
i i

i

i

i

i

Chapter 8

Issues of the FE Method

in one space dimension
Boundary Conditions, Implementation & the Lax-
Milgram Lemma

8.1 Boundary conditions

For a second order two-point boundary value problem, typical boundary conditions (BC)
include one of the following at each end, say at x = xl,

1. a Dirichlet condition, e.g., u(xl) = ul is given;

2. a Neumann condition, e.g., u′(xl) is given; or

3. a Robin (mixed) condition, e.g., αu(xl) + βu′(xl) = γ is given, where α, β, and γ

are known but u(xl) and u′(xl) are both unknown.

Boundary conditions affect the bilinear and linear form, and the solution space.

Example 8.1.

For example, −u′′ = f, 0 < x < 1,

u(0) = 0, u′(1) = 0,

involves a Dirichlet BC at x = 0 and a Neumann BC at x = 1. To derive the weak form,
we again follow the familiar procedure:

∫ 1

0

−u′′vdx =

∫ 1

0

fv dx ,

−u′ v|10 +

∫ 1

0

u′v′dx =

∫ 1

0

fv dx ,

−u′(1)v(1) + u′(0)v(0) +

∫ 1

0

u′v′dx =

∫ 1

0

fv dx .

For a conforming finite element method, the solution function of u and the test functions
v should be in the same space. So it is natural to require that the test functions v satisfy
the same homogenous Dirichlet BC, i.e., we require v(0) = 0; and the Dirichlet condition
is therefore called an essential boundary condition. On the other hand, since u′(1) = 0,
the first term in the final expression is zero, so it does not matter what v(1) is, i.e., there

175

i i

i

i

i

i

176 High order FE method, BC, Implementation & the Lax-Milgram lemma

is no constraint on v(1); so the Neumann BC is called a natural boundary condition. It
is noted that u(1) is unknown. The weak form of this example is the same as before for
homogeneous Dirichlet BC at both ends; but now the solution space is different:

(u′, v′) = (f, v) , ∀v ∈ H1
E(0, 1) ,

where H1
E(0, 1) =

{
v(x) , v(0) = 0 , v ∈ H1(0, 1)

}
,

where we use the subscript E in H1
E(0, 1) to indicated an essential boundary condition.

8.1.1 Mixed boundary conditions

Consider a Sturm-Liouville problem

−(pu′)′ + qu = f , xl < x < xr , p(x) ≥ pmin > 0 , q(x) ≥ 0 , (8.1)

u(xl) = 0 , αu(xr) + βu′(xr) = γ , β 6= 0 ,
α

β
≥ 0 , (8.2)

where α, β, and γ are known constants but u(xr) and u′(xr) are unknown. Integration by
parts again gives

−p(xr)u′(xr)v(xr) + p(xl)u
′(xl)v(xl) +

∫ xr

xl

(
pu′v′ + quv

)
dx =

∫ xr

xl

fv dx . (8.3)

As explained earlier, we set v(xl) = 0 (an essential BC). Now we re-express the mixed BC
as

u′(xr) =
γ − αu(xr)

β
, (8.4)

and substitute this into (8.3) to obtain

−p(xr)v(xr)
γ − αu(xr)

β
+

∫ xr

xl

(
pu′v′ + quv

)
dx =

∫ xr

xl

fv dx

or equivalently
∫ xr

xl

(
pu′v′ + quv

)
dx+

α

β
p(xr)u(xr)v(xr) =

∫ xr

xl

fv dx+
γ

β
p(xr)v(xr) , (8.5)

which is the corresponding weak (variational) form of the Sturm-Liouville problem. We
define

a(u, v) =

∫ xr

xl

(
pu′v′ + quv

)
dx+

α

β
p(xr)u(xr)v(xr) , the bilinear form , (8.6)

L(v) = (f, v) +
γ

β
p(xr)v(xr) , the linear form. (8.7)

We can prove that:

1. a(u, v) = a(v, u), i.e., a(u, v) is symmetric;

i i

i

i

i

i

FE method in 1D: High order, Boundary conditions & Implementation 177

2. a(u, v) is a bilinear form, i.e.,

a(ru+ sw, v) = ra(u, v) + sa(w, v) ,

a(u, rv + sw) = ra(u, v) + sa(u,w) ,

for any real numbers r and s; and

3. a(u, v) is an inner product, and the corresponding energy norm is

‖u‖a =
√
a(u, u) =

{∫ xr

xl

(
pu′2 + qu2

)
dx+

α

β
p(xr)u(xr)2

} 1
2

.

It is now evident why we require β 6= 0, and α/β ≥ 0. Using the inner product, the
solution of the weak form u(x) satisfies

a(u, v) = L(v) , ∀v ∈ H1
E(xl, xr) , (8.8)

H1
E(xl, xr) =

{
v(x) , v(xl) = 0 , v ∈ H1(xl, xr)

}
, (8.9)

and we recall that there is no restriction on v(xr). The boundary condition is essential at
x = xl, but natural at x = xr. The solution u is also the minimizer of the functional

F (v) =
1
2
a(v, v) − L(v)

in the H1
E(xl, xr) space.

8.1.2 Non-homogeneous Dirichlet boundary conditions

Suppose now that u(xl) = ul 6= 0 in (8.2). In this case, the solution can be decomposed
as the sum of the particular solution

−(pu′
1)′ + qu1 = 0 , xl < x < xr ,

u1(xl) = ul , αu1(xr) + βu′
1(xr) = 0 , β 6= 0 ,

α

β
≥ 0,

(8.10)

and
−(pu′

2)′ + qu2 = f , xl < x < xr ,

u2(xl) = 0 , αu2(xr) + βu′
2(xr) = γ, β 6= 0 ,

α

β
≥ 0 .

(8.11)

We can use the weak form to find the solution u2(x) corresponding to the homogeneous
Dirichlet BC at x = xl. If we can find a particular solution u1(x) of (8.10), then the
solution to the original problem is u(x) = u1(x) + u2(x).

Another simple way is to choose a function u0(x), u0(x) ∈ H1(xl, xr) that satisfies

u0(xl) = ul, αu0(xr) + βu′
0(xr) = 0.

For example, the function u0(x) = ulφ0(x) would be such a function, where φ0(x) is the
hat function centered at xl if a mesh {xi} is given. Then û(x) = u(x)−u0(x) would satisfy
a homogeneous Dirichlet BC at xl and the following S-L problem:

−(pû′)′ + qû = f(x) + (pu′
0)′ − qu0, xl < x < xr,

û(xl) = 0, αû′(xr) + βû(xr) = γ.

i i

i

i

i

i

178 High order FE method, BC, Implementation & the Lax-Milgram lemma

We can apply the finite element method for û(x) previously discussed with the modified
source term f(x), where the weak form u(x) after substituting back is the same as before:

a1(û, v) = L1(v), ∀ v(x) ∈ H1
E(xl, xr),

where

a1(û, v) =

∫ xr

xl

(
pû′v′ + qûv

)
dx+

α

β
p(xr)û(xr)v(xr)

L1(v) =

∫ xr

xl

fvdx+
γ

β
p(xr)v(xr) +

∫ xr

xl

(
(pu′

0)′v − qu0v
)
dx

=

∫ xr

xl

fvdx+
γ

β
p(xr)v(xr) −

∫ xr

xl

(
pu′

0v
′ + qu0v

)
dx− α

β
p(xr)u0(xr)v(xr).

If we define

a(u, v) =

∫ xr

xl

(
pu′v′ + quv

)
dx+

α

β
p(xr)u(xr)v(xr),

L(v) =

∫ xr

xl

fvdx+
γ

β
p(xr)v(xr),

as before, then we have

a1(u− u0, v) = a(u− u0, v) = L1(v) = L(v) − a(u0, v), or a(u, v) = L(v). (8.12)

While we still have a(u, v) = L(v), the solution is not in H1
E(xl, xr) space due to the

non-homogeneous Dirichlet boundary condition. Nevertheless u−u0 is in H1
E(xl, xr). The

formula above is also the basis of the numerical treatment of Dirichlet boundary conditions
later.

8.2 The FE method for Sturm-Liouville problems

Let us now consider the finite element method using the piecewise linear function over a
mesh x1 = xl, x2, · · · , xM = xr for the Sturm-Liouville problem

−(pu′)′ + qu = f , xl < x < xr ,

u(xl) = ul , αu(xr) + βu′(xr) = γ, β 6= 0 ,
α

β
≥ 0 .

We again use the hat functions as the basis such that

uh(x) =
M∑

i=0

αiφi(x) ,

and now focus on the treatment of the BC.

i i

i

i

i

i

8.2. The FE method for Sturm-Liouville problems 179

x0 = 0 x1 x2 xi

φ1 φi φM

xM = 1

φ0

Figure 8.1. Diagram of a 1D mesh where xl = 0 and xr = 1.

The solution is unknown at x = xr, so it is not surprising to have φM (x) for the
natural BC. The first term φ0(x) is the function used as u0(x), to deal with the nonhomo-
geneous Dirichlet BC. The local stiffness matrix is

Ke
i =

[
a(φi, φi) a(φi, φi+1)

a(φi+1, φi) a(φi+1, φi+1)

]

(xi,xi+1)

=




∫ xi+1

xi

pφ′
i
2
dx

∫ xi+1

xi

pφ′
iφ

′
i+1 dx

∫ xi+1

xi

pφ′
i+1φ

′
i dx

∫ xi+1

xi

pφ′
i+1

2
dx




+




∫ xi+1

xi

qφi
2dx

∫ xi+1

xi

qφiφi+1 dx

∫ xi+1

xi

qφi+1φi dx

∫ xi+1

xi

qφ2
i+1 dx


+

α

β
p(xr)

[
φ2

i (xr) φi(xr)φi+1(xr)

φi+1(xr)φi(xr) φ2
i+1(xr)

]
,

and the local load vector is

F e
i =

[
L(φi)

L(φi+1)

]
=




∫ xi+1

xi

fφidx

∫ xi+1

xi

fφi+1dx


+

γ

β
p(xr)

[
φi(xr)

φi+1(xr)

]
.

We can see clearly the contributions from the BC; and in particular, that the only nonzero
contribution of the BC to the stiffness matrix and the load vector is from the last element
(xM−1, xM) due to the compactness of the hat functions.

8.2.1 Numerical treatments of Dirichlet BC

The finite element solution defined on the mesh can be written as

uh(x) = ul φ0(x) +
M∑

j=1

αjφj(x) ,

where αj , j = 1, 2, · · · ,M are the unknowns. Note that ulφ0(x) is an approximate partic-
ular solution in H1(xl, xr), and satisfies the Dirichlet boundary condition at x = xl and
homogeneous Robin boundary condition at x = xr. To use the finite element method to
determine the coefficients, we enforce the weak form for uh(x) − uaφ0(x) for the modified

i i

i

i

i

i

180 High order FE method, BC, Implementation & the Lax-Milgram lemma

differential problem,

−(pu′)′ + qu = f + ul (pφ′
0)′ − ulq φ0 , xl < x < xr ,

u(xl) = 0 , αu(xr) + βu′(xr) = γ, β 6= 0 ,
α

β
≥ 0 .

(8.13)

Thus the system of linear equations is

â (uh(x), φi(x)) = L̂(φi) , i = 1, 2, · · · ,M,

where â(:, :) and L̂(:) are the bilinear and linear for the BVP above, or equivalently

a(φ1, φ1)α1 + a(φ1, φ2)α2 + · · · + a(φ1, φM)αM = L(φ1) − a(φ0, φ1)ul

a(φ2, φ1)α1 + a(φ2, φ2)α2 + · · · + a(φ2, φM)αM = L(φ2) − a(φ0, φ2)ul

· · · · · · · · · · · · = · · · · · · · · · · · ·
a(φM , φ1)α1 + a(φM , φ2)α2 + · · · + a(φM , φM)αM = L(φM) − a(φ0, φM)ul ,

where the bilinear and linear forms are still

a(u, v) =

∫ xr

xl

(
pu′v′ + quv

)
dx+

α

β
p(xr)u(xr)v(xr);

L(v) =

∫ xr

xl

fvdx+
γ

β
p(xr)v(xr),

since
∫ xr

xl

(
ul(pφ

′
0)′ − ulq φ0

)
φi(x)dx = −ula(φ0, φi).

After moving the a(φi, ulφ0(x)) = a(φi, φ0(x))ul to the right-hand side, we get the
matrix-vector form




1 0 · · · 0

0 a(φ1, φ1) · · · a(φ1, φM)

...
...

...
...

0 a(φM , φ1) · · · a(φM , φM)







α0

α1

...

αM




=




ul

L(φ1) − a(φ1, φ0)ul

...

L(φM) − a(φM , φ0)ul



.

This outlines one method to deal with a non-homogeneous Dirichlet boundary condition.

8.2.2 Contributions from Neumann or mixed BC

The contribution of mixed boundary condition at xr using the hat basis functions is zero
until the last element [xM−1, xM], where φM (xr) is not zero. The local stiffness matrix of
the last element is




∫ xM

xM−1

(
pφ′

M−1
2 + qφ2

M−1

)
dx

∫ xM

xM−1

(
pφ′

M−1φ
′
M + qφM−1φM

)
dx

∫ xM

xM−1

(
pφ′

Mφ′
M−1 + qφMφM−1

)
dx

∫ xM

xM−1

(
pφ′

M
2 + φ2

M

)
dx+

α

β
p(xr)


 ,

i i

i

i

i

i

8.2. The FE method for Sturm-Liouville problems 181

and the local load vector is

F e
M−1 =




∫ xM

xM−1

f(x)φM−1(x) dx

∫ xM

xM−1

f(x)φM (x) dx+
γ

β
p(xr)


 .

8.2.3 Pseudo-code of the FE method for 1D Sturm-Liouville

problems using the hat basis functions

• Initialize:

for i=0, M

F(i) = 0

for j=0, M

A(i,j) = 0

end

end

• Assemble the coefficient matrix element by element:

for i=1, M

A(i− 1, i− 1) = A(i− 1, i− 1) +

∫ xi

xi−1

(
pφ′

i−1
2 + qφ2

i−1

)
dx

A(i− 1, i) = A(i− 1, i) +

∫ xi

xi−1

(
pφ′

i−1φ
′
i + qφi−1φi

)
dx

A(i, i− 1) = A(i− 1, i)

A(i, i) = A(i, i) +

∫ xi

xi−1

(
pφ′

i
2 + qφ2

i

)
dx

F (i− 1) = F (i− 1) +

∫ xi

xi−1

f(x)φi−1(x) dx

F (i) = F (i) +

∫ xi

xi−1

f(x)φi(x) dx

end

• Deal with the Dirichlet BC:

A(0, 0) = 1; F (0) = ua

for i=1, M

F (i) = F (i) −A(i, 0) ∗ ua;

A(i, 0) = 0; A(0, i) = 0;

end

i i

i

i

i

i

182 High order FE method, BC, Implementation & the Lax-Milgram lemma

• Deal with the Mixed BC at x = b.

A(M,M) = A(M,M) +
α

β
p(b);

F (M) = F (M) +
γ

β
p(b);

• Solve AU = F .

• Carry out the error analysis.

8.3 High order elements

To solve the Sturm-Liouville or other problems involving second order differential equa-
tions, we can use the piecewise linear finite dimensional space over a mesh. The error is
usually O(h) in the energy and H1 norms, and O(h2) in the L2 and L∞ norms. If we want
to improve the accuracy, we can choose to:

• refine the mesh, i.e., decrease h; or

• use more accurate (high order) and larger finite dimensional spaces, i.e., the piece-
wise quadratic or piecewise cubic basis functions.

Let us use the Sturm-Liouville problem

−
(
p′u
)′

+ qu = f , xl < x < xr ,

u(xl) = 0, u(xr) = 0 ,

again as the model problem for the discussion here. The other boundary conditions can
be treated in a similar way, as discussed before. We assume a given mesh

x0 = xl, x1, · · · , xM = xr , and the elements,

Ω1 = (x0, x1) , Ω2 = (x1, x2) , · · · , ΩM = (xM−1, xM),

and consider piecewise quadratic and piecewise cubic functions, but still require the finite
dimensional spaces to be in H1

0 (xl, xr) so that the finite element methods are conforming.

8.3.1 Piecewise quadratic basis functions

Define

Vh =
{
v(x) , where v(x) is continuous piecewise quadratic in H1

}
,

over a given mesh. The piecewise linear finite dimensional space is obviously a subspace
of the space defined above, so the finite element solution is expected to be more accurate
than the one obtained using the piecewise linear functions.

To use the Galerkin finite element method, we need to know the dimension of the

space Vh of the piecewise quadratic functions in order to choose a set of basis functions.
The dimension of a finite dimensional space is sometimes called the the degree of freedom

(DOF). Given a function φ(x) in Vh, on each element a quadratic function has the form

φ(x) = aix
2 + bix+ ci, xi ≤ x < xi+1 ,

i i

i

i

i

i

8.3. High order elements 183

so there are three parameters to determine a quadratic function in the interval (xi, xi+1).
In total, there are M elements, and so 3M parameters. However, they are not totally free,
because they have to satisfy the continuity condition

lim
x→xi−

φ(x) = lim
x→xi+

φ(x)

for x1, x2, · · · , xM−1, or more precisely,

ai−1x
2
i + bi−1xi + ci−1 = aix

2
i + bixi + ci , i = 1, 2, · · ·M .

There are M−1 interior nodal points, so there are M−1 constraints, and φ(x) should also
satisfy the BC φ(xl) = φ(xr) = 0. Thus the total degree of the freedom, the dimension of
the finite element space, is

3M − (M − 1) − 2 = 2M − 1 .

We now know that the dimension of Vh is 2M − 1. If we can construct 2M − 1 basis
functions that are linearly independent, then all of the functions in Vh can be expressed as
linear combinations of them. The desired properties are similar to those of the hat basis
functions; and they should

• be continuous piecewise quadratic functions;

• have minimum support, i.e., be zero almost everywhere; and

• be determined by the values at nodal points (we can choose the nodal values to be
unity at one point and zero at the other nodal points).

Since the degree of the freedom is 2M − 1 and there are only M − 1 interior nodal points,
we add M auxiliary points (not nodal points) between xi and xi+1 and define

z2i = xi , nodal points , (8.14)

z2i+1 =
xi + xi+1

2
, auxiliary points . (8.15)

For instance, if the nodal points are x0 = 0, x1 = π/2, x2 = π, then z0 = x0, z1 = π/4,
z2 = x1 = π/2, z3 = 3π/4, z4 = x2 = π. Note that in general all the basis functions
should be one piece in one element (z2k, z2k+2), k = 0, 1, · · · ,M − 1. Now we can define
the piecewise quadratic basis functions as

φi(zj) =

{
1 if i = j,

0 otherwise .
(8.16)

We can derive analytic expressions of the basis functions using the properties of
quadratic polynomials. As an example, let us consider how to construct the basis functions
in the first element (x0, x1) corresponding to the interval (z0, z2). In this element, z0 is
the boundary point, z2 is a nodal point, and z1 = (z0 + z2)/2 is the mid-point (the
auxiliary point). For φ1(x), we have φ1(z0) = 0, φ1(z1) = 1 and φ1(z2) = 0, φ1(zj) = 0,
j = 3, · · · , 2M − 1; so in the interval (z0, z1), φ1(x) has the form

φ1(x) = C(x− z0)(x− z2) ,

i i

i

i

i

i

184 High order FE method, BC, Implementation & the Lax-Milgram lemma

because z0 and z2 are roots of φ1(x). We choose C such that φ1(z1) = 1, so

φ1(z1) = C(z1 − z0)(z1 − z2) = 1, =⇒ C =
1

(z1 − z0)(z1 − z2)

and the basis function φ1(x) is

φ1(x) =





(x− z0)(x− z2)
(z1 − z0)(z1 − z2)

if z0 ≤ x < z2 ,

0 otherwise .

It is easy to verify that φ1(x) is a continuous piecewise quadratic function in the domain
(x0, xM). Similarly, we have

φ2(x) =
(z − z1)(z − z0)

(z2 − z1)(z2 − z0)
.

Generally the three global basis functions that are nonzero in the element (xi, xi+1) have
the following forms:

φ2i(z) =





0 if z < xi−1

(z − z2i−1)(z − z2i−2)
(z2i − z2i−1)(z2i − z2i−2)

if xi−1 ≤ z < xi

(z − z2i+1)(z − z2i+2)
(z2i − z2i+1)(z2i − z2i+2)

if xi ≤ z < xi+1

0 if xi+1 < z.

φ2i+1(z) =





0 if x < xi

(z − z2i)(z − z2i+2)
(z2i+1 − z2i)(z2i+1 − z2i+2)

if xi ≤ z < xi+1

0 if xi+1 < z ,

φ2i+2(z) =





0 if x < xi

(z − z2i)(z − z2i+1)
(z2i+2 − z2i)(z2i+2 − z2i+1)

if xi ≤ z < xi+1

(z − z2i+3)(z − z2i+4)
(z2i+2 − z2i+3)(z2i+2 − z2i+4)

if xi ≤ z < xi+1

0 if xi+2 < z .

In Fig. 8.2, we plot some quadratic basis functions in H1. Fig. 8.2 (a) is the plot of
the shape functions, that is, the nonzero basis functions defined in the interval (−1, 1). In
Fig. 8.2 (b), we plot all the basis functions over a three-node mesh in (0, 1). In Fig. 8.2 (c),
we plot some basis functions over the entire domain, φ0(x), φ1(x), φ2(x), φ4(x), φ4(x),
where φ1(x) is centered at the auxiliary point z1 and nonzero at only one element while
φ2(x), φ4(x) are nonzero at two elements.

i i

i

i

i

i

8.3. High order elements 185

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Figure 8.2. Quadratic basis functions in H1: (a) the shape functions

(basis functions in (−1, 1); (b) all the basis functions over a three-node mesh in

(0, 1); (c) plot of some basis functions over the entire domain, φ0(x), φ1(x), φ2(x),

φ4(x), φ4(x), where φ1(x) is centered at the auxiliary point z1 and nonzero at only

one element, while φ2(x), φ4(x) are nonzero at two elements.

i i

i

i

i

i

186 High order FE method, BC, Implementation & the Lax-Milgram lemma

8.3.2 Assembling the stiffness matrix and the load vector

The finite element solution can be written as

uh(x) =
2M−1∑

i=1

αiφi(x) .

The entries of the coefficient matrix are {aij} = a(φi, φj) and the load vector is Fi = L(φi).
On each element (xi, xi+1), or (z2i, z2i+2), there are three nonzero basis functions: φ2i,
φ2i+1, and φ2i+2. Thus the local stiffness matrix is

Ke
i =




a(φ2i, φ2i) a(φ2i, φ2i+1) a(φ2i, φ2i+2)

a(φ2i+1, φ2i) a(φ2i+1, φ2i+1) a(φ2i+1, φ2i+2)

a(φ2i+2, φ2i) a(φ2i+2, φ2i+1) a(φ2i+2, φ2i+2)




(xi,xi+1)

(8.17)

and the local load vector is

Le
i =




L(φ2i)

L(φ2i+1)

L(φ2i+2)




(xi,xi+1)

. (8.18)

The stiffness matrix is still symmetric positive definite, but denser than that with the hat
basis functions. It is still a banded matrix, with the band width five, a penta-diagonal
matrix. The advantage in using quadratic basis functions is that the finite element solution
is more accurate than that obtained on using the linear basis functions with the same mesh.

8.3.3 The cubic basis functions in H1(xl, xr) space

We can also construct piecewise cubic basis functions in H1(xl, xr). On each element
(xi, xi+1), a cubic function has the form

φ(x) = aix
3 + bix

2 + cix+ di , i = 0, 1, · · · ,M − 1 .

There are four parameters; and the total degree of freedom is 3M−1 if a Dirichlet boundary
condition is imposed at both ends. To construct cubic basis functions with properties
similar to the piecewise linear and quadratic basis functions, we need to add two auxiliary
points between xi and xi+1. The local stiffness matrix is then is a 4 × 4 matrix. We leave
the construction of the basis functions, application to the Sturm-Liouville boundary value
problems as a project for students.

8.4 A 1D Matlab FE package

A general 1D Matlab package has been written and is available is the book’s depository,
or upon request.

• The code can be used to solve a general Sturm-Liouville problem

−(p(x)u′)′ + c(x)u′ + q(x)u = f(x) , a < x < b ,

i i

i

i

i

i

8.4. A 1D Matlab FE package 187

0

00

3 3

+ ...

+ +

 * * *
 * * *

* * * * *
* * *

* *
 *
 *

* *
 ** *

* * *

* *

0
22

3

2
1

1

1

1

3
33
333

222
222

Figure 8.3. Assembling the stiffness matrix using piecewise quadratic basis

functions.

with a Dirichlet, Neumann, or mixed boundary condition at x = a and x = b6.

• We use conforming finite element methods.

• The mesh is

x0 = a < x1 < x2 · · · < xM = b ,

as elaborated again later.

• The finite element spaces can be piecewise linear, quadratic, or cubic functions over
the mesh.

• The integration formulas is the Gaussian quadrature of order one, two, three, or
four.

• The matrix assembly is element by element.

8.4.1 Gaussian quadrature formulas

In a finite element method, we typically need to evaluate integrals such as
∫ b

a
p(x)φ′

i(x)φ′
j(x) dx,∫ b

a
q(x)φi(x)φj(x) dx and

∫ b

a
f(x)φi(x) dx over some intervals (a, b) such as (xi−1, xi).

6In the package, p(x) is expressed as k(x).

i i

i

i

i

i

188 High order FE method, BC, Implementation & the Lax-Milgram lemma

Although the functions involved may be arbitrary, it is usually neither practical nor nec-
essary to find the exact integrals. A standard approach is to transfer the interval of
integration to the interval (−1, 1) as follows

∫ b

a

f(x) dx =

∫ 1

−1

f̄(ξ) dξ, (8.19)

where

ξ =
x− a

b − a
+
x− b

b − a
or x = a+

b− a

2

(
1 + ξ

)
,

=⇒ dξ =
2

b− a
dx or dx =

b− a

2
dξ .

(8.20)

In this way, we have

∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f
(
a+

b− a

2
(1 + ξ)

)
dξ =

b− a

2

∫ 1

−1

f̄(ξ) dξ , (8.21)

where f̄(ξ) = f(a + b−a
2

(1 + ξ)); and then to use a Gaussian quadrature formula to
approximate the integral. The general quadrature formula can be written

∫ 1

−1

g(ξ)dξ ≈
N∑

i=1

wig(ξi) ,

where the Gaussian points ξi and weights wi are chosen so that the quadrature is as
accurate as possible. In the Newton-Cotes quadrature formulas such as the mid-point
rule, the trapezoidal rule, and the Simpson methods, the ξi are pre-defined independent of
wi. In Gaussian quadrature formulas, all ξi’s and wi’s are unknowns, and are determined
simultaneously such that the quadrature formula is exact for g(x) = 1, x, · · · , x2N−1. The
number 2N − 1 is called the algebraic precision of the quadrature formula.

Gaussian quadrature formulas have the following features:

• accurate with the best possible algebraic precision using the fewest points;

• open with no need to use two end points where some kind of discontinuities may
occur, e.g., the discontinuous derivatives of the piecewise linear functions at nodal
points;

• no recursive relations for the Gaussian points ξi’s and the weights wi’s;

• accurate enough for finite element methods, because b − a ∼ h is generally small
and only a few points ξi’s are needed.

We discuss some Gaussian quadrature formulas below.

Gaussian quadrature of order 1 (one point):

With only one point, the Gaussian quadrature can be written as

∫ 1

−1

g(ξ)dξ = w1g(ξ1) .

i i

i

i

i

i

8.4. A 1D Matlab FE package 189

We choose ξ1 and w1 such that the quadrature formula has the highest algebraic precision
(2N − 1 = 1 for N = 1) if only one point is used. Thus we choose g(ξ) = 1 and g(ξ) = ξ

to have the following,

for g(ξ) = 1 ,

∫ 1

−1

g(ξ)dξ = 2 =⇒ 2 = w1 · 1 ; and

for g(ξ) = ξ ,

∫ 1

−1

g(ξ)dξ = 0 =⇒ 0 = w1ξ1 .

Thus we get w1 = 2 and ξ1 = 0. The quadrature formula is simply the mid-point rule.

Gaussian quadrature of order 2 (two points):

With two points, the Gaussian quadrature can be written as

∫ 1

−1

g(ξ)dξ = w1g(ξ1) + w2g(ξ2) .

We choose ξ1, ξ2, and w1, w2 such that the quadrature formula has the highest algebraic
precision (2N−1 = 3 for N = 2) if two points are used. Thus we choose g(ξ) = 1, g(ξ) = ξ,
g(ξ) = ξ2, and g(ξ) = ξ3 to have the following,

for g(ξ) = 1 ,

∫ 1

−1

g(ξ)dξ = 2 =⇒ 2 = w1 +w2 ;

for g(ξ) = ξ ,

∫ 1

−1

g(ξ)dξ = 0 =⇒ 0 = w1ξ1 + w2ξ2 ;

for g(ξ) = ξ2 ,

∫ 1

−1

g(ξ)dξ =
2
3

=⇒ 2
3

= w1ξ
2
1 + w2ξ

2
2 ; and

for g(ξ) = ξ3 ,

∫ 1

−1

g(ξ)dξ = 0 =⇒ 0 = w1ξ
3
1 + w2ξ

3
2 .

On solving the four non-linear system of equations by taking advantage of the symmetry,
we get

w1 = w2 = 1 , ξ1 = − 1√
3

and ξ2 =
1√
3
.

So the Gaussian quadrature formula of order 2 is

∫ 1

−1

g(ξ)dξ ≃ g

(
− 1√

3

)
+ g

(
1√
3

)
. (8.22)

Higher order Gaussian quadrature formulas are likewise obtained, and for efficiency

i i

i

i

i

i

190 High order FE method, BC, Implementation & the Lax-Milgram lemma

we can pre-store the Gaussian points and weights in two separate matrices:

ξi wi




0
−1√

3
−

√
3√

5
−0.8611363116 · · ·

1√
3

0 −0.3399810436 · · ·
√

3√
5

0.3399810436 · · ·

0.8611363116 · · ·




,




2 1
5
9

0.3478548451 · · ·

1
8
9

0.6521451549 · · ·

5
9

0.6521451549 · · ·

0.3478548451 · · ·



.

Below is a Matlab code setint.m to store the Gaussian points and weights up to order 4.

function [xi,w] = setint

%%

% %

% Function setint provides the Gaussian points x(i), and the %

% weights of the Gaussian quadrature formula. %

% Output: %

% x(4,4): x(:,i) is the Gaussian points of order i. %

% w(4,4): w(:,i) is the weights of quadrature of order i. %

clear x; clear w

xi(1,1) = 0;

w(1,1) = 2; % Gaussian quadrature of order 1

xi(1,2) = -1/sqrt(3);

xi(2,2) = -xi(1,2);

w(1,2) = 1;

w(2,2) = w(1,2); % Gaussian quadrature of order 2

xi(1,3) = -sqrt(3/5);

xi(2,3) = 0;

xi(3,3) = -xi(1,3);

w(1,3) = 5/9;

w(2,3) = 8/9;

w(3,3) = w(1,3); % Gaussian quadrature of order 3

xi(1,4) = - 0.8611363116;

xi(2,4) = - 0.3399810436;

xi(3,4) = -xi(2,4);

xi(4,4) = -xi(1,4);

i i

i

i

i

i

8.4. A 1D Matlab FE package 191

w(1,4) = 0.3478548451;

w(2,4) = 0.6521451549;

w(3,4) = w(2,4);

w(4,4) = w(1,4); % Gaussian quadrature of order 4

return

%--------------------------- END OF SETINT -----------------------------

8.4.2 Shape functions

Similar to transforming an integral over some arbitrary interval to the integral over the
standard interval between −1 and 1, it is easier to evaluate the basis functions and their
derivatives in the standard interval (−1, 1). Basis functions in the standard interval
(−1, 1) are called shape functions and often have analytic forms.

Using the transform between x and ξ in (8.19)-(8.20) for each element, on assuming
c(x) = 0 we have

∫ xi+1

xi

(
p(x)φ′

iφ
′
j + q(x)φiφj

)
dx =

∫ xi+1

xi

f(x)φi(x) dx

which is transformed to

xi+1 − xi

2

∫ 1

−1

(
p̄(ξ)ψ′

iψ
′
j + q̄(ξ)ψiψj

)
dξ =

xi+1 − xi

2

∫ 1

−1

f̄(ξ)ψi dξ

where

p̄(ξ) = p
(
xi +

xi+1 − xi

2
(1 + ξ)

)
,

and so on. Here ψi and ψj are the local basis functions under the new variables, i.e., the
shape functions and their derivatives. For piecewise linear functions, there are only two
nonzero shape functions

ψ1 =
1 − ξ

2
, ψ2 =

1 + ξ

2
, (8.23)

with derivatives ψ′
1 = −1

2
, ψ′

2 =
1
2
. (8.24)

There are three nonzero quadratic shape functions

ψ1 =
ξ(ξ − 1)

2
, ψ2 = 1 − ξ2, ψ3 =

ξ(ξ + 1)
2

, (8.25)

with derivatives ψ′
1 = ξ − 1

2
, ψ′

2 = −2ξ, ψ′
3 = ξ +

1
2
. (8.26)

These hat (linear) and quadratic shape functions are plotted in Fig. 8.4.
It is noted that there is an extra factor in the derivatives with respect to x, due to

the transform:

dφi

dx
=
dψi

dξ

dξ

dx
= ψ′

i
2

xi+1 − xi
.

i i

i

i

i

i

192 High order FE method, BC, Implementation & the Lax-Milgram lemma

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.4. Plot of some shape functions: (a) the hat (linear) functions;

(b) the quadratic functions.

The shape functions can be defined in a Matlab function

[psi, dpsi] = shape(xi, n) ,

where n = 1 renders the linear basis function, n = 2 the quadratic basis function, and
n = 3 the cubic basis function values. For example, with n = 2 the outputs are

psi(1) , psi(2) , psi(3) , three basis function values,

dpsi(1) , dpsi(2) , dpsi(3) , three derivative values.

The Matlab subroutine is as follows.

function [psi,dpsi]=shape(xi,n);

%%

% %

% Function ‘‘shape’’ evaluates the values of the basis functions %

% and their derivatives at a point xi. %

% %

% n: The basis function. n=2, linear, n=3, quadratic, n=3, cubic. %

% xi: The point where the base function is evaluated. %

% Output: %

% psi: The value of the base function at xi. %

% dpsi: The derivative of the base function at xi. %

%--%

switch n

case 2,

% Linear base function

psi(1) = (1-xi)/2;

psi(2) = (1+xi)/2;

i i

i

i

i

i

8.4. A 1D Matlab FE package 193

dpsi(1) = -0.5;

dpsi(2) = 0.5;

return

case 3,

% quadratic base function

psi(1) = xi*(xi-1)/2;

psi(2) = 1-xi*xi;

psi(3) = xi*(xi+1)/2;

dpsi(1) = xi-0.5;

dpsi(2) = -2*xi;

dpsi(3) = xi + 0.5;

return

case 4,

% cubic base function

psi(1) = 9*(1/9-xi*xi)*(xi-1)/16;

psi(2) = 27*(1-xi*xi)*(1/3-xi)/16;

psi(3) = 27*(1-xi*xi)*(1/3+xi)/16;

psi(4) = -9*(1/9-xi*xi)*(1+xi)/16;

dpsi(1) = -9*(3*xi*xi-2*xi-1/9)/16;

dpsi(2) = 27*(3*xi*xi-2*xi/3-1)/16;

dpsi(3) = 27*(-3*xi*xi-2*xi/3+1)/16;

dpsi(4) = -9*(-3*xi*xi-2*xi+1/9)/16;

return

end

%--------------------------- END OF SHAPE -----------------------------

8.4.3 The main data structure

In one space dimension, a mesh is a set of ordered points as described below.

• Nodal points: x1 = a, x2, · · · , xnnode = b. The number of total nodal points plus
the auxiliary points is nnode.

• Elements: Ω1, Ω2, · · · , Ωnelem. The number of elements is nelem.

• Connection between the nodal points and the elements: nodes(nnode, nelem), where
nodes(j, i) is the j-th index of the nodes in the i-th element. For the linear basis
function, j = 1, 2 since there are two nodes in an element; for the quadratic basis
function, j = 1, 2, 3 since there are two nodes and an auxiliary point.

i i

i

i

i

i

194 High order FE method, BC, Implementation & the Lax-Milgram lemma

Example. Given the mesh and the indexing of the nodal points and the elements
in Fig. 8.5, for linear basis functions, we have

nodes(1, 1) = 1 , nodes(1, 2) = 3 ,

nodes(2, 1) = 3 , nodes(2, 2) = 4 ,

nodes(1, 3) = 4 , nodes(1, 4) = 2 ,

nodes(2, 3) = 2 , nodes(2, 4) = 5 .

Example. Given the mesh and the indexing of the nodal points and the elements
in Fig. 8.5, for quadratic basis functions, we have

nodes(1, 1) = 4 , nodes(2, 1) = 2 , nodes(3, 1) = 5 ,

nodes(1, 2) = 1 , nodes(2, 2) = 3 , nodes(3, 2) = 4 .

x3 x4x1 x2 x5

x3 x4x1 x2 x5

e1e2

e1 e2 e3 e4

Figure 8.5. Example of the relation between nodes and elements: (a) linear

basis functions; (b) quadratic basis functions.

8.4.4 Outline of the algorithm

function [x,u]=fem1d

global nnode nelem

global gk gf

global xi w

%%% Output: x are nodal points; u is the FE solution at

%%% nodal points.

[xi,w] = setint; % Get Gaussian points and weights.

%%% Input data, pre-process

i i

i

i

i

i

8.4. A 1D Matlab FE package 195

[x,kbc,ubc,kind,nint,nodes] = prospset;

%%% x(nnode): Nodal points, kbc, ubc: Boundary conditions

%%% kind(nelen): Choice of FE spaces. kind(i)=1,2,3 indicate

%%% piecewise linear, quadratic, and cubic FE space over the

%%% triangulation.

%%% nint(nelen): Choice of Gaussian quadrature. nint(i)=1,2,3,4

%%% indicate Gaussian order 1, 2, 3, 4.

formkf(kind,nint,nodes,x,xi,w);

%%% Assembling the stiffness matrix and the load vector element by

%%% element.

aplyb(kbc,ubc);

%%% Deal with the BC.

u = gk\gf; % Solve the linear system of equations

%%% Error analysis ...

8.4.5 Assembling element by element

The Matlab code is formkf.m

function formkf(kind,nint,nodes,x,xi,w)

............

for nel = 1:nelem,

n = kind(nel) + 1; % Linear FE space. n = 2, quadratic n=3, ..

i1 = nodes(1,nel); % The first node in nel-th element.

i2 = nodes(n,nel); % The last node in nel-th element.

i3 = nint(nel); % Order of Gaussian quadrature.

xic = xi(:,i3); % Get Gaussian points in the column.

wc = w(:,i3); % Get Gaussian weights.

%%% Evaluate the local stiffness matrix ek, and the load vector ef.

[ek,ef] = elem(x(i1),x(i2),n,i3,xic,wc);

i i

i

i

i

i

196 High order FE method, BC, Implementation & the Lax-Milgram lemma

%%% Assembling to the global stiffness matrix gk, and the load vector gf.

assemb(ek,ef,nel,n,nodes);

end

Evaluation of local stiffness matrix and the load vector

The Matlab code is elem.m

function [ek,ef] = elem(x1,x2,n,nl,xi,w)

dx = (x2-x1)/2;

% [x1,x2] is an element [x1,x2]

% n is the choice of FE space. Linear n=2; quadratic n=3; ...

for l=1:nl, % Quadrature formula that summarize.

x = x1 + (1.0 + xi(l))*dx; % Transform the Gaussian points.

[xp,xc,xb,xf] = getmat(x); % Get the coefficients at the

% Gaussian points.

[psi,dpsi] = shape(xi(l),n); % Get the shape function and

% its derivatives.

% Assembling the local stiffness matrix and the load vector.

% Notice the additional factor 1/dx in the derivatives.

for i=1:n,

ef(i) = ef(i) + psi(i)*xf*w(l)*dx;

for j=1:n,

ek(i,j)=ek(i,j)+(xk*dpsi(i)*dpsi(j)/(dx*dx) ...

+xc*psi(i)*dpsi(j)/dx+xb*psi(i)*psi(j))*w(l)*dx;

end

end

end

Global assembling

The Matlab code is assemb.m

function assemb(ek,ef,nel,n,nodes)

global gk gf

for i=1:n, % Connection between nodes and the elements

ig = nodes(i,nel); % Assemble global vector gf

gf(ig) = gf(ig) + ef(i);

for j=1:n,

jg = nodes(j,nel); % Assemble global stiffness matrix gk

i i

i

i

i

i

8.4. A 1D Matlab FE package 197

gk(ig,jg) = gk(ig,jg) + ek(i,j);

end

end

Input Data

The Matlab code is propset.m

function [x,kbc,vbc,kind,nint,nodes] = propset

• The relation between the number of nodes nnode and the number of elements nelem:
Linear: nelem = nnode− 1.
Quadratic: nelem = (nnode− 1)/2.
Cubic: nelem = (nnode− 1)/3.

• Nodes arranged in ascendant order. Equally spaced points are grouped together.
The Matlab code is datain.m

function [data] = datain(a,b,nnode,nelem)

The output data has nrec groups

data(i, 1) = n1 , index of the beginning of nodes .

data(i, 2) = n2 , number of points in this group .

data(i, 3) = x(n1) , the first nodal point .

data(i, 4) = x(n1 + n2) , the last nodal point in this group .

The simple case is

data(i, 1) = i , data(i, 2) = 0 , data(i, 3) = x(i) , data(i, 4) = x(i) .

• The basis functions to be used in each element:

for i=1:nelem

kind(i) = inf_ele = 1, or 2, or 3.

nint(i) = 1, or 2, or 3, or 4.

for j=1,kind(i)+1

nodes(j,i) = j + kind(i)*(i-1);

end

end

8.4.6 Input boundary conditions

The Matlab code aplybc.m involves an array of two elements kbc(2) and a data array
vbc(2, 2). At the left boundary

kbc(1) = 1 , vbc(1, 1) = ua , Dirichlet BC at the left end;

kbc(1) = 2 , vbc(1, 1) = −k(a)u′(a) , Neumann BC at the left end;

kbc(1) = 3 , vbc(1, 1) = uxma , vbc(2, 1) = uaa , Mixed BC of the form:

k(a)u′(a) = uxma(u(a) − uaa) .

i i

i

i

i

i

198 High order FE method, BC, Implementation & the Lax-Milgram lemma

The BC will affect the stiffness matrix and the load vector and are handled in Matlab
codes aplybc.m and drchlta.m.

• Dirichlet BC u(a) = ua = vbc(1, 1).

for i=1:nnode,

gf(i) = gf(i) - gk(i,1)*vbc(1,1);

gk(i,1) = 0; gk(1,i) = 0;

end

gk(1,1) = 1; gf(1) = vbc(1,1);

where gk is the global stiffness matrix and gf is the global load vector.

• Neumann BC u′(a) = uxa. The boundary condition can be re-written as −k(a)u′(a) =
−k(a)uxa = vbc(1, 1). We only need to change the load vector.

gf(1) = gf(1) + vbc(1,1);

• Mixed BC αu(a) + βu′(a) = γ, β 6= 0. The BC can be re-written as

k(a)u′(a) = −α

β
k(a)

(
u(a) − γ

α

)

= uxma (u(a) − uaa) = vbc(1, 1) (u(a) − vbc(2, 1)) .

We need to change both the global stiffness matrix and the global load vector.

gf(1) = gf(1) + vbc(1,1)*vbc(2,1);

gk(1,1) = gk(1,1) + vbc(1,1);

Examples.

1. u(a) = 2, we should set kbc(1) = 1 and vbc(1, 1) = 2.

2. k(x) = 2 + x2, a = 2, u′(2) = 2. Since k(a) = k(2) = 6 and −k(a)u′(a) = −12, we
should set kbc(1) = 2 and vbc(1, 1) = −12.

3. k(x) = 2 + x2, a = 2, 2u(a) + 3u′(a) = 1. Since

3u′(a) = −2u(a) + 1 ,

6u′(a) = −4u(a) + 2 = −4
(
u(a) − 1

2

)
,

we should set kbc(1) = 3, vbc(1, 1) = −4 and vbc(2, 1) = 1/2.

Similarly, at the right BC x = b we should have

kbc(2) = 1 , vbc(1, 2) = ub , Dirichlet BC at the right end;

kbc(2) = 2 , vbc(1, 2) = k(b)u′(b) , Neumann BC at the right end;

kbc(2) = 3 , vbc(1, 2) = uxmb , vbc(2, 2) = ubb , Mixed BC of the form

−k(b)u′(b) = uxmb(u(b) − ubb) .

The BC will affect the stiffness matrix and the load vector and are handled in Matlab
codes aplybc.m and drchlta.m.

• Dirichlet BC u(b) = ub = vbc(1, 2).

i i

i

i

i

i

8.4. A 1D Matlab FE package 199

for i=1:nnode,

gf(i) = gf(i) - gk(i,nnode)*vbc(1,2);

gk(i,nnode) = 0; gk(nnode,i) = 0;

end

gk(nnode,nnode) = 1; gf(nnode) = vbc(1,1).

• Neumann BC u′(b) = uxb is given. The boundary condition can be re-written as
k(b)u′(b) = k(b)uxb = vbc(1, 2). We only need to change the load vector.

gf(nnode) = gf(nnode) + vbc(1,2);

• Mixed BC αu(b) + βu′(b) = γ, β 6= 0. The BC can be re-written as

−k(b)u′(b) =
α

β
k(b)

(
u(b) − γ

α

)

= uxmb (u(b) − ubb) = vbc(1, 2) (u(b) − vbc(2, 2)) .

We need to change both the global stiffness matrix and the global load vector.

gf(nnode) = gf(nnode) + vbc(1,2)*vbc(2,2);

gk(nnode,nnode) = gk(nnode,nnode) + vbc(1,2);

8.4.7 A testing example

To check the code, we often try to compare the numerical results with some known exact
solution, e.g., we can choose

u(x) = sin x , a ≤ x ≤ b .

If we set the material parameters as

p(x) = 1 + x , c(x) = cosx , q(x) = x2,

then the right hand side can be calculated as

f(x) = (pu′)′ + cu′ + qu = (1 + x) sin x− cos x+ cos2 x+ x2 sin x .

These functions are defined in the Matlab code getmat.m

function [xp,xc,xq,xf] = getmat(x);

xp = 1+x; xc = cos(x); xq = x*x;

xf = (1+x)*sin(x)-cos(x)+cos(x)*cos(x)+x*x*sin(x);

The mesh is defined in the Matlab code datain.m. All other parameters used for the
finite element method are defined in the Matlab code propset.m, including the following:

• The boundary x = a and x = b, e.g., a = 1, b = 4.

• The number of nodal points, e.g., nnode = 41.

• The choice of basis functions. If we use the same basis function, then for example
we can set inf_ele = 2, which is the quadratic basis function kind(i) = inf_ele.

• The number of elements. If we use uniform elements, then nelem = (nnode −
1)/inf_ele. We need to make it an integer.

i i

i

i

i

i

200 High order FE method, BC, Implementation & the Lax-Milgram lemma

• The choice of Gaussian quadrature formula, e.g., nint(i) = 4. The order of the
Gaussian quadrature formula should be the same or higher than the order of the
basis functions, for otherwise it may not converge! For example, if we use linear
elements (i.e. inf_ele = 1), then we can choose nint(i) = 1 or nint(i) = 2 etc.

• Determine the BC kbc(1) and kbc(2), and vbc(i, j), i, j = 1, 2. Note that the linear
system of equations is singular if both BC are Neumann, for the solution either does
not exist or is not unique.

(a)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2
x 10

−4 a=1, b=4, nnode = 41, inf
e
le = 1, nint=1, kbc(1)=1, kbc(2) = 3

(b)

1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−6 a=1, b=4, nnode = 41, inf
e
le = 2, nint=4, kbc(1)=3, kbc(2) = 2

Figure 8.6. Error plots of the FE solutions at nodal points. (a) The result

is obtained with piecewise linear basis function and Gaussian quadrature of order one

in the interval [1, 4]. Dirichlet BC at x = a and mixed BC 3u(b) + 4u′(b) = γ from

the exact solution u(x) = sinx are used. The magnitude of the error is O(10−4).

(b) Mixed BC 3u(a) + 4u′(a) = γ at x = a and the Neumann BC at x = b from

the exact solution are used. The result is obtained with piecewise quadratic basis

functions and Gaussian quadrature of order four. The magnitude of the error is

O(10−6).

To run the program, simply type the following into the Matlab:

[x,u]= fem1d;

To find out the detailed usage of the finite element code, read README carefully.
Fig. 8.6 gives the error plots for two different boundary conditions.

8.5 The FE method for fourth order BVPs in 1D

Let us now discuss how to solve fourth order differential equations using the finite element
method. An important fourth order differential equation is the bi-harmonic equation, such

i i

i

i

i

i

8.5. The FE method for fourth order BVPs in 1D 201

as in the model problem

u′′′′ + q(x)u = f(x) , 0 < x < 1 , subject to the BC

I : u(0) = u′(0) = 0 , u(1) = u′(1) = 0 ; or

II : u(0) = u′(0) = 0, u(1) = 0 , u′′(1) = 0 ; or

III : u(0) = u′(0) = 0, u′′(1) = 0 , u′′′(1) = 0 .

Note that there is no negative sign in the highest derivative term. To derive the weak
form, we again multiply by a test function v(x) ∈ V and integrate by parts to get

∫ 1

0

(u′′′′ + q(x)u)v dx =

∫ 1

0

fv dx ,

u′′′v
∣∣1

0
−
∫ 1

0

u′′′v′ dx+

∫ 1

0

quv dx =

∫ 1

0

fv dx ,

u′′′v
∣∣1
0

− u′′v′
∣∣1

0
+

∫ 1

0

(
u′′v′′ + quv

)
dx =

∫ 1

0

fv dx ,

u′′′(1)v(1) − u′′′(0)v(0) − u′′(1)v′(1) + u′′(0)v′(0) +

∫ 1

0

(
u′′v′′ + quv

)
dx =

∫ 1

0

fv dx .

For u(0) = u′(0) = 0, u(1) = u′(1) = 0, they are essential boundary conditions, thus we
set

v(0) = v′(0) = v(1) = v′(1) = 0. (8.27)

The weak form is

a(u, v) = f(v) , (8.28)

where the bilinear form and the linear form are

a(u, v) =

∫ 1

0

(
u′′v′′ + quv

)
dx , (8.29)

L(v) =

∫ 1

0

fv dx . (8.30)

Since the weak form involves second order derivatives, the solution space is

H2
0 (0, 1) =

{
v(x) , v(0) = v′(0) = v(1) = v′(1) = 0 , v , v′ and v′′ ∈ L2

}
, (8.31)

and from the Sobolev embedding theorem we know that H2 ⊂ C1.

For the boundary conditions u(1) = u′′(1) = 0, we still have v(1) = 0, but there is
no restriction on v′(1) and the solution space is

H2
E =

{
v(x) , v(0) = v′(0) = v(1) = 0 , v ∈ H2(0, 1)

}
. (8.32)

For the boundary conditions u′′(1) = u′′′(1) = 0, there are no restrictions on both v(1)
and v′(1) and the solution space is

H2
E =

{
v(x) , v(0) = v′(0) = 0 , v ∈ H2(0, 1)

}
. (8.33)

i i

i

i

i

i

202 High order FE method, BC, Implementation & the Lax-Milgram lemma

For non-homogeneous natural or mixed boundary conditions, the weak form and the linear
form may be different. For homogeneous essential BC, the weak form and the linear
form will be the same. We often need to do something to adjust the essential boundary
conditions.

8.5.1 The finite element discretization

Given a mesh

0 = x0 < x1 < x2 < · · · < xM = 1 ,

we want to construct a finite dimensional space Vh. For conforming finite element methods
we have Vh ∈ H2(0, 1), therefore we cannot use the piecewise linear functions since they
are in the Sobolev space H1(0, 1) but not in H2(0, 1).

For piecewise quadratic functions, theoretically we can find a finite dimensional space
that is a subset of H2(0, 1); but this is not practical as the basis functions would have large
support and involve at least six nodes. The most practical conforming finite dimensional
space in 1D is the piecewise cubic functions over the mesh

Vh =
{
v(x), v(x) is a continuous piecewise cubic function, v ∈ H2

0 (0, 1)
}
. (8.34)

The degree of freedom. On each element, we need four parameters to determine
a cubic function. For essential boundary conditions at both x = a and x = b, there
are 4M parameters for M elements; and at each interior nodal point, the cubic and its
derivative are continuous and there are four boundary conditions, so the dimension of the
finite element space is

4M − 2(M − 1) − 4 = 2(M − 1) .

Construct the basis functions in H2 in 1D

Since the derivative has to be continuous, we can use piecewise Hermite interpolation and
construct the basis function in two categories. The first category is

φi(xj) =

{
1 if i = j,

0 otherwise ,
(8.35)

and φ′
i(xj) = 0 , for any xj ,

i.e., the basis functions in this group have unity at one node and are zero at other nodes,
and the derivatives are zero at all nodes. To construct the local basis function in the
element (xi, xi+1), we can set

φi(x) =
(x− xi+1)2 (a(x− xi) + 1)

(xi − xi+1)2
.

It is obvious that φi(xi) = 1 and φi(xi+1) = φ′
i(xi+1) = 0 i.e., xi+1 is a double root of the

polynomial. We use φ′(xi) = 0 to find the coefficient a, to finally obtain

φi(x) =

(x− xi+1)2

(
2(x− xi)

(xi+1 − xi)
+ 1

)

(xi − xi+1)2
. (8.36)

i i

i

i

i

i

8.5. The FE method for fourth order BVPs in 1D 203

The global basis function can thus be written as

φi(x) =





0 if x ≤ xi−1 ,

(x− xi−1)2

(
2(x− xi)

(xi−1 − xi)
+ 1

)

(xi − xi−1)2
if xi−1 ≤ x ≤ xi ,

(x− xi+1)2

(
2(x− xi)

(xi+1 − xi)
+ 1

)

(xi − xi+1)2
, if xi ≤ x ≤ xi+1 ,

0 if xi+1 ≤ x .

(8.37)

There are M − 1 such basis functions. The second group of basis functions satisfy

φ̄′
i(xj) =

{
1 if i = j,

0 otherwise ,
(8.38)

and φ̄i(xj) = 0 , for any xj ,

i.e., the basis functions in this group are zero at all nodes, and the derivatives are unity
at one node and zero at other nodes. To construct the local basis functions in an element
(xi, xi+1), we can set

φ̄i(x) = C(x− xi)(x− xi+1)2,

since xi and xi+1 are zeros of the cubic and xi+1 is a double root of the cubic. The constant
C is chosen such that ψ′

i(xi) = 1, so we finally obtain

φ̄i(x) =
(x− xi)(x− xi+1)2

(xi − xi+1)2
. (8.39)

The global basis function for this category is thus

φ̄i(x) =





0 if x ≤ xi−1 ,

(x− xi)(x− xi−1)2

(xi − xi−1)2
if xi−1 ≤ x ≤ xi ,

(x− xi)(x− xi+1)2

(xi+1 − xi)2
if xi ≤ x ≤ xi+1 ,

0 if xi+1 ≤ x .

(8.40)

8.5.2 The shape functions

There are four shape functions in the interval (−1, 1), namely,

ψ1(ξ) =
(ξ − 1)2(ξ + 2)

4
,

ψ2(ξ) =
(ξ + 1)2(−ξ + 2)

4
,

ψ3(ξ) =
(ξ − 1)2(ξ + 1)

4
,

ψ4(ξ) =
(ξ + 1)2(ξ − 1)

4
.

i i

i

i

i

i

204 High order FE method, BC, Implementation & the Lax-Milgram lemma

It is noted that there are two basis functions centered at each node, so called a double

node. The finite element solution can be written as

uh(x) =
M−1∑

j=1

αjφj(x) +
M−1∑

j=1

βj φ̄j(x) , (8.41)

and after the coefficients αj and βj are found we have

uh(xj) = αj , u′
h(xj) = βj .

There are four nonzero basis functions on each element (xi, xi+1); and on adopting the
order φ1, φ2, ψ1, ψ2, φ3, φ3, ψ3, · · · , the local stiffness matrix has the form




a(φi, φi) a(φi, φi+1) a(φi, φ̄i) a(φi, φ̄i+1)

a(φi+1, φi) a(φi+1, φi+1) a(φi+1, φ̄i) a(φi+1, φ̄i+1)

a(φ̄i, φ̄i) a(φ̄i, φi+1) a(φ̄i , φ̄i) a(φ̄i, φ̄i+1)

a(φ̄i+1, φ̄i) a(φ̄i+1, φ̄i+1) a(φ̄i+1, φ̄i) a(φ̄i+1, φ̄i+1)




(xi,xi+1)

.

This global stiffness matrix is still banded, and has band width six.

8.6 The Lax-Milgram Lemma and the existence of FE

solutions

One of the most important issues is whether the weak form has a solution, and if so under
what assumptions. Further, if the solution does exist, is it unique, and how close is it to
the solution of the original differential equations? Answers to these questions are based
on the Lax-Milgram Lemma.

8.6.1 General settings: assumptions, and conditions

Let V be a Hilbert space with inner product (u , v)V and norm ‖u‖V =
√

(u, u)V , e.g.,
Cm, the Sobolev spaces H1 and H2, etc. Assume there is a bilinear form

a(u, v), V × V 7−→ R ,

and a linear form

L(v), V 7−→ R ,

that satisfy the following conditions:

1. a(u, v) is symmetric, i.e., a(u, v) = a(v, u);

2. a(u, v) is continuous in both u and v, i.e., there is a constant γ such that

|a(u, v)| ≤ γ‖u‖V ‖v‖V ,

for any u and v ∈ V ; the norm of the operator a(u, v)7;

7If this condition is true, then a(u, v) is called a bounded operator and the least lower bound

of such a γ > 0 is called the norm of a(u, v).

i i

i

i

i

i

8.6. The Lax-Milgram Lemma and the existence of FE solutions 205

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−4 −3 −2 −1 0 1 2 3 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 8.7. (a) Hermite cubic shape functions on a master element; and

(b) corresponding global functions at a node i in a mesh.

i i

i

i

i

i

206 High order FE method, BC, Implementation & the Lax-Milgram lemma

3. a(u, v) is V -elliptic, i.e., there is a constant α such that

a(v, v) ≥ α‖v‖2
V

for any v ∈ V (alternative terms are coercive, or inf-sup condition); and

4. L is continuous, i.e., there is a constant Λ such that

|L(v)| ≤ Λ‖v‖V ,

for any v ∈ V .

8.6.2 The Lax-Milgram lemma

Theorem 8.1. Under the above conditions 2 to 4, there exists a unique element u ∈ V

such that

a(u, v) = L(v), ∀ v ∈ V.

Furthermore, if the condition 1 is also true, i.e., a(u, v) is symmetric, then

1. ‖u‖V ≤ Λ
α

; and

2. u is the unique global minimizer of

F (v) =
1
2
a(v, v) − L(v) .

Sketch of the proof. The proof exploits the Riesz representation theorem from
functional analysis. Since L(v) is a bounded linear operator in the Hilbert space V with
the inner product a(u, v), there is unique element u∗ in V such that

L(v) = a(u∗, v), ∀ v ∈ V .

The a-norm is equivalent to V norm. From the continuity condition of a(u, v),
we get

‖u‖a =
√
a(u, u) ≤

√
γ‖u‖2

V =
√
γ ‖u‖V .

From the V -elliptic condition, we have

‖u‖a =
√
a(u, u) ≥

√
α‖u‖2

V =
√
α ‖u‖V ,

therefore
√
α ‖u‖V ≤ ‖u‖a ≤ √

γ ‖u‖V ,

or

1√
γ

‖u‖a ≤ ‖u‖V ≤ 1√
α

‖u‖a .

Often ‖u‖a is called the energy norm.

i i

i

i

i

i

8.6. The Lax-Milgram Lemma and the existence of FE solutions 207

F (u∗) is the global minimizer. For any v ∈ V , if a(u, v) = a(v, u), then

F (v) = F (u∗ + v − u∗) = F (u∗ + w) =
1
2
a(u∗ + w, u∗ +w) − L(u∗ +w)

=
1
2

(a(u∗ + w, u∗) + a(u∗ + w,w)) − L(u∗) − L(w)

=
1
2

(a(u∗, u∗) + a(w, u∗) + a(u∗, w) + a(w,w)) − L(u∗) − L(w)

=
1
2
a(u∗, u∗) − L(u∗) +

1
2
a(w,w) + a(u∗, w) − L(w)

= F (u∗) +
1
2
a(w,w) − 0

≥ F (u∗) .

Proof of the stability. We have

α‖u∗‖2
V ≤ a(u∗, u∗) = L(u∗) ≤ Λ‖u∗‖V ,

therefore

α‖u∗‖2
V ≤ Λ‖u∗‖V =⇒ ‖u∗‖V ≤ Λ

α
.

Remark: The Lax-Milgram Lemma is often used to prove the existence and u-
niqueness of the solutions of ODEs/PDEs.

8.6.3 An example using the Lax-Milgram lemma

Let us consider the 1D Sturm-Liouville problem once again:

−(pu′)′ + qu = f , a < x < b ,

u(a) = 0, α̃u(b) + β̃u′(b) = γ̃ , β̃ 6= 0,
α̃

β̃
≥ 0 .

The bilinear form is

a(u, v) =

∫ b

a

(
pu′v′ + quv

)
dx+

α̃

β̃
p(b)u(b)v(b) ,

and the linear form is

L(v) = (f, v) +
γ̃

β̃
p(b)v(b) .

The space is V = H1
E(a, b). To consider the conditions of the Lax-Milgram theorem, we

need the Poincaré inequality:

Theorem 8.2. If v(x) ∈ H1 and v(a) = 0, then

∫ b

a

v2 dx ≤ (b− a)2

∫ b

a

|v′(x)|2 dx or

∫ b

a

|v′(x)|2 dx ≥ 1
(b− a)2

∫ b

a

v2 dx . (8.42)

i i

i

i

i

i

208 High order FE method, BC, Implementation & the Lax-Milgram lemma

Proof: We have

v(x) =

∫ x

a

v′(t) dt

=⇒ |v(x)| ≤
∫ x

a

|v′(t)|dt ≤
{∫ x

a

|v′(t)|2dt
}1/2{∫ x

a

dt

}1/2

≤
√
b− a

{∫ b

a

|v′(t)|2
}1/2

,

so that

v2(x) ≤ (b− a)

∫ b

a

|v′(t)|2 dt

=⇒
∫ b

a

v2(x) dx ≤ (b− a)

∫ b

a

|v′(t)|2dt
∫ b

a

dx ≤ (b− a)2

∫ b

a

|v′(x)| dx .

This completes the proof.

We now verify the Lax-Milgram Lemma conditions for the Sturm-Liouville problem.

• Obviously a(u, v) = a(v, u).

• The bilinear form is continuous:

|a(u, v)| =

∣∣∣∣
∫ b

a

(
pu′v′ + quv

)
dx+

α̃

β̃
p(b)u(b)v(b)

∣∣∣∣

≤ max{ pmax, qmax }
(∫ b

a

(
|u′v′| + |uv|

)
dx+

α̃

β̃
|u(b)v(b)|

)

≤ max{ pmax, qmax }
(∫ b

a

|u′v′|dx+

∫ b

a

|uv| dx+
α̃

β̃
|u(b)v(b)|

)

≤ max{ pmax, qmax }
(

2‖u‖1‖v‖1 +
α̃

β̃
|u(b)v(b)|

)
.

From the inequality

|u(b)v(b)| =

∣∣∣∣
∫ b

a

u′(x) dx

∫ b

a

v′(x) dx

∣∣∣∣

≤ (b− a)

√∫ b

a

|u′(x)|2 dx

√∫ b

a

|v′(x)|2 dx

≤ (b− a)

√∫ b

a

(|u′(x)|2 + |u(x)|2) dx

√∫ b

a

(|v′(x)|2 + |v(x)|2) dx

≤ (b− a)‖u‖1‖v‖1 ,

we get

|a(u, v)| ≤ max{ pmax, qmax}
(

2 +
α̃

β̃
(b− a)

)
‖u‖1‖v‖1

i.e., the constant γ can be determined as

γ = max{ pmax, qmax}
(

2 +
α̃

β̃
(b− a)

)
.

i i

i

i

i

i

8.6. The Lax-Milgram Lemma and the existence of FE solutions 209

• a(v, v) is V -elliptic. We have

a(v, v) =

∫ b

a

(
p(v′)2 + qv2

)
dx+

α̃

β̃
p(b)v(b)2

≥
∫ b

a

p(v′)2 dx

≥ pmin

∫ b

a

(v′)2 dx

= pmin

(
1
2

∫ b

a

(v′)2 dx+
1
2

∫ b

a

(v′)2 dx

)

≥ pmin

(
1
2

1
(b− a)2

∫ b

a

v2 dx+
1
2

∫ b

a

(v′)2 dx

)

= pmin min

{
1

2(b− a)2
,

1
2

}
‖v‖2

1 ,

i.e., the constant α can be determined as

α = pmin min

{
1

2(b− a)2
,

1
2

}
.

• L(v) is continuous because

L(v) =

∫ b

a

f(x)v(x) dx+
γ̃1

β̃
p(b)v(b)

|L(v)| ≤ (|f |, |v|)0 +

∣∣∣∣
γ̃1

β̃

∣∣∣∣ p(b)
√
b− a ‖v‖1

≤ ‖f‖0‖v‖1 +

∣∣∣∣
γ̃1

β̃

∣∣∣∣ p(b)
√
b− a ‖v‖1

≤
(

‖f‖0 +

∣∣∣∣
γ̃1

β̃

∣∣∣∣ p(b)
√
b− a

)
‖v‖1 ,

i.e., the constant Λ can be determined as

Λ = ‖f‖0 +

∣∣∣∣
γ̃1

β̃

∣∣∣∣ p(b)
√
b− a .

Thus we have verified the conditions of the Lax-Milgram lemma under certain assumptions
such as p(x) ≥ pmin > 0, q(x) ≥ 0, etc., and hence conclude that there is the unique
solution in H1

e (a, b) to the original differential equation. The solution also satisfies

‖u‖1 ≤
‖f‖0 +

∣∣γ̃/β̃
∣∣ p(b)

pmin min
{

1
2(b−a)

, 1
} .

i i

i

i

i

i

210 High order FE method, BC, Implementation & the Lax-Milgram lemma

8.6.4 Abstract FE methods

In the same setting, let us assume that Vh is a finite dimensional subspace of V and that
{φ1, φ2, · · ·φM } is a basis for Vh. We can formulate the following abstract finite element
method using the finite dimensional subspace Vh. We seek uh ∈ Vh such that

a(uh, v) = L(v) , ∀v ∈ Vh , (8.43)

or equivalently

F (uh) ≤ F (v), ∀v ∈ Vh . (8.44)

We apply the weak form in the finite dimensional Vh:

a(uh, φi) = L(φi) , i = 1, · · · ,M . (8.45)

Let the finite element solution uh be

uh =
M∑

j=1

αjφj .

Then from the weak form in Vh we get

a

(
M∑

j=1

αjφj , φi

)
=

M∑

j=1

αja(φj, φi) = L(φi) , i = 1, · · · ,M ,

which in the matrix-vector form is

AU = F,

where U ∈ RM , F ∈ RM with F (i) = L(φi) and A is an M × M matrix with entries
A(i, j) = a(φj , φi). Since any element in Vh can be written as

v =
M∑

i=1

ηiφi ,

we have

a(v, v) = a

(
M∑

i=1

ηiφi,

M∑

j=1

ηjφj

)
=

M∑

i,j=1

ηia(φi, φj)ηj = ηTAη > 0

provided ηT = {η1, · · · ηM } 6= 0. Consequently, A is symmetric positive definite. The
minimization form using Vh is

1
2
UTAU − F T

U = min
η∈RM

(1
2
ηTAη − F T η

)
. (8.46)

The existence and uniqueness of the abstract FE method.

Since the matrix A is symmetric positive definite and it is invertible, so there is a unique

i i

i

i

i

i

8.7. *1D IFEM for discontinuous coefficients 211

solution to the discrete weak form. Also from the conditions of Lax-Milgram lemma, we
have

α‖uh‖2
V ≤ a(uh, uh) = L(uh) ≤ Λ‖uh‖V ,

whence

‖uh‖V ≤ Λ
α
.

Error estimates. If eh = u− uh is the error, then:

• a(eh, vh) = (eh, vh)a = 0 , ∀vh ∈ Vh;

• ‖u − uh‖a =
√
a(eh, eh) ≤ ‖u − vh‖a , ∀vh ∈ Vh, i.e., uh is the best approximation

to u in the energy norm; and

• ‖u−uh‖V ≤ γ
α

‖u− vh‖V , ∀vh ∈ Vh, which gives the error estimates in the V norm.

Sketch of the proof: From the weak form, we have

a(u, vh) = L(vh) , a(uh, vh) = L(vh) =⇒ a(u− uh, vh) = 0 .

This means the finite element solution is the projection of u onto the space Vh. It is the
best solution in Vh in the energy norm, because

‖u − vh‖2
a = a(u− vh, u− vh) = a(u− uh + wh, u − uh + wh)

= a(u− uh, u− uh) + a(u− uh, wh) + a(wh, u − uh) + a(wh, wh)

= a(u− uh, u− uh) + a(wh, wh)

≥ ‖u− uh‖2
a ,

where wh = uh − vh ∈ Vh. Finally, from the condition (3), we have

α‖u − uh‖2
V ≤ a(u− uh, u − uh) = a(u− uh, u − uh) + a(u− uh, wh)

= a(u− uh, u − uh + wh) = a(u− uh, u− vh)

≤ γ‖u − uh‖V ‖u − vh‖V .

The last inequality is obtained from condition (2).

8.7 *1D IFEM for discontinuous coefficients

Now we revisit the 1D interface problems discussed in Section 2.10

−(pu′)′ = f(x), 0 < x < 1, u(0) = 0, u(1) = 0, (8.47)

and consider the case in which the coefficient has a finite jump,

p(x) =

{
β−(x) if 0 < x < α,

β+(x) if α < x < 1.
(8.48)

i i

i

i

i

i

212 High order FE method, BC, Implementation & the Lax-Milgram lemma

The theoretical analysis about the solution still holds if the natural jump conditions

[u]α = 0,
[
β u′
]

α
= 0, (8.49)

are satisfied, where [u]α means the jump defined at α.
Given a uniform mesh xi, i = 0, 1, · · ·n, xi+1 − xi = h. Unless the interface α

in (8.47) itself is a node, the solution obtained from the standard finite element method
using the linear basis functions is only first order accurate in the maximum norm. In [20],
modified basis functions that are defined below

φi(xk) =

{
1, if k = i,

0, otherwise,
(8.50)

[φi]α = 0, [β φ′
i]α = 0, (8.51)

are proposed. Obviously, if xj ≤ α < xj+1, then only φj and φj+1 need to be changed to
satisfy the second jump condition. Using the method of undetermined coefficients, that
is, we look for the basis function φj(x) in the interval (xj , xj+1) as

φj(x) =

{
a0 + a1x if xj ≤ x < α,

b0 + b1x if α ≤ x ≤ xj+1,
(8.52)

which should satisfy φj(xj) = 1, φj(xj+1) = 0, φj(α−) = φj(α+), and β−φ′
j(α−) =

β+φ′
j(α+). There are four unknowns and four conditions. It has been proved in [20] that

the coefficients are unique determined and have the following closed form if β is a piecewise
constant and β−β+ > 0,

φj(x) =





0, 0 ≤ x < xj−1,

x− xj−1

h
, xj−1 ≤ x < xj ,

xj − x

D
+ 1, xj ≤ x < α,

ρ (xj+1 − x)
D

, α ≤ x < xj+1,

0, xj+1 ≤ x ≤ 1,

φj+1(x) =





0, 0 ≤ x < xj ,

x− xj

D
, xj ≤ x < α,

ρ (x− xj+1)
D

+ 1, α ≤ x < xj+1,

xj+2 − x

h
, xj+1 ≤ x ≤ xj+2,

0, xj+2 ≤ x ≤ 1.

where

ρ =
β−

β+
, D = h− β+ − β−

β+
(xj+1 − α).

Fig. 8.8 shows several plots of the modified basis functions φj(x), φj+1(x), and some
neighboring basis functions, which are the standard hat functions. At the interface α, we
can see clearly kinks in the basis functions which reflect the natural jump condition.

Using the modified basis functions, it has been shown in [20] that the finite element
solution obtained from the Galerkin finite method with the new basis functions is second
order accurate in the maximum norm.

For 1D interface problems, the finite difference and finite element methods are not
much different. The finite element method likely performs better for self-adjoint problems,
while the finite difference method is more flexible for general elliptic interface problems.

i i

i

i

i

i

8.8. Exercises 213

0.6 0.65 0.7
0

0.2

0.4

0.6

0.8

1

N=40, β−=1, β+=5, α=2/3

0.6 0.65 0.7
0

0.2

0.4

0.6

0.8

1

N=40, β−=5, β+=1, α=2/3

0.6 0.65 0.7

0

0.2

0.4

0.6

0.8

1

N=40, β−=1, β+=100, α=2/3

0.6 0.65 0.7

0

0.2

0.4

0.6

0.8

1

N=40, β−=100, β+=1, α=2/3

Figure 8.8. Plot of some basis function near the interface with different

β− and β+. The interface is at α = 2
3 .

8.8 Exercises

1. (Purpose: Review abstract FE methods.) Consider the Sturm-Liouville problem

−u′′ + u = f , 0 < x < π ,

u(0) = 0 , u(π) + u′(π) = 1 .

Let Vf be the finite dimensional space

Vf = span { x, sin(x), sin(2x) } .

Find the best approximation to the solution of the weak form from Vf in the energy
norm (‖ : ‖a =

√
a(:, :)). You can use either analytic derivation or computer

software packages (e.g. Maple, Matlab, SAS, etc.). Take f = 1 for the computa-
tion. Compare this approach with the finite element method using three hat basis
functions. Find the true solution, and plot the solution and the error of the finite
element solution.

2. Consider the Sturm-Liouville problem

−((1 + x2)u′)′ + xu = f, 0 < x < 1,

u(1) = 2.

i i

i

i

i

i

214 High order FE method, BC, Implementation & the Lax-Milgram lemma

Transform the problem to a problem with homogeneous Dirihlet boundary condition
at x = 1. Write down the weak form for each of the following case:

(a) u(0) = 3. Hint: Construct a function u0(x) ∈ H1 such that u0(0) = 3 and
u0(1) = 2.

(b) u′(0) = 3. Hint: Construct a function u0(x) ∈ H1 such that u0(1) = 2 and
u′

0(0) = 0.

(c) u(0) + u′(0) = 3. Hint: Construct a function u0(x) ∈ H1 such that u0(1) = 2
and u0(0) + u′

0(0) = 0.

3. Consider the Sturm-Liouville problem

−(pu′)′ + qu = f , a < x < b ,

u(a) = 0 , u(b) = 0 .

Consider a mesh a = x0 < x1 · · · < xM = b and the finite element space

Vh =
{
v(x) ∈ H1

0 (a, b)
}
, the set of piecewise cubic functions over the mesh.

(a) Find the dimension of Vh.

(b) Find all nonzero shape functions ψi(ξ) where −1 ≤ ξ ≤ 1, and plot them.

(c) What is the size of the local stiffness matrix and load vector? Sketch the
assembling process.

(d) List some advantages and disadvantages of this finite element space, compared
with the piecewise continuous linear finite dimensional space (the hat function-
s).

4. Down-load the files of the 1D finite element Matlab package. Consider the following
analytic solution and parameters,

u(x) = ex sin x , p(x) = 1 + x2 , q(x) = e−x , c(x) = 1 ,

and f(x) determined from the differential equation

−(pu′)′ + c(x)u′ + qu = f , a < x < b .

Use this example to become familiar with the 1D finite element Matlab package, by
trying the following boundary conditions:

(a) Dirichlet BC at x = a and x = b , where a = −1, b = 2 ;

(b) Neumann BC at x = a and Dirichlet BC at x = b , where a = −1 and b = 2 .

(c) Mixed BC γ = 3u(a) − 5u′(a) at x = a = −1 , and Neumann BC at x = b = 2
.

i i

i

i

i

i

8.8. Exercises 215

Using linear, quadratic, and cubic basis functions, tabulate the errors in the infinity
norm

eM = max
0≤i≤M

|u(xi) − Ui|

at the nodes and auxiliary points as follows:

M Basis Gaussian error eM/e2M

for different M = 4, 8, 16, 32, 64 (nnode= M + 1), or the closest integers if neces-
sary. What are the respective convergence orders?
(Note: the method is second, third or fourth order convergent if the ratio eM/e2M

approaches 4, 8 or 16, respectively.)

For the last case:
(1) print out the stiffness matrix for the linear basis function with M = 5. Is it
symmetric?
(2) Plot the computed solution against the exact one, and the error plot for the case
of the linear basis function. Take enough points to plot the exact solution to see the
whole picture.
(3) Plot the error versus h = 1/M in log-log scale for the three different bases.
The slope of such a plot is the convergence order of the method employed. For this
problem, you will only produce five plots for the last case.

Find the energy norm, H1 norm and L2 norm of the error and do the grid refinement
analysis.

5. Use the Lax-Milgram Lemma to show whether the following two-point value problem
has a unique solution:

−u′′ + q(x)u = f , 0 < x < 1 ,

u′(0) = u′(1) = 0 ,
(8.53)

where q(x) ∈ C(0, 1), q(x) ≥ qmin > 0. What happens if we relax the condition to
q(x) ≥ 0? Give counter-examples if necessary.

6. Consider the general fourth order two-point BVP

a4u
′′′′ + a3u

′′′ + a2u
′′ + a1u

′ + a0u = f , a < x < b ,

with the mixed BC

2u′′′(a) − u′′(a) + γ1u
′(a) + ρ1u(a) = δ1 , (8.54)

u′′′(a) + u′′(a) + γ2u
′(a) + ρ2u(a) = δ2 , (8.55)

u(b) = 0 ,

u′(b) = 0 .

Derive the weak form for this problem.
Hint: Solve for u′′′(a) and u′′(a) from (8.54) and (8.55). The weak form should
only involve up to second order derivatives.

i i

i

i

i

i

216 High order FE method, BC, Implementation & the Lax-Milgram lemma

7. (An eigenvalue problem.) Consider

−(pu′)′ + qu − λu = 0 , 0 < x < π , (8.56)

u(0) = 0, u(π) = 0 . (8.57)

(a) Find the weak form of the problem.

(b) Check whether the conditions of the Lax-Milgram Lemma are satisfied. Which
condition is violated? Is the solution unique for arbitrary λ?
Note: It is obvious that u = 0 is a solution. For some λ, we can find nontrivial

solutions u(x) 6= 0. Such a λ is an eigenvalue of the system, and the nonzero

solution is an eigenfunction corresponding to that eigenvalue. The problem to

find the eigenvalues and the eigenfunctions is called an eigenvalue problem.

(c) Find all the eigenvalues and eigenfunctions when p(x) = 1 and q(x) = 0.
Hint: λ1 = 1 and u(x) = sin(x) is one pair of the solutions.

8. Use the 1D finite element package with linear basis functions and a uniform grid to
solve the eigenvalue problem

−(pu′)′ + qu − λu = 0 , 0 < x < π ,

u(0) = 0 , u′(π) + αu(π) = 0 ,

where p(x) ≥ pmin > 0 , q(x) ≥ 0 , α ≥ 0 .

in each of the following two cases:

(a) p(x) = 1 , q(x) = 1 , α = 1 .

(b) p(x) = 1 + x2 , q(x) = x , α = 3 .

Try to solve the eigenvalue problem with M = 5 and M = 20. Print out the
eigenvalues but not the eigenfunctions. Plot all the eigenfunctions in a single plot
for M = 5, and plot two typical eigenfunctions for M = 20 (6 plots in total).
Hint: The approximate eigenvalues λ1, λ2, · · · , λM and the eigenfunction uλi(x)
are the generalized eigenvalues of

Ax = λBx ,

where A is the stiffness matrix and B = {bij} with bij =
∫ π

0
φi(x)φj(x)dx. You can

generate the matrix B either numerically or analytically; and in Matlab you can
use [V,D] = EIG(A,B) to find the generalized eigenvalues and the corresponding
eigenvectors. For a computed eigenvalue λi, the corresponding eigenfunction is

uλi (x) =
M∑

j=1

αi,jφj(x) ,

where [αi,1, αi,2, · · · , αi,M]T is the eigenvector corresponding to the generalized
eigenvalue.
Note: if we can find the eigenvalues and corresponding eigenfunctions, the solution
to the differential equation can be expanded in terms of the eigenfunctions, similar
to Fourier series.

i i

i

i

i

i

8.8. Exercises 217

9. (An application.) Consider a nuclear fuel element of spherical form, consisting of
a sphere of “fissionable” material surrounded by a spherical shell of aluminium
“cladding” as shown in the figure. We wish to determine the temperature dis-
tribution in the nuclear fuel element and the aluminium cladding. The governing
equations for the two regions are the same, except that there is no heat source term
for the aluminium cladding. Thus

− 1
r2

d

dr
r2k1

dT1

dr
= q , 0 ≤ r ≤ RF ,

− 1
r2

d

dr
r2k2

dT2

dr
= 0 , RF ≤ r ≤ RC ,

where the subscripts 1 and 2 refer to the nuclear fuel element and the cladding,
respectively. The heat generation in the nuclear fuel element is assumed to be of
the form

q1 = q0

[
1 + c

(
r

RF

)2
]
,

where q0 and c are constants depending on the nuclear material. The BC are

kr2 dT1

dr
= 0 at r = 0 (natural BC),

T2 = T0 at r = RC ,

where T0 is a constant. Note the temperature at r = RF is continuous.

• Derive a weak form for this problem. (Hint: first multiply both sides by r2.)

• Use two linear elements [0, RF] and [RF , RC] to determine the finite element
solution.

• Compare the nodal temperatures T (0) and T (Rf) with the values from the
exact solution

T1 = T0 +
q0R

2
F

6k1

{[
1 −

(
r

RF

)2
]

+
3
10
c

[
1 −

(
r

RF

)4
]}

+
q0R

2
F

3k2

(
1 +

3
5
c
)(

1 − RF

RC

)
,

T2 = T0 +
q0R

2
F

3k2

(
1 +

3
5
c
)(

RF

r
− RF

RC

)
.

Take T0 = 80, q0 = 5, k1 = 1, k2 = 50, RF = 0.5, RC = 1, c = 1 for plotting and
comparison.

