivalent to RM−1.

Find a set of basis functions

The finite dimensional space can be spanned by a set of basis functions. There are
infinitely many sets of basis functions, but we should choose one that:

• is simple;

• has compact (minimum) support, i.e., zero almost everywhere except for a
small region; and

• meets the regularity requirement i.e., continuous and differentiable, except at
nodal points.

The simplest is the set of hat functions

φ1(x1) = 1 , φ1(xj) = 0 , j = 0, 2, 3, · · · ,M,

φ2(x2) = 1 , φ2(xj) = 0 , j = 0, 1, 3, · · · ,M,

· · · · · · · · · · · ·
φi(xi) = 1 , φi(xj) = 0 , j = 0, 1, · · · i− 1, i+ 1, · · · ,M,

· · · · · · · · · · · ·
φM−1(xM−1) = 1 , φM−1(xj) = 0 , j = 0, 1, · · · , M.

They can be represented simply as φi(xj) = δj
i , i.e.,

φi(xj) =

{
1 , if i = j ,

0 , otherwise .
(6.4)

i i

i

i

i

i

Key components of FE method for the 1D model 143

Ω 1 Ω 2 Ω 3 Ω 4

11

1

1

1

1

1

1

1

1

1 2 3 4 5

φ φ φ φ φ1 2 53 4

ψ

ψ

1

ψ 1

2
1

1

2

ψ

ψ

ψ

2
2

3
1

2
ψ3

4
1

ψ 4
2

Figure 6.3. Continuous piecewise linear basis functions φi for a 4-element

mesh generated by linear shape functions ψe
1, ψe

2 defined over each element. On each

interior element, there are only two nonzero basis functions. The figure is adapted

from Ref. [6].

i i

i

i

i

i

144 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

The analytic form of the hat functions for i = 1, 2, · · · , n− 1 is

φi(x) =





0 , if x < xi−1 ,

x− xi−1

hi
, if xi−1 ≤ x < xi ,

xi+1 − x

hi+1
, if xi ≤ x < xi+1 ,

0 , if xi+1 ≤ x ;

(6.5)

and the finite element solution sought is

uh(x) =

M−1∑

j=1

αj φj(x) , (6.6)

and either the minimization form (M) or the variational or weak form (V) can be
used to derive a linear system of equations for the coefficients αj . On using the hat
functions, we have

uh(xi) =

M−1∑

j=1

αjφj(xi) = αiφi(xi) = αi , (6.7)

so αi is an approximate solution to the exact solution at x = xi.

6.3.2 The Ritz method

Although not every problem has a minimization form, the Ritz method was one of
the earliest and has proven to be one of the most successful.

For the model problem (6.1), the minimization form is

min
v∈H1

0
(0,1)

F (v) : F (v) =
1

2

∫ 1

0

(vx)2dx−
∫ 1

0

fv dx . (6.8)

As before, we look for an approximate solution of the form uh(x) =

M−1∑

j=1

αjφj(x).

Substituting this into the functional form gives

F (uh) =
1

2

∫ 1

0




M−1∑

j=1

αjφ
′
j(x)




2

−
∫ 1

0

f

M−1∑

j=1

αjφj(x)dx , (6.9)

which is a multivariate function of α1, α2, · · · , αM−1 and can be written as

F (vh) = F (α1, α2, · · · , αM−1) .

i i

i

i

i

i

Key components of FE method for the 1D model 145

The necessary condition for a global minimum (also a local minimum) is

∂F

∂α1
= 0 ,

∂F

∂α2
= 0 , · · · ∂F

∂αi
= 0 , · · · ∂F

∂αM−1
= 0 .

Thus taking the partial derivatives with respect to αj we have

∂F

∂α1
=

∫ 1

0




M−1∑

j=1

αjφ
′
j


φ′

1dx−
∫ 1

0

fφ1dx = 0

· ·
∂F

∂αi
=

∫ 1

0




M−1∑

j=1

αjφ
′
j


φ′

idx−
∫ 1

0

fφidx = 0, i = 1, 2, · · · ,M − 1 ,

and on exchanging the order of integration and summation:

M−1∑

j=1

(∫ 1

0

φ′
jφ

′
idx

)
αj =

∫ 1

0

fφidx, i = 1, 2, · · ·M − 1.

This is the same system of equations that follow from the Galerkin method
with the weak form, i.e.,

∫ 1

0

u′v′dx =

∫ 1

0

fv dx immediately gives

∫ 1

0




M−1∑

j=1

αjφ
′
j


φ′

idx =

∫ 1

0

fφi dx, i = 1, 2, · · ·M − 1 .

Comparison of the Ritz and the Galerkin FE methods

For many problems, the Ritz and Galerkin methods are theoretically equivalent.

• The Ritz method is based on the minimization form, and optimization tech-
niques can be used to solve the problem.

• The Galerkin method usually has weaker requirements than the Ritz method.
Not every problem has a minimization form, whereas almost all problems
have some kind of weak form. How to choose suitable weak form and the
convergence of different methods are all important issues for finite element
methods.

6.3.3 Assembling the stiffness matrix element by element

Given a problem, say the model problem, after we have derived the minimization
or weak form and constructed a mesh and a set of basis functions we need to form:

• the coefficient matrix A = {aij} = {
∫ 1

0 φ
′
iφ

′
jdx}, often called the stiffness

matrix for the first order derivatives, and

i i

i

i

i

i

146 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

• the right-hand side vector F = {fi} = {
∫ 1

0
fiφidx}, often called the load

vector.

The procedure to form A and F is a crucial part in the finite element method. For
the model problem, one way is by assembling element by element:

(x0, x1) , (x1, x2), · · · (xi−1, xi) · · · (xM−1, xM) ,
Ω1 , Ω2 , · · · Ωi , · · · ΩM .

The idea is to break up the integration element by element, so that for any integrable
function g(x) we have

∫ 1

0

g(x) dx =

M∑

k=1

∫ xk

xk−1

g(x) dx =

M∑

k=1

∫

Ωk

g(x) dx .

The stiffness matrix can then be written

A =




∫ 1

0 (φ′
1)2dx

∫ 1

0 φ
′
1φ

′
2dx · · ·

∫ 1

0 φ
′
1φ

′
M−1dx

∫ 1

0
φ′

2φ
′
1dx

∫ 1

0
(φ′

2)2dx · · ·
∫ 1

0
φ′

2φ
′
M−1dx

...
...

...
...

∫ 1

0
φ′

M−1φ
′
1dx

∫ 1

0
φ′

M−1φ
′
2dx · · ·

∫ 1

0
(φ′

M−1)2dx




=




∫ x1

x0
(φ′

1)2dx
∫ x1

x0
φ′

1φ
′
2dx · · ·

∫ x1

x0
φ′

1φ
′
M−1dx

∫ x1

x0
φ′

2φ
′
1dx

∫ x1

x0
(φ′

2)2dx · · ·
∫ x1

x0
φ′

2φ
′
M−1dx

...
...

...
...

∫ x1

x0
φ′

M−1φ
′
1dx

∫ x1

x0
φ′

M−1φ
′
2dx · · ·

∫ x1

x0
(φ′

M−1)2dx




+




∫ x2

x1
(φ′

1)2dx
∫ x2

x1
φ′

1φ
′
2dx · · ·

∫ x2

x1
φ′

1φ
′
M−1dx

∫ x2

x1
φ′

2φ
′
1dx

∫ x2

x1
(φ′

2)2dx · · ·
∫ x2

x1
φ′

2φ
′
M−1dx

...
...

...
...

∫ x2

x1
φ′

M−1φ
′
1dx

∫ x2

x1
φ′

M−1φ
′
2dx · · ·

∫ x2

x1
(φ′

M−1)2dx




+ · · ·

+




∫ xM

xM−1
(φ′

1)2dx
∫ xM

xM−1
φ′

1φ
′
2dx · · ·

∫ xM

xM−1
φ′

1φ
′
M−1dx

∫ xM

xM−1
φ′

2φ
′
1dx

∫ xM

xM−1
(φ′

2)2dx · · ·
∫ xM

xM−1
φ′

2φ
′
M−1dx

...
...

...
...

∫ xM

xM−1
φ′

M−1φ
′
1dx

∫ xM

xM−1
φ′

M−1φ
′
2dx · · ·

∫ xM

xM−1
(φ′

M−1)2dx



.

i i

i

i

i

i

Key components of FE method for the 1D model 147

For the hat basis functions, it is noted that each interval has only two nonzero basis
functions, cf., Fig. 6.3. This leads to

A =




∫ x1

x0
(φ′

1)2dx 0 · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · 0



+




∫ x2

x1
(φ′

1)2dx
∫ x2

x1
φ′

1φ
′
2dx · · · 0

∫ x2

x1
φ′

2φ
′
1dx

∫ x2

x1
(φ′

2)2dx · · · 0

...
...

...
...

0 0 · · · 0




+




0 0 0 · · · 0

0
∫ x3

x2
(φ′

2)2dx
∫ x3

x2
φ′

2φ
′
3dx · · · 0

0
∫ x3

x2
φ′

3φ
′
2dx

∫ x3

x2
(φ′

3)2dx · · · 0

...
...

...
...

...

0 0 0 · · · 0




+




0 0 0 · · · 0

0 0 0 · · · 0

...
...

...
...

...

0 0 0 · · · 0

0 0 0 · · ·
∫ xM

xM−1
(φ′

M−1)2dx




.

The nonzero contribution from a particular element is

Ke
i =

[∫ xi+1

xi
(φ′

i)
2dx

∫ xi+1

xi
φ′

iφ
′
i+1dx

∫ xi+1

xi
φ′

i+1φ
′
idx

∫ xi+1

xi
(φ′

i+1)2dx

]
,

the two by two local stiffness matrix. Similarly, the local load vector is

F e
i =

[∫ xi+1

xi
fφidx

∫ xi+1

xi
fφi+1dx

]
,

and the global load vector can also be assembled element by element:

F =




∫ x1

x0
fφ1dx

0

0

...

0

0




+




∫ x2

x1
fφ1dx

∫ x2

x1
fφ2dx

0

...

0

0




+




0
∫ x3

x2
fφ2dx

∫ x3

x2
fφ3dx

...

0

0




+ · · · +




0

0

0

...

0
∫ xM

xM−1
fφM−1dx




.

i i

i

i

i

i

148 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

Computing local stiffness matrix Ke
i and local load vector F e

i

In the element (xi, xi+1), there are only two nonzero hat functions centered at xi

and xi+1 respectively:

ψe
i (x) =

xi+1 − x

xi+1 − xi
, ψe

i+1(x) =
x− xi

xi+1 − xi
,

(ψe
i)′ = − 1

hi
, (ψe

i+1)′ =
1

hi
,

where ψe
i and ψe

i+1 are defined only on one particular element. We can concentrate
on the corresponding contribution to the stiffness matrix and load vector from the
two nonzero hat functions. It is easy to verify that

∫ xi+1

xi

(ψ′
i)

2 dx =

∫ xi+1

xi

1

h2
i

dx =
1

hi
,

∫ xi+1

xi

ψ′
iψ

′
i+1 dx =

∫ xi+1

xi

− 1

h2
i

dx = − 1

hi
,

∫ xi+1

xi

(ψ′
i+1)2 dx =

∫ xi+1

xi

1

h2
i

dx =
1

hi
.

The local stiffness matrix Ke
i is therefore

Ke
i =




1

hi
− 1

hi

− 1

hi

1

hi


 ,

and the stiffness matrix A is assembled as follows:

A = 0(M−1)×(M−1) , A =




1
h0

0 0 · · ·

0 0 0 · · ·
...

...
...

...



, A =




1
h0

+ 1
h1

− 1
h1

0 · · ·

− 1
h1

1
h1

0 · · ·

0 0 0 · · ·
...

...
...

...



,

· · · · · · A =




1
h0

+ 1
h1

− 1
h1

0 0 · · ·

− 1
h1

1
h1

+ 1
h2

− 1
h2

0 · · ·

0 − 1
h2

1
h2

0 · · ·
...

...
...

...



.

i i

i

i

i

i

6.4. Matlab programming of the FE method for the 1D model problem 149

Thus we finally assemble the tridiagonal matrix

A =




1
h0

+ 1
h1

− 1
h1

− 1
h1

1
h1

+ 1
h2

− 1
h2

− 1
h2

1
h2

+ 1
h3

− 1
h3

. . .
. . .

. . .

− 1
hM−3

1
hM−3

+ 1
hM−2

− 1
hM−2

− 1
hM−2

1
hM−2

+ 1
hM−1




.

Remark 6.1. For a uniform mesh xi = ih, h = 1/M , i = 0, 1, · · · ,M and the

integral approximated by the mid-point rule

∫ 1

0

f(x)φi(x)dx =

∫ xi+1

xi−1

f(x)φi(x) ≃
∫ xi+1

xi−1

f(xi)φi(x)dx

= f(xi)

∫ xi+1

xi−1

φi(x)dx = f(xi) ,

the resulting system of equations for the model problem from the finite element
method is identical to that obtained from the FD method.

6.4 Matlab programming of the FE method for the 1D

model problem

Matlab codes to solve the 1D model problem

−u′′(x) = f(x), a < x < b; u(a) = u(b) = 0 (6.10)

using the hat basis functions are available either through the link

http://www4.ncsu.edu/~zhilin/FD_FEM_book

or by e-mail request to the authors. The Matlab codes include the following Matlab
functions:

• U = fem1d(x) is the main subroutine of the finite method using the hat basis
functions. The input x is the vector containing the nodal points. The output
U , U(0) = U(M) = 0 is the finite element solution at the nodal points, where
M + 1 is the total nodal points.

• y = hat1(x, x1, x2) is the local hat function in the interval [x1, x2] which takes
one at x = x2 and zero at x = x1.

i i

i

i

i

i

150 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

• y = hat2(x, x1, x2) is the local hat function in the interval [x1, x2] which takes
one at x = x1 and zero at x = x2.

• y = int_hata1_f(x1, x2) computes the integral
∫ x2

x1
f(x)hat1dx using the

Simpson rule.

• y = int_hata2_f(x1, x2) computes the integral
∫ x2

x1 f(x)hat2dx using the
Simpson quadrature rule.

• The main function is drive.m which solves the problem, plot the solution and
the error.

• y = f(x) is the right hand side of the differential equation.

• y = soln(x) is the exact solution of differential equation.

• y = fem_soln(x, U, xp) evaluates the finite element solution at an arbitrary
point xp in the solution domain.

We explain some of these Matlab functions in the following subsections.

6.4.1 Define the basis functions

In an element [x1, x2] there are two nonzero basis functions: one is

ψe
1(x) =

x− x1

x2 − x1
(6.11)

where the Matlab code is the file hat1.m so

function y = hat1(x,x1,x2)

% This function evaluates the hat function

y = (x-x1)/(x2-x1);

return

and the other is

ψe
2(x) =

x2 − x

x2 − x1
(6.12)

where the Matlab code is the file hat2.m so

function y = hat2(x,x1,x2)

% This function evaluates the hat function

y = (x2-x)/(x2-x1);

return

6.4.2 Define f(x)

function y = f(x)

y = 1; % for example

return

i i

i

i

i

i

6.4. Matlab programming of the FE method for the 1D model problem 151

6.4.3 The main FE routine

function U = fem1d(x)

%%

% %

% A simple Matlab code of 1D FE method for %

% %

% -u’’ = f(x), a <= x <= b, u(a)=u(b)=0 %

% Input: x, Nodal points %

% Output: U, FE solution at nodal points %

% %

% Function needed: f(x). %

% %

% Matlab functions used: %

% %

% hat1(x,x1,x2), hat function in [x1,x2] that is 1 at x2; and %

% 0 at x1. %

% %

% hat2(x,x1,x2), hat function in [x1,x2] that is 0 at x1; and %

% 1 at x1. %

% %

% int_hat1_f(x1,x2): Contribution to the load vector from hat1 %

% int_hat2_f(x1,x2): Contribution to the load vector from hat2 %

% %

%%

M = length(x);

for i=1:M-1,

h(i) = x(i+1)-x(i);

end

A = sparse(M,M); F=zeros(M,1); % Initialization

A(1,1) = 1; F(1)=0;

A(M,M) = 1; F(M)=0;

A(2,2) = 1/h(1); F(2) = int_hat1_f(x(1),x(2));

for i=2:M-2, % Assembling element by element

A(i,i) = A(i,i) + 1/h(i);

A(i,i+1) = A(i,i+1) - 1/h(i);

A(i+1,i) = A(i+1,i) - 1/h(i);

A(i+1,i+1) = A(i+1,i+1) + 1/h(i);

F(i) = F(i) + int_hat2_f(x(i),x(i+1));

F(i+1) = F(i+1) + int_hat1_f(x(i),x(i+1));

end

i i

i

i

i

i

152 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

A(M-1,M-1) = A(M-1,M-1) + 1/h(M-1);

F(M-1) = F(M-1) + int_hat2_f(x(M-1),x(M));

U = A\F; % Solve the linear system of equations

return

6.4.4 A test example

Let us consider the test example

f(x) = 1 , a = 0 , b = 1 .

The exact solution is

u(x) =
x(1 − x)

2
. (6.13)

A sample Matlab drive code is listed below:

clear all; close all; % Clear every thing so it won’t mess up with other

% existing variables.

%%%%%% Generate a mesh.

x(1)=0; x(2)=0.1; x(3)=0.3; x(4)=0.333; x(5)=0.5; x(6)=0.75;x(7)=1;

U = fem1d(x);

%%%%%% Compare errors:

x2 = 0:0.05:1; k2 = length(x2);

for i=1:k2,

u_exact(i) = soln(x2(i));

u_fem(i) = fem_soln(x,U,x2(i)); % Compute FE solution at x2(i)

end

error = norm(u_fem-u_exact,inf) % Compute the infinity error

plot(x2,u_fem,’:’, x2,u_exact) % Solid: the exact, %dotted: FE solution

hold; plot(x,U,’o’) % Mark the solution at nodal points

xlabel(’x’); ylabel(’u(x) & u_{fem}(x)’);

title(’Solid line: Exact solution, Dotted line: FE solution’)

figure(2); plot(x2,u_fem-u_exact); title(’Error plot’)

xlabel(’x’); ylabel(’u-u_{fem}’); title(’Error Plot’)

i i

i

i

i

i

6.5. Exercises 153

Fig. 6.4 shows the plots produced by running the code. Fig. 6.4 (a) shows both the
true solution (the solid line) and the finite element solution (the dashed line). The little
’o’s are the finite element solution values at the nodal points. Fig. 6.4 (a) shows the error
between the true and the finite element solutions at a few selected points (zero at the
nodal points in this example, although may not be not so in general).

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

u(
x)

 &
 u

fe
m

(x
)

Solid line: Exact solution, Dotted line: FEM solution

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−3 Error Plot

x

u−
u fe

m

Figure 6.4. (a) Plot of the true solution (solid line) and the finite element

solution (the dashed line). (b): The error plot at some selected points.

6.5 Exercises

1. Consider the following BVP:

−u′′(x) + u(x) = f(x), 0 < x < 1, u(0) = u(1) = 0.

(a) Show that the weak form (variational form) is

(u′, v′) + (u, v) = (f, v), ∀ v(x) ∈ H1
0 (0, 1),

where

(u, v) =

∫ 1

0

u(x)v(x)dx,

H1
0 (0, 1) =

{
v(x), v(0) = v(1) = 0,

∫ 1

0

v2dx < ∞
}
.

(b) Derive the linear system of the equations for the finite element approximation

uh =
3∑

j=1

αjφj(x) ,

with the following information:

i i

i

i

i

i

154 Chapter 6. Finite Element Methods for 1D Boundary Value Problems

• f(x) = 1 ;

• the nodal points and the elements are indexed as

x0 = 0, x2 =
1
4
, x3 =

1
2
, x1 =

3
4
, x4 = 1.

Ω1 = [x3, x1], Ω2 = [x1, x4], Ω3 = [x2, x3], Ω4 = [x0, x2] ;

• the basis functions are the hat functions

φi(xj) =

{
1 , if i = j ,

0 , otherwise ,

and not re-order the nodal points and elements; and

• assemble the stiffness matrix and the load vector element by element.

2. (This problem involves modifying drive.m, f.m and soln.m.) Use the Matlab codes
to solve

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0.

Try two different meshes: (a) the one given in drive.m; (b) the uniform mesh xi = i h,
h = 1/M , i = 0, 1, · · · ,M . Take M = 10, done in Matlab using the command:
x = 0 : 0.1 : 1.

Use the two meshes to solve the problem for the following f(x) or exact u(x):

(a) given u(x) = sin(πx), what is f(x)?

(b) given f(x) = x3, what is u(x)?

(c) (extra credit) given f(x) = δ(x− 1/2), where δ(x) is the Dirac delta function,
what is u(x)? Hint: The Dirac delta function is defined as a distribution
satisfying

∫ b

a
f(x)δ(x)dx = f(0) for any function f(x) ∈ C(a, b) if x = 0 is in

the interior of the integration.

Ensure that the errors are reasonably small.

3. (This problem involves modifying fem1d.m, drive.m, f.m and soln.m.) Assume
that

∫ xi+1

xi

φi(x)φi+1(x)dx =
h

6
,

where h = xi+1 −xi), and φi and φi+1 are the hat functions centered at xi and xi+1

respectively. Use the Matlab codes to solve

−u′′(x) + u(x) = f(x), 0 < x < 1, u(0) = u(1) = 0 .

Try to use the uniform grid x = 0 : 0.1 : 1 in Matlab, for the following exact u(x):

(a) u(x) = sin(πx), what is f(x)?

(b) u(x) = x(1 − x)/2, what is f(x)?

