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Preface

These are lecture notes for course Math 221, Numerical Solution of Partial
Differential Equations given by Sorin M. Mitran at the University of North Carolina
at Chapel Hill during the Fall Semester of 2002.
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Part 1

Basic Methods





CHAPTER 1

Overview of frequently encountered PDE’s

1. PDE’s in the natural sciences

Ordinary and partial differential equations (ODE’s and PDE’s henceforth) are
frequently encountered in numerous areas of study. A knowledge of the basic sci-
entific background is necessary to write down equations of interest. Perhaps one
should not be surprised that the same background knowledge is useful in devising
solution methods. The typical procedures by which PDE’s are derived should be
known to researchers working on solution methods.

1.1. Conservation laws. A large number of PDE’s arise from the physi-
cal principle of conservation. Physicists have always been interested in describing
changes in the world surrounding us. By observation, theory and experiment cer-
tain concepts have been arrived at, among which the concept that one can define
physical quantities that remain the same during some process. These quantities are
said to be conserved. Typically a quantity is conserved in a hypothesized isolated
system. In reality no system is truly isolated and the most interesting applications
come about when we study the interaction of two or more systems. This leads to
the question of how one can follow the changes in physical quantities of the separate
systems. An extremely useful procedure is to set up an accounting procedure. To
start with a mundane example, consider the physical quantity of interest to be the
quantity of currency Q in a building B. If the building is a commonplace one, it
is to be expected that when completely isolated, the amount of currency in the
building is fixed

(1.1) Q = Q0 .

Q0 is some constant. Eq. (1.1) is self-evident but not particularly illuminating
– of course the amount of money is constant if nothing goes in or out! Similarly
in physics, statements such as “the total mass-energy of the universe is constant”
are not terribly useful, though one should note this particular statement is not
obviously true.

Things get more interesting when we consider a more realistic scenario in which
the system is not isolated. People might be coming and going from building B and
some might actually have money in their pockets. In more leisurely economic times,
one might be interested just in the amount of money in the building at the end of
the day. Just a bit of thought leads to

Qn = Qn−1 + ∆Qn−1,n

where Qn is the amount of money at the end of day n, Qn−1 that from the previous
day and ∆Qn−1,n the difference between money received and that paid in the
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4 1. OVERVIEW OF FREQUENTLY ENCOUNTERED PDE’S

building during day n

∆Qn−1,n = Rn−1,n − Pn−1,n .

Keeping track of Rn−1,n and Pn−1,n separately, for instance in two distinct columns
on a ledger, seems easier to people more inclined towards addition than subtraction,
and this leads to double entry accounting, an important discovery of Renaissance
Italy (see http://www.acaus.org/history/hs pac.html).

As economic activity picks up and we take building B to mean “bank” it be-
comes important to keep track of the money in the bank at all times, not just at the
end of the day. It then makes sense to think of the rate at which money is moving
in or out of the building so we can not only track the amount of currency at any
given time, but also be able to make some future predictions. Since some time
has passed in order for economic activity to pick up, we can assume that addition
and subtraction have become much more familiar and are actively taught to small
children. We’ll therefore use a single quantity F to denote the amount of money
leaving or entering building B during time interval ∆t with the understanding that
positive values of F represent incomes and negative ones expenditures. Such under-
standings go by the name of sign conventions. They’re not especially meaningful
but it aids communication if we all stick to the same ones. The amount of currency
in the building then changes in accordance to

(1.2) Q(t+ ∆t) = Q(t) + F ∆t .

By the time such equations were being written out fluid flow was a scientific
frontier investigated by the Bernoullis (see http://www.maths.tcd.ie/pub/ Hist-
Math/People/Bernoullis/RouseBall/RB Bernoullis.html) and F got to be referred
to as a flux, the Latin term for flow.

It is readily apparent that (1.2) is a good approximation for small intervals,
but probably a bad one if ∆t is large since economic activity might change from
hour to hour. In order to better keep track of things one might think of F as being
defined at any given time t so we have F (t) the instantaneous flux of currency at
time t. By the time people were thinking along these lines Newton and Leibniz had
introduced calculus and sufficient time has since passed that the notions of calculus
are widely known at least among college students if not small children. We can
therefore write

(1.3) Q(t+ ∆t) = Q(t) +
∫ t+∆t

t

F (τ)dτ

and get a suitably impressive statement which, form nonewithstanding, carries the
same significance as (1.2).

On the verge of the modern era economic activity might really expand and
buildings become so large that it makes sense to keep track of the amount of money
in individual rooms and also track inflows and outflows through individual doors.
We can identify a room or door by its spatial position denoted by x = (x1, x2, x3)
but we encounter a problem in that position vectors such as x refer to a single
point and no matter how small we make the currency it still has to occupy some
space. This conceptual difficulty is overcome by introducing a fictitious “density
of currency” at time t which we shall denote by q(x, t). The only real meaning we
associate with this density is that if we sum up the values of q(x, t) in some volume
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ω we obtain the amount of currency in that volume

Q(ω, t) =
∫
ω

q(x, t)dx .

On afterthought, we might observe that the same sort of question should have arisen
when we defined Q(t) as being defined at one instant in time. Ingrained psycholog-
ical perspectives make Q(t) more plausible, but were we to live our lives such that
quantum fluctuations are observable, Q(t) would be much more questionable.

If we have a spatial density for Q it seems natural to do the same for F and we
define f(x, t) as being the instantaneous flux of currency in a small region around
(x, t). A bit of thought suggests that the flux should be a vector quantity since
we have three directions along which a density can be defined. Along any given
direction a scalar flux is obtained by a scalar product; in particular along the
direction normal to a boundary n(x) the scalar flux is given by f(x, τ) · n(x). The
relation between the total flux and the flux densities is given by

(1.4) F (τ) =
∫
∂B

f(x, τ) · n(x) dx .

Careful observers will notice the appearance of ∂B as defining the integration do-
main. By this we mean that the integration is to be taken over the boundary of the
domain B, or in everyday terms, the exterior walls and doors of building B. There
is a bit of inconsistency in the sciences as to what we mean by “flux”. Sometimes
it means the amount of some quantity passing through a finite region such as F
above. Other times it actually means “flux density” such as f . This possibility of
confusion shows the value of using the same conventions. Imposing such conven-
tions is however a social activity and subject to historical iteration. In this course
the convention “flux”=f shall be imposed by instructor fiat. Gathering together all
the above we can write a much more sophisticated-looking statement
(1.5)

Q(B, t+ ∆t) =
∫
B

q(x, t+ ∆t)dx =
∫
B

q(x, t)dx︸ ︷︷ ︸
Q(B,t)

+
∫ t+∆t

t

∫
∂B

f(x, τ) · n(x) dx dτ

which nonetheless is essentially the same as (1.2) or (1.3).
There are some special cases in which additional events affecting the balance of

Q can occur. For instance if by B we mean a reserve bank, money might be (legally)
printed and destroyed in the building. Again by analogy with fluid dynamics when
such an event occurs we say that there exist sources of Q within B, much like a
spring is a source of surface water. Let Σ(t) be the total sources at time t. By now
we know what to expect; Σ(t) might actually be obtained by summing over several
sources placed in a number of positions, for instance the separate printing presses
and furnaces that exist in B. It is useful to introduce a spatial density of sources
σ(x, t). Our conservation statement now becomes∫

B

q(x, t+ ∆t)dx−
∫
B

q(x, t)dx =(1.6) ∫ t+∆t

t

∫
∂B

f(x, τ) · n(x) dx dτ +
∫ t+∆t

t

∫
B

σ(x, τ)dx dτ(1.7)

The statement above encompasses all physical conservation laws. It is however
quite straightforward in interpretation:
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change in money in B = net money coming in or going out of B + net money
produced or destroyed in B.

It should be emphasized that the above statement has true physical meaning
and is referred to as an integral formulation of a conservation law. The key term
is “integral” and refers to the fact that we are summing over some spatial domain.
Remember that the densities were artificial constructs that we introduced.

Eq. (1.6) is useful and often applied directly in the analysis of physical systems.
From an operational point of view it does have some inconveniences though. These
have mainly to do with pesky integration domains B which typically are difficult
to describe and over which it is difficult to perform integrations. To avoid this,
mathematicians and physicists have gone one further step and imagined f(x, t) as
being defined everywhere not only on ∂B (the doors and windows of B). These
internal fluxes can be shown to have a proper physical interpretation to which we
shall come back later. For now let’s see the implications of this extension. If we not
only assume that f(x, t) is defined everywhere, but also that it has nice properties
such like enough smoothness to ensure differentiability then we can apply the Gauss
theorem and transform the integral over ∂B into one over B

(1.8)
∫
∂B

f(x, τ) · n(x) dx =
∫
B

∇ · f(x, τ) dx .

Here we encounter another convention problem in that some disciplines use outward
pointing normals in which case (1.8) holds while other disciplines use an inward
pointing normal in which case we have

(1.9)
∫
∂B

f(x, τ) · n(x) dx = −
∫
B

∇ · f(x, τ) dx .

Fluid dynamics uses the second convention which leads to (1.9) and this is the one
we’ll adopt since so many developments in numerical methods for PDE’s initially
arose from fluid dynamics problems. Applying (1.9) to (1.6) leads to∫

B

[
q(x, t+ ∆t)− q(x, t) +

∫ t+∆t

t

∇ · f(x, τ) dτ

]
dx =(1.10)

∫ t+∆t

t

∫
B

σ(x, τ)dx dτ .(1.11)

There was nothing special about the shape of the building B or the length of the
time interval ∆t that we used in deriving (1.10). We can therefore consider special,
infinitesimal domains and intervals and obtain a differential form

(1.12)
∂q

∂t
+∇ · f = σ ,

where, as is customary, the dependence of q, f , σ on space and time is understood
but not written out explicitly. Eq. (1.12) is known as the local or differential form
of the conservation law for E. It is often easier to work with since there are no
complications arising from the domain shape that appear directly in the statement
of conservation.

In physics the above scenario is encountered many times. Physicists have ar-
rived at certain quantities which obey (1.6). In many situation it is permissible to
speak of local quantities and use (1.12). Classical physics arrived at mass, momen-
tum, energy and electrical charge as physical concepts that lead to quantities that
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satisfy conservation laws. Contemporary physics unified momentum and energy
in the theory of relativity and also gave new, microscopic quantities that satisfy
conservation such as lepton number.

1.2. Special forms of conservation laws.
1.2.1. Newton’s law. The full general form (1.12) often arises in real-world ap-

plications. Many times it is possible to carry out certain simplifications that lead
to equations that are easier to solve. As a simple example, consider the classic
problem of dynamics of studying the motion of a point mass m. It has no internal
structure and its motion is characterized by the second law of dynamics which is a
statement of conservation of momentum

(1.13)
d

dt
(mv) =

∑
F .

Here we have the correspondence q ←→ (mv), σ ←→
∑

F with (1.12), hence the
statement: “external forces are sources of momentum”. Instead of a PDE, the lack
of internal structure has led to an ODE.

1.2.2. Advection equations. Other special forms of (1.12) are not quite so triv-
ial. Often f , σ depend on q, that is we have f(q), σ(q). The specific form of this
dependence is given by physical analysis typically. But accounting for all physical
effects is so difficult that simple approximations are often used. For instance we
can assume that f(q) is sufficiently smooth to have a Taylor expansion

(1.14) f(q) = f0 + f ′(q0)(q − q0) + . . . =

and consider what happens when we use various truncations of the Taylor expan-
sion.

Typically we can take f0 = 0 since it doesn’t affect the PDE (1.12) anyway.
Choosing a system of units such that q0 = 0, the simplest truncation is

(1.15) f(q) = f ′(0)q = u q

and the σ = 0 form of (1.12) is

(1.16)
∂q

∂t
+∇ · (u q) = 0 .

If we consider that u does not depend on the spatial coordinates we obtain

(1.17)
∂q

∂t
+ u · ∇ q = 0

which goes by the name of the constant velocity advection equation. The name
comes from its use in modeling the transport of some substance by a flow; this
process is known as advection. Its one-dimensional form is the basis of much devel-
opment in numerical methods for PDE’s

(1.18)
∂q

∂t
+ u

∂q

∂x
= 0 ,

and we shall study it in detail.
If u does depend on x we have

(1.19)
∂q

∂t
+∇ · (u q) =

∂q

∂t
+ q ∇ · u + u · ∇ q = 0

or

(1.20)
∂q

∂t
+ u · ∇ q = −q ∇ · u
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known as the variable velocity advection equation. In very many cases the advection
velocity field u is divergence free

(1.21) ∇ · u = 0 ,

so we have the simpler form

(1.22)
∂q

∂t
+ u · ∇ q = 0 .

1.2.3. Diffusion equations. Another widely encountered dependence of f on q
is of the form

(1.23) f(q) = −α∇q
and this leads to

(1.24)
∂q

∂t
−∇ · (α∇q) = σ(q) .

This is known as the heat equation or the diffusion equation. If α (the thermal
diffusivity) is a constant we have

(1.25)
∂q

∂t
= α∇2q + σ(q) ,

a widely encountered form of the heat equation. For many problems time evolution
is so slow that the ∂q/∂t derivative is negligible and (1.25) becomes

(1.26) ∇2q = −σ/α
known as the Poisson equation. If σ = 0 we obtain the special form

(1.27) ∇2q = 0

known as the Laplace or harmonic equation.
1.2.4. Advection-diffusion equations. As might be expected, the physical flux

dependence might combine the two forms (1.15), (1.23) encountered above

(1.28) f(q) = u q − α∇q ,
from which we obtain

(1.29)
∂q

∂t
+ u · ∇ q = σ(q) +∇ · (α∇q)− q ∇ · u ,

known, naturally enough, as the advection-diffusion equation. Again, in most ap-
plications u is divergence-free so (1.29) becomes

(1.30)
∂q

∂t
+ u · ∇ q = σ(q) +∇ · (α∇q) .

1.2.5. Vector valued conservation laws. Up to now we have considered that
the conserved quantity is a scalar q. Often it is more convenient to group scalars
together as a vector, for instance when thinking of the momentum of a body. The
generalization of the conservation law (1.12) is immediate

(1.31)
∂q(x, t)
∂t

+∇ · f(q(x, t), (x, t)) = σ(q(x, t), (x, t)) .

Here the explicit dependence on space x and time t of q has been pointed out, as
well as the possible dependence of the fluxes f and sources σ on both space and
time and the conserved variables q(x, t). Note that ∇ · f has a different meaning
in the present context. As a result of taking the divergence we should still obtain
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a vector quantity for (1.31) to be consistent. This means that f is now a tensor of
dimension n× n where n is the number of components of e (and σ).

1.2.6. Convection-diffusion equations. In fluid flow, among other applications,
the velocity field u is related to the conserved quantities

(1.32) u = u (x, t,q) .

This particular situation goes by the name of convection. Similar to (1.29) we can
write a convection-diffusion equation

(1.33)
∂q

∂t
+ u(q) · ∇ q = σ(q) +∇ · (α∇q)− q ∇ · u

and its vector valued generalization

(1.34)
∂q
∂t

+ u(q) · ∇ e = σ(q) +∇ · (α∇q)− q ∇ · u .

1.3. Conservative and non-conservative forms. We have seen that a
large class of differential equations are derived from conservation laws. The ba-
sic form of a conservation law is:

time change = -(difference in outward fluxes) + (sources).
In mathematical terms we have the local, differential formulation

(1.35)
∂q

∂t
= −∇ · f(q) + σ .

This is known as the conservative form of the law of conservation of q. The same
principle of conservation might be stated differently if ∇ · f(q) is expanded. For
instance, when f = u q we can derive from the conservative form

(1.36)
∂q

∂t
= −∇ · (u q) + σ

the mathematically equivalent form

(1.37)
∂q

∂t
= −q ∇ · u− u · ∇q + σ .

Eq. (1.37) is known as the non-conservative form of the conservation law for
q. Though equivalent from the analytical point of view, the numerical solution
procedures for the two forms show different characteristics as we shall see later on.

2. PDE’s in other disciplines

Historically, most of the effort in studying PDE’s has been directed at those
suggested by mathematical physics and that somehow arise from a conservation
law. Recently PDE’s have been introduced in a number of other fields of study
such as mathematical finance or ecology. For instance an important development
in mathematical finance is the Black-Scholes equation describing the trading of
European options

(2.1)
∂V

∂t
+

1
2
σ2S2

t

∂2V

∂s2
+ rSt

∂V

∂s
− rV = 0

with V the value of an option, t time and s an asset allocation. Though such
equations arise from different fundamental principles it is striking that they have
the same form as those arising in mathematical physics. The Black-Scholes equation
can be described as a mixed diffusion advection equation with a source term for
example. We shall concentrate on a mathematical physics background in discussing
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numerical solution of PDE’s but keep in mind that the same methods are widely
applicable.

3. Typical problems involving ODE’s and PDE’s

Now that we have arrived at the general form of PDE’s which are of interest
in many applications we can turn to actually finding solutions. An important first
observation is that specifying the equation to be solved does not allow a unique
solution. We must also specify additional boundary and/or initial conditions. Just
as we have important special equations such as the advection or the Laplace equa-
tion, there are a number of important, archetypal problems involving ODE’s and
PDE’s.

3.1. Initial value problem for ODE’s. The simplest problem is the initial
value problem for a first order system of ODE’s

(3.1)
{

q′ = f(t,q)
q(t = 0) = q0

.

This also encompasses initial value problems for ODE’s of higher order since an
ODE of order p can always be rewritten as a system of p ODE’s of order 1. To
exemplify, consider

(3.2) q′′′ = g(t, q, q′, q′′) .

By introducing the auxilliary functions

(3.3) r = q′, s = q′′

we obtain the system

(3.4)
d

dt

 q
r
s

 =

 r
s

g(t, q, r, s)


which is of the form (3.1).

3.2. Boundary value problem for ODE’s. For ODE’s of order 2 or greater
or for systems of two or more ODE’s one can meaningfully impose boundary con-
ditions at distinct points within the computational domain. The archetypal ODE
boundary value problem is for a second order ODE with conditions at the end
points of the computational domain

(3.5)

 q′′ = f(t, q, q′)
q(a) = q1

q(b) = q2

.

Instead of the function values, its derivatives might be specified such as in

(3.6)

 q′′ = f(t, q, q′)
q′(a) = r1

q′(b) = r2

.
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3.3. Initial value problems for PDE’s. We can pose boundary and/or ini-
tial value conditions for PDE’s also. It should be noted that not all combinations
of PDE’s and boundary conditions are compatible. For a large class of phenom-
ena modeled by differential equations we have a reasonable expectation that small
changes in the boundary conditions should lead to small changes in the solution.
We would also expect the solution to exist and be unique. This means that the so-
lution should depend continuously on the boundary data. Problems for which this
holds are said to be well posed in the sense of Hadamard and we shall concentrate
almost exclusively on this type of problems. Note that not all phenomena modeled
need to behave this way as shown by the sensitive dependence on initial data shown
in chaotic behavior.

The PDE initial value problem (IVP) most closely related to (3.1) is that posed
for the scalar advection equation{

∂q

∂t
+ u

∂q

∂x
= σ(x, t, q)

q(x, t = 0) = q0(x), −∞ < x <∞
.

This problem is well posed and straight forward to solve as we shall see later on. The
advection equation is the simplest example of the class of hyperbolic PDE’s. The
name is a result of historical accident; the first time PDE’s were actively studied
scientists were interested in second order PDE’s the classification of which can be
related to that of quadratic curves.

We can also consider PDE’s of similar form for vector variables

(3.7)

{
∂q
∂t

+ A
∂q
∂x

= σ(x, t,q)

q(x, t = 0) = q0(x), −∞ < x <∞
.

This IVP is well posed if the eigenvectors of the matrix A form a complete set.

3.4. Boundary value problems for PDE’s. The archetypal boundary value
problems are posed for the Poisson equation. Here are the most commonly encoun-
tered problems exemplified for the 2D Poisson equation.

(1) Dirichlet problem, in which the values of the unknown function are given
along the solution domain’s boundary

(3.8)


∂2q

∂x2
+
∂2q

∂y2
= σ(x, y, q), (x, y) ∈ Ω

q(x, y) = F (x, y), (x, y) ∈ ∂Ω
.

Here, and in the following, Ω is the domain over which the problem is
defined and ∂Ω is its boundary.

(2) Neumann problem, in which the values of the normal derivative of the
unknown function are given along the solution domain’s boundary

(3.9)


∂2q

∂x2
+
∂2q

∂y2
= σ(x, y, q), (x, y) ∈ Ω

∂q

∂n
(x, y) = F (x, y), (x, y) ∈ ∂Ω

.
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(3) Robin problem, in which a linear combination of the function and its nor-
mal derivative are given on the boundary

(3.10)


∂2q

∂x2
+
∂2q

∂y2
= σ(x, y, q), (x, y) ∈ Ω

q(x, y) + k(x, y)
∂q

∂n
(x, y) = F (x, y), (x, y) ∈ ∂Ω

.

3.5. Mixed-type problems for PDE’s. A number of PDE’s require both
initial and boundary value conditions. The typical case is given by the problem of
solving the heat equation on a finite strip a ≤ x ≤ b

(3.11)


∂q

∂t
= α

∂2q

∂x2
+ σ(x, t, q),

q(a, t) = F1(t), q(b, t) = F2(t)
q(x, t = 0) = q0(x)



CHAPTER 2

Numerical approaches to solving PDE’s

1. A general framework for numerical solution of PDE’s

Now that we have an idea of the differential equations of interest in applications,
let us turn to the problem of finding solutions. Analytical techniques such as
separation of variables or Fourier analysis are very useful but for a limited class of
problems, generally linear PDE’s on domains of simple geometry. Most practical
interest arises from non-linear PDE’s over domains of complicated shape. The
fundamental problem facing us is to determine a function q̃ that approximates the
solution of the PDE of interest. A large numer of methods have been devised to
solve this problem numerically and we shall study individual methods extensively
in later chapters. It is instructive to see that basically all methods can be expressed
in a general framework that allows comparison of the strengths and weaknesses of
individual methods. Say we are faced with the following general problem:

Problem 1. Find q : Ω → Rn, q ∈ F that satisfies Lq = 0 on Ω and Bq = 0
on ∂Ω where L,B are operators defined on the normed linear space F .

Let us see how this abstract statement maps onto one of the typical PDE
problems, the Neumann problem:

(1.1)


∂2q

∂x2
+
∂2q

∂y2
= σ(x, y, q), (x, y) ∈ Ω

∂q

∂n
(x, y) = F (x, y), (x, y) ∈ ∂Ω

.

We have

L =
∂2

∂2x
+

∂2

∂2y
− σ(x, y, ·)(1.2)

B =
∂

∂n
− F (x, y)(1.3)

with L : Ω, B : ∂Ω and F some reasonable space of functions, for instance the
space of functions continuous up to second order defined on Ω, C(2)(Ω).

The advantage of the abstract formulation is that it allows us to concentrate on
the typical steps followed when building a numerical procedure without spending
too much time on the individual application at hand. We assume that the exact
solution q is difficult to find and therefore concentrate on constructing an approx-
imation q̃ ∼= q. Applying the operators L,B to the approximation q̃ leads to an
error, called a residual

(1.4) Lq̃ = r, Bq̃ = s .

It is our objective that the residual be as small as possible. In order to quantify
the error made, we need a mapping from the function space to which r belongs to

13
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a real number. Such a mapping is called a functional and the typical example is
the norm functional, e.g. ‖r‖ and ‖s‖ . In numerical approximations we often work
in the space of p-integrable functions F = L(p)(Ω) for which the norm is defined by

(1.5) ‖f‖ =
(∫
|f(x)|p dx

)1/p

.

The norm is a good candidate for evaluating the quality of our approximation q̃
since if ‖r‖ = 0 then we know that r = 0 and therefore q̃ = q. Unfortunately, the
presence of the absolute value operation limits the operations that can be carried
out on the norm and it is typical to use other functionals in constructing numerical
procedures. Instead of using the norm consider the functionals

(1.6) I(r) =
∫

Ω

r w dx, J(s) =
∫
∂Ω

s w′ dx .

Here we have introduced weight functions w,w′ that assign differing importance to
errors made in various parts of the domain of integration. In adopting I(r), J(s) as
measures of the quality of our approximation q̃ we have abandoned the certainty of
knowing that q̃ = q when I(r) = 0, since a zero value for I(r) could be obtained by
cancellation of positive and negative errors thorughout the domain. Appropriately
chosen weight functions alleviate this concern somewhat and this is a tradeoff we
accept for now with a view to simplicity of the ensuing algorithm. It is possible to
eliminate this drawback using the square of the residual as we shall see later on.

To simplify the presentation let us concentrate on I(r) only. The addition
of boundary conditions is usually a straightforward matter. Now that we have
established a means by which to quantify the quality of an approximation we have
to decide on how to build the approximation itself. Since F is a normed linear
space we can express any element g of F as a linear combination over a set of basis
functions

(1.7) g =
∞∑
i=1

aili .

For example the set {1, sinx, cosx, sin 2x, cos 2x, . . .} is a basis for the square-
integrable functions defined on [0, 2π], L(2) ([0, 2π]), and the set {1, x, x2, . . .} is
a basis for the infinitely differentiable functions defined over the reals C(∞)(R). In
practical computations we cannot use an infinite sum, so we construct our approx-
imation q̃ using only N terms

(1.8) q̃ =
N∑
i=1

cili .

Using (1.8) I(r) becomes

(1.9) I(r) =
∫

Ω

L

(
N∑
i=1

cili

)
w dx .

For arbitrary coefficients ci we shall have I(r) 6= 0. Since we wish q̃ to be a good
approximation we can reasonably impose I(r) = 0 and thus obtain an equation to



2. BASIC NUMERICAL METHODS 15

be used in determining the coefficients ci

(1.10)
∫

Ω

L

(
N∑
i=1

cili

)
w dx = 0 .

Now this is just one equation but we have N unknown coefficients. However the
weight function is arbitrary so obtaining as many equations as we need is easy: we
just choose w from some set of functions w ∈ {w1, w2, . . . , wN} and obtain a system
of N equations for N unknowns

(1.11)
∫

Ω

L

(
N∑
i=1

cili

)
wj dx = 0, j = 1, 2, . . . , N .

Up to this point we have concentrated on the approximation of q itself. There
still remains the question of how to approximate the presumably complex shape of
Ω. Generally this is done by approximating Ω by a set of simple-shaped subdomains
ωk such that the measure ρ of the difference between the two sets goes to zero as
we increase the number of subdomains

(1.12) ρ

(
Ω−

M⋃
m=1

ωm

)
→ 0 .

Using this approximation of the domain Ω (1.11) becomes

(1.13)
M∑
m=1

∫
ωm

L

(
N∑
i=1

cili

)
wj dx = 0, j = 1, 2, . . . , N .

This is known as a weighted residual formulation and a large number of methods for
numerically solving PDE’s can be thus expressed. We shall turn to some examples
shortly, but let us summarize the basic aspects:

(1) A function space from which we construct approximations is chosen along
with a subset of a basis of this space {l1, l2, . . . , lN};

(2) A set of weight functions {w1, w2, . . . , wN} is chosen;
(3) A discretization of the domain {ω1, ω2, . . . , ωM} is chosen.

2. Basic numerical methods

2.1. Finite difference methods.
2.1.1. Finite difference derivation. In a finite difference method (FDM) the

derivatives appearing in an ODE or PDE are approximated using finite differences.
For example the IVP

(2.1)
{

q′ = f(t, q)
q(t = 0) = q0

can be solved over the domain [0, T ] by finite differences using the following proce-
dure. We construct an approximation q̃ by a set of point values Qn = q̃(tn) with
tn = nk, n = 0, 1, . . . , N and k a step size k = T/N and assume that q̃ varies
linearly between the point values. From the point values we can construct myriad
approximations of the value of the derivative of q̃, for example

q̃′(tn) ∼=
Qn+1 −Qn−1

2k
,
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Figure 1. The piecewise linear form functions.

and obtain practical algorithms to solve (2.1) such as

(2.2) Qn+1 = Qn−1 + 2k f(tn, Qn) ,

known as the midpoint rule.
2.1.2. Weighted residual derivation. We shall analyze (2.1) and similar algo-

rithms extensively later on, but let us now see how the same method can be ob-
tained via the weighted residual formulation and what insights we can thereby gain.
We have chosen q̃ as being a piecewise linear approximation defined at the points
tn = nk. In the general language of the weighted residual formulation we have
Ω = [0, T ], ωm = [tm−1, tm]. A basis for the piecewise linear functions defined on
this partition of Ω is given by

(2.3) ln(t) =


0 t < tn−1

1
k

(
t− tn−1

)
tn−1 ≤ t < tn

1
k

(
tn+1 − t

)
tn ≤ t < tn+1

0 tn+1 ≤ t

.

See Fig. (1).
Any piecewise linear function over {ωm} can be defined as a linear combination

of {ln}, for instance

(2.4) q̃(t) =
N∑
i=0

cili(t) .

It is apparent from (2.3) that

(2.5) lm(tn) = δmn =
{

1 if m = n
0 if m 6= n

,

so imposing the conditions q̃(tn) = Qn leads to

(2.6) q̃(tn) =
N∑
i=0

cili(tn) =
N∑
i=0

ciδin = cn = Qn ,

i.e. the coefficients of the expansion (2.4) are the nodal values Qn. A similar
expansion is made to approximate the values of the r.h.s. term

(2.7) f(t, q) ∼= f̃(t, q) =
N∑
i=0

F ili(t)

with Fn = f̃(tn, Qn).
We must now choose appropriate weight functions. Since the approximation

we are building depends only on nodal values, a reasonable choice would be a set of
weight functions that give importance to the residual obtained at the nodes. Such
a set is given by

(2.8) wj = δ(t− tj)
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where δ(t − tj) is the Dirac delta functional centered on tj defined by its integral
property

(2.9)
∫ T

0

g(t)δ(t− tj) dt = g(tj)

for any function g(t).
Having chosen the function space on which to base our aproximation q̃, a basis

in this space {lm(t)}, the weight functions {δ(t − tj)} and a discretization of the
domain [0, T ] we can work through the weighted residual formulation (1.13) to
obtain

(2.10)
M∑
m=1

∫ tm

tm−1

[
d

dt

(
N∑
n=1

Qnln(t)

)
−

(
N∑
n=1

Fnln(t)

)]
δ(t− tj) dt = 0 .

It is easiest to use the properties of the Dirac-δ function to work through the above
expression. We have

(2.11)
∫ T

0

d

dt

(
N∑
n=1

Qnln(t)

)
δ(t− tj) dt =

∫ T

0

(
N∑
n=1

Fnln(t)

)
δ(t− tj) dt

(2.12)
N∑
n=1

Qn
∫ T

0

l′n(t) δ(t− tj) dt =
N∑
n=1

Fn
∫ T

0

ln(t) δ(t− tj) dt

(2.13)
N∑
n=1

Qn l′n(tj) =
N∑
n=1

Fnln(tj) =
N∑
n=1

Fnδnj = F j

We should be careful in evaluating l′n(tj) since ln(t) is not differentiable at the nodal
points t = tn. If we interpret l′n(tj) in principal value as the average of the limits
to the left and the right we have

(2.14) l′n(tj) =

 −
1
2k n = j − 1
0 n 6= j ± 1
1
2k n = j + 1

.

Eq. (2.13) becomes

(2.15)
Qj+1 −Qj−1

2k
= F j

which is exactly the same expression we had obtained previously, Eq. (2.2).
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2.1.3. Comparison of the two derivations. It is satisfying to see a method de-
rived in two ways, but an immediate question is what is to be gained by more
complicated weighted residual procedure in comparison to the straightforward fi-
nite difference derivation. Generally the benefit arises in theoretical considerations
of the behavior of the method. For instance let us consider the following theorem
from approximation theory.

Theorem 1. Let V be a metric linear space with a metric induced by the scalar
product (·, ·) on V and let S be a subspace of V. Let v ∈ V and u ∈ S. If v − u is
orthognal to any w ∈ S, then u is the best approximation of v within S.

Proof. Let d(u, v) be the distance induced by the scalar product between u
and v. Ask whether any other w ∈ S gives a smaller distance to v

[d(v, w)]2 = (v − w, v − w) = (v − u+ u− w, v − u+ u− w)(2.16)

= (v − u, v − u) + 2(u− w, v − u) + (u− w, u− w)(2.17)

= ‖v − u‖2 + ‖u− w‖2 + 2(u− w, v − u) .(2.18)

Since v − u is orthogonal to any element in S, it is orthogonal to u − w so (u −
w, v − u) = 0 and

(2.19) [d(v, w)]2 = ‖v − u‖2 + ‖u− w‖2 ≥ ‖v − u‖2 = [d(v, u)]2

and we conclude that u is the best approximation of v within S. �

We can apply such theorems to weighted residual derivations to infer the be-
havior of the numerical approximation. Applied to the above example, V would be
the space of differentiable functions to which q belongs. S would be the subspace
of piecewise continuous functions where we defined our approximation q̃. The best
approximation we could obtain would be orthogonal to the complement S of within
V. This subspace would contain functions that are not expressible as an expansion
along the set (2.3), for instance functions that vary more rapidly than the time step
chosen k. Predictions such as this are typically more difficult to obtain from the
simpler finite difference derivation.

Let us consider an application of the above theorem. Let V be the space
of differentiable functions defined on the interval [0, T ]. We introduce the scalar
product

(u, v) =
∫ T

0

u(t)v(t) dt ,

with u, v ∈ V. The metric induced by the scalar product is

d(u, v) = (u− v, u− v)1/2 =

(∫ T

0

[u(t)− v(t)]2 dt

)1/2

.

Now let us consider the problem of approximating elements of V by piecewise linear
functions defined by their point values on a partition of the interval [0, T ]. Let
{0 = t0, t1, . . . , tN−1, tN = T} be the partition of this interval. To keep things
simple we’ll use an uniform partition with tn = t0 + nk, k = T/N . The subspace
of piecewise linear functions is

S =

{
(Qn) | n = 0, 1, . . . , N, q̃(t) =

(
Qn −Qn−1

)
k

(t− tn−1) +Qn−1 for tn−1 ≤ t ≤ tn
}
.
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A piecewise linear function is obviously continuous but is not differentiable at the
partition points tn so at present we cannot affirm that S is a subspace of V. This
drawback is easily eliminated by imposing a principal value definition of the deriv-
ative at the partition points, i.e. for q̃ ∈ S we define

q̃′(tn) =
1
2

 lim
t→tn
t<tn

q̃′(t) + lim
t→tn
t>tn

q̃′(t)

 =
Qn+1 −Qn−1

2k
.

With this definition we can now state that S is a subspace of V. Let’s determine
the scalar product in S induced by that defined for V. With q̃, r̃ ∈ S we have

(q̃, r̃) =
∫ b

a

q̃(t)r̃(t) dt =
N∑
n=1

∫ tn

tn−1

[(
Qn −Qn−1

)
k

(t− tn−1) +Qn−1

][(
Rn −Rn−1

)
k

(t− tn−1) +Rn−1

]
dt

=
k

6
(
2QnRn + 2Qn−1Rn−1 +QnRn−1 +Qn−1Rn

)
.

Let us now look for the best approximation of an element q ∈ V by an ele-
ment q̃ ∈ S. By the above theorem, the best approximation possible satisfies the
condition

(q − q̃, r̃) = 0

for all r̃ ∈ S. This leads to ∫ T

0

[q(t)− q̃(t)] r̃(t) dt = 0

or
N∑
n=1

∫ tn

tn−1

[
q(t)−

(
Qn −Qn−1

)
k

(t− tn−1)−Qn−1

]
r̃(t) = 0 .

The unknowns of the above problem are the nodal values {Qn} and we can obtain
the relation
(2.20)
N∑
n=1

{(
Qn −Qn−1

)
k

∫ tn

tn−1
(t− tn−1) r̃(t) dt+Qn−1

∫ tn

tn−1
r̃(t) dt

}
=
∫ T

0

q(t) r̃(t) dt .

This is a linear relation in the unknowns. If this relation is valid for all r̃ ∈ S
we have determined the best approximation of q by elements within S. Note that
S is of finite dimension N + 1 so we need only choose N + 1 functions r̃j ∈ S,
j = 0, 1, . . . , N that form a basis of S. If (2.20) is verified for the elements of the
basis then it is verified for all elements within S (why?). We obtain the system of
equations
N∑
n=1

{(
Qn −Qn−1

)
k

∫ tn

tn−1
(t− tn−1) r̃j(t) dt+Qn−1

∫ tn

tn−1
r̃j(t) dt

}
=
∫ b

a

q(t) r̃j(t) dt , j = 0, 1, . . . , N,

which is linear system with N + 1 equations for the N + 1 unknowns Qn.
The same technique can be applied to determine best approximations to ele-

ments v ∈ V which are not specified directly. In the above initial value problem
(2.1) we are not given q but rather its derivative q′(t) = Lq(t) = f(t, q). We can
impose a condition

(Lq − Lq̃, r̃) = (f − Lq̃, r̃) = 0
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namely that the residual be orthogonal to the subspace S. This leads to the system
N∑
n=1

{(
Qn −Qn−1

)
k

∫ tn

tn−1
r̃j(t) dt

}
=
∫ T

0

f(t, q) r̃j(t) dt , j = 0, 1, . . . , N,

again with {rj}, j = 0, 1, . . . , N a basis of S. Note that if we choose rj(t) = lj(t),
the linear form functions from (2.3), we obtain
N∑
n=1

{(
Qn −Qn−1

)
k

∫ tn

tn−1
lj(t) dt

}
=
Qj+1 −Qj−1

2
=
∫ tj+1

tj−1
f(t, q) lj(t) dt , j = 0, 1, . . . , N .

If we additionally introduce a piecewise linear approximation for f(t, q) by

f(t, q) =
N∑
n=0

Fnln(t)

with Fn = f(tn, Qn) we obtain

Qj+1 −Qj−1

2
=

N∑
n=0

Fn
∫ tj+1

tj−1
ln(t) lj(t) dt , j = 0, 1, . . . , N .

Only three of the integrals give non-zero values,∫ tj+1

tj−1
lj−1(t) lj(t) dt =

k

6
,∫ tj+1

tj−1
lj(t) lj(t) dt =

2k
3
,∫ tj+1

tj−1
lj+1(t) lj(t) dt =

k

6
,

leading to the final formula

Qj+1 −Qj−1

2
= kF j ,

the same as that obtained above, (2.2). We can now however state that the nu-
merical solution obtained by this formula is the best possible approximation of the
initial value problem (2.1) by piecewise linear functions when the right-hand-side
term f(t, q) is also approximated by piecewise linear functions. This statement
could not have been made from the simple finite difference derivation.

2.2. Finite volume methods.
2.2.1. Derivation by integrating over a finite volume. Finite volume methods

for PDE’s are derived by integrating the equation of interest over a finite region of
the solution domain and introducing an average value for the unknown function over
each finite region. Let us exemplify for an elementary PDE, the one-dimensional,
constant-velocity advection equation

qt + uqx = 0 .

Say we wish to determine the solution for (x, t) ∈ [0, 1] × [0, T ] starting from the
initial condition q(x, t = 0) = sin(πx). In a finite volume method we first introduce
a partition of the definition domain into finite volumes V ni = [xi−1, xi]× [tn−1, tn]
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with xi = ih, h = 1/M , tn = nk, k = T/N . We then integrate the PDE over a
finite volume ∫ tn

tn−1

∫ xi

xi−1

(qt + uqx) dx dt = 0 ,

and obtain∫ xi

xi−1

[
q(x, tn)− q(x, tn−1)

]
dx+

∫ tn

tn−1
[uq(xi, t)− uq(xi−1, t)] dt = 0 .

An average value for the field variable q over the interval [xi−1, xi] is now introduced
at each time

Qni =
1
h

∫ xi

xi−1

q(x, tn) dx .

Similarily an average value for the flux f(q) = uq is introduced over the time
interval [tn−1, tn] for each xi

Fn−1
i =

1
k

∫ tn

tn−1
uq(xi, t) dt .

Such averages are known to exist by virtue of the mean value theorem. We obtain
an update formula

Qni = Qn−1
i − k

h

(
Fn−1
i − Fn−1

i−1

)
.

At first glance this looks just like a backward in time, backward in space finite
difference approximation. The interpretation is a bit different though; whereas in a
finite difference approximation we would have taken Qni to be the value at x = xi,
t = tn in a finite volume method it is understood as the average value at tn over
the cell [xi−1, xi]. This difference is slight though and indeed we shall see that most
finite volume methods have equivalent finite difference formulations.

2.2.2. Weighted residual derivation. We can easily recognize the appropriate
weights and approximation spaces that lead to a finite volume method. Since we’re
using average spatial values over a computational cell the appropriate approxima-
tion space is that of piecewise constant functions

ci(x) =

 0 x ≤ xi−1

1 xi−1 < x ≤ xi
0 x > xi

.

The time dependence of q̃ is not specified in the finite volume derivation. We can
assume a linear variation given by (2.3) such that

q̃(x, t) =
M∑
i=1

N∑
n=0

Qni ci(x)ln(t)

is our approximation of q(x, t). The weight functions are unity within a cell and
zero outside

wnj (x, t) =
1 xi−1 ≤ x ≤ xi and tn−1 ≤ t ≤ tn
0 otherwise

The weighted residual formulation (1.13) becomes∫ T

0

∫ 1

0

L

(
M∑
i=1

N∑
n=0

Qni ci(x)ln(t)

)
wpj (x, t) dx dt = 0
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with L = ∂t + u∂x. The properties of the weight functions leads to∫ tp

tp−1

∫ xj

xj−1

L

(
M∑
i=1

N∑
n=0

Qni ci(x)ln(t)

)
dx dt = 0 .

We can carry out some of the integrations analytically to obtain∫ xj

xj−1

M∑
i=1

N∑
n=0

Qni ci(x)ln(tp) dx−
∫ xi

xi−1

M∑
i=1

N∑
n=0

Qni ci(x)ln(tp−1) dx+

∫ tp

tp−1

M∑
i=1

N∑
n=0

uQni ci(xj)ln(t) dt−
∫ tp

tp−1

M∑
i=1

N∑
n=0

uQni ci(xj−1)ln(t) dt = 0

and we can use the identities ci(xj) = δij , ln(tp) = δnp to obtain∫ xj

xj−1

M∑
i=1

Qpi ci(x) dx−
∫ xi

xi−1

M∑
i=1

Qp−1
i ci(x) dx+

∫ tp

tp−1

N∑
n=0

uQnj ln(t) dt−
∫ tp

tp−1

N∑
n=0

uQnj−1ln(t) dt = 0 .

Another application of the properties of the form functions easily leads to

(2.21) hQpj − hQ
p−1
j + kF p−1

j − kF p−1
j−1 = 0

the same formula as was obtained previously. Note that because we have assumed
a certain variation in time of q̃(x, t) we actually can establish a formula for the
time-averaged fluxes

F p−1
j =

u

k

∫ tp

tp−1

[
Qp−1
j lp−1(t) +Qpj lp(t)

]
dt(2.22)

=
u

2

(
Qp−1
j +Qpj

)
.(2.23)

2.3. Finite element methods. Finite element methods have traditionally
been developed directly from the weighted residual formulation. There various ways
in which weights and approximating functions are chosen that shall be studied in
some detail later on. As an initial example let us consider the popular Galerkin
procedure in which the weight functions are chosen identical to the approximating
form functions. A simple example is to build a finite element method to solve the
Poisson equation with Dirichlet boundary conditions

qxx + qyy = 0 on Ω(2.24)

q(Σ) = f on Σ = ∂Ω.(2.25)

Let us assume a simple rectangular domain Ω = [0, 1] × [0, 1] and introduce an
uniform partition [xi−1, xi] × [yj−1, yj ], xi = ih, yj = jh, h = 1/M. There are
many variants of the finite element method. The basic common thread is that a
local approximation valid over a single finite element is used. Consider the so-called
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form functions

N1(ξ, η) =
1
4

(ξ − 1)(η − 1)(2.26)

N2(ξ, η) =
1
4

(ξ − 1)(η + 1)(2.27)

N3(ξ, η) =
1
4

(ξ + 1)(η − 1)(2.28)

N4(ξ, η) =
1
4

(ξ + 1)(η + 1)(2.29)

for −1 ≤ ξ, η ≤ 1 and N1 = N2 = N3 = N4 = 0 otherwise. A local approximation
valid over the element (i, j) which has its lower left corner at (xi, yj) is given by

(2.30) q̃(ξ, η) =
4∑
k=1

Q
(i,j)
k Nk(ξ, η)

Here k is the local numbering of the unknowns associated with element (i, j). The
weighted residual formulation leads to
(2.31)∫ +1

−1

∫ +1

−1

L

(
4∑
k=1

Q
(i,j)
k Nk(ξ, η)

)
Nk(ξ, η) dξdη = 0, 1 ≤ k ≤ 4, 1 ≤ i, j ≤M .

This leads to a linear system for the unknown values Q(i,j)
k . There intervene var-

ious practical complications involving numbering of unknowns and the fact that
unknowns are based at the nodes and hence shared by more than one element. The
numbering problem is readily solved while the issue of shared unknown values leads
to the process of matrix assembly which shall be studied in detail when we analyze
finite element methods.

2.4. Spectral methods. Up to now we have predominantly used local, poly-
nomial approximating functions. There are good reasons to make such a choice
for very many problems, especially those that contain jumps (discontinuities) in
the unknown function or its derivatives. However if it is known that the function
is smooth other basis functions can be used, for example global basis functions
defined over an entire domain. When these basis functions have a special relation
with the operator of the PDE being solved the resulting method is known as a
spectral method. For instance for the operator

(2.32) L = − d2

dx2

the functions sin(rx), cos(rx) play a special role since they satisfy the eigenfunction
relation

(2.33) L sin(rx) = r2 sin(rx), L cos(rx) = r2 cos(rx) .

Such eigenfunctions have remarkable advantages as basis functions; in a very pre-
cise sense they offer the most compact representation of any given function in the
space which they span. When they are used as basis functions in a numerical
approximation the resulting method is known as a spectral method. Weight func-
tions must also be chosen and there exist various procedures to do this. Again
the Galerkin procedure is widely used in which the basis functions are also used as
weight functions.





CHAPTER 3

Initial Value Problems for Ordinary Differential
Equations

1. Motivation

ODE numerical methods are directly applicable to solving PDE’s. A simple
example is the class of semi-discrete methods. Consider for instance the problem
of finding q(x, t) defined on [0, 1]× [0, T ] that satisfies

(1.1)

 qt = qxx
q(x, t = 0) = f(x)

q(x = 0, t) = g0(t), q(x = 1, t) = g1(t)
.

One approach to this PDE problem is to transform it into a system of ODE’s by
introducing a discretization in space

(1.2) xi = ih, h = 1/M

and the functions Qi(t) that approximate q(xi, t)

(1.3) Qi(t) ∼= q(xi, t), i = 0, . . . ,M

at the nodes xi. A finite difference approximation of the spatial derivative in (1.1)
leads to

(1.4)
dQi(t)
dt

=
Qi+1(t)− 2Qi(t) +Qi−1(t)

h2
, i = 1, . . . ,M − 1

a system of M − 1 ODE’s. Initial conditions are given by Qi(0) = f(xi) and we
can apply the boundary conditions through Q0(t) = g0(t), QM (t) = g1(t). Thus
the IVBP for the heat equation given by Eq. (1.1) has been approximated by the
ODE system (1.4).

Not only are the methods that we devise for ODE’s applicable to PDE’s but
also much of the theoretical tools used in analyzing ODE’s can be applied to the
more difficult case of PDE’s.

2. Existence of solutions

One of the basic ODE problems is the Cauchy or initial value problem given in
general by (3.1). Let us consider the scalar form

(2.1)
{

q′ = f(t, q)
q(t = 0) = q0

,

with f : R2 → R and establish the conditions under which solutions exist. The
natural language translation of the above ODE is: given the instantaneous rate
of change for q and a starting value q0 at t = 0 find q(t) for later times t > 0.
We suspect that f should be smooth in order for a solution to exist. If f were
discontinuous at some q∗ we would be hard put to choose the proper rate of change.

25
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It could conceivably be anywhere from the left limit f(t, q∗ − 0) to the right limit
f(t, q∗ + 0). In fact mere continuity of the function f is not sufficient to establish
a unique solution as shown by the following counter-example.

Example 1. Consider the IVP q′ = f(q) = 3q2/3, q(t = 0) = 0. Both q(t) = 0
and q(t) = t3 are solutions of the problem, so the IVP does not specify a unique
solution even though f(q) is continuous.

Looking at the counter-example we might presume that the non-uniqueness is
somehow associated with f not being differentiable at q = 0. Indeed, if we impose
that f is differentiable everywhere then a unique solution to the IVP (2.1) does
exist. From ODE theory it is known that the necessary and sufficient condition
is stronger than continuity but weaker than differentiability. Continuity in q at
q∗would require |f(t, q)− f(t, q∗)| → 0 as q → q∗ while differentiability would
require that there exist a limit value of the ratio

(2.2)
f(t, q)− f(t, q∗)

q − q∗

as q → q∗ which we denote by

(2.3) fq(t, q∗) =
∂f

∂q
(t, q∗) .

An intermediate condition would be that the ratio (2.2) be bounded over some
neighborhood of q∗, |q − q∗| < ε for all t. This is known as Lipschitz continuity.

Definition 1. The function f(t, q) is Lipschitz continuous in q over S =
{(t, q) | 0 ≤ t ≤ T, q ∈ R}if there exists L > 0 such that

(2.4) |f(t, q1)− f(t, q2)| ≤ L |q1 − q2| .

This is equivalent with stating that the function difference is of the same order
as the difference in the q arguments: |f(t, q1)− f(t, q2)| = O(|q1 − q2|) at any given
time t. It is easy to see that if f is differentiable and fq = ∂f/∂q is bounded, we
can take L as the maximum value of the differential over the neighborhood of q

(2.5) L = max
q
|fq(t, q)| .

Whenever we can establish a single L value that holds over the entire strip S we
say that f is uniformly Lipschitz continuous over S. There is a natural extension
to vector valued functions f : Rn+1 → Rn in which instead of the absolute value we
use some norm ‖‖, saying that f is Lipschitz continuous if there exists L > 0 such
that

(2.6) ‖f(t,q1)− f(t,q2)‖ ≤ L ‖q1 − q2‖

over a strip S = {(t,q) | 0 ≤ t ≤ T, q ∈ Rn}
With this preparation we can state the basic theorem for existence of solutions

to the IVP.

Theorem 2. If f in (2.1) is Lipschitz continuous in q over S then there exists
a unique solution q(t) to (2.1) for some interval t ∈ [0, τ ]. The solution q(t) is
continuous and continuously differentiable. If f is uniformly Lipschitz continuous
over S then the solution q(t) exists over the entire interval t ∈ [0, T ].
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Furthermore, the solution to (2.1) depends continuously on the initial data.
Suppose we have two IVP’s which have the same f but different initial conditions
q1
0 , q

2
0 leading to two different solutions q

(
t; q1

0

)
, q
(
t; q2

0

)
. Under the same conditions

as the above theorem we can show that

(2.7)
∣∣q (t; q1

0

)
− q

(
t; q2

0

)∣∣ ≤ eLt ∣∣q1
0 − q2

0

∣∣ .
This states that later differences in the function values remain bounded by eLt

times the difference in the initial conditions. We see the role played by the Lipschitz
constant L. It describes how quickly the two different solutions could diverge from
one another.

3. Finite difference approximations

We shall first concentrate on solving the IVP (3.1) using a finite difference
approach. A discretization of the interval [0, T ] over which the solution is sought is
introduced by

(3.1) t(n) = nk, n = 0, 1, . . . , N, k = T/N,

with k the step size. This is known as an uniform discretization of the interval
[0, T ]. Non-uniform discretizations are also widely used but we shall restrict our
attention to uniform discretizations for now. The notation Q(n) shall be used to
denote approximations of the exact value of the unknown function at t(n)

(3.2) Q(n) ∼= q(t(n)) .

Superscripts shall be used to denote discretization in time with a view to using
subscripts for spatial discretization later on. To simplify the notation the paren-
theses around superscripts shall be omitted as in tn, Qn, when there is no risk of
confusing superscripts with exponentiation.

Simple finite difference approximations of the derivative can be deduced by
geometric reasoning. Thus

Qn+1 −Qn

k
,
Qn −Qn−1

k
,
Qn+1 −Qn−1

2k

can be interpreted as approximations of the true slope of the function q(t) at tn,
q′(tn) obtained by various secants passing through points on the graph of q(t). Such
geometric constructions are difficult to extend to arbitrary accuracy though. One
analytical procedure for achieving arbitrary accuracy is the method of undetermined
coefficients which makes use of Taylor series expansions of q(tn +mk).

Example 2. A fourth-order accurate finite difference approximation of q′(t)
can be obtained by

(3.3)



a q(t− 2k) = a
[
q − 2kq′ + (2k)2

2! q′′ − (2k)3

3! q′′′ + (2k)4

4! q(iv) +O(k5)
]

b q(t− k) = b
[
q − kq′ + k2

2! q
′′ − k3

3! q
′′′ + k4

4! q
(iv) +O(k5)

]
c q(t) = c q(t)

d q(t+ k) = d
[
q + kq′ + k2

2! q
′′ + k3

3! q
′′′ + k4

4! q
(iv) +O(k5)

]
e q(t+ 2k) = e

[
q + 2kq′ + (2k)2

2! q′′ + (2k)3

3! q′′′ + (2k)4

4! q(iv) +O(k5)
]

.
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Suppressed arguments denote function evaluation at t. Adding the above equations
gives

aq(t− 2k) + bq(t− k) + cq(t) + dq(t+ k) + eq(t+ 2k) = (a+ b+ c+ d+ e) q+

(3.4)

k(−2a− b+ d+ 2e)q′+(3.5)

k2

(
2a+

b

2
+
d

2
+ 2e

)
q′′+(3.6)

k3

(
−4a

3
− b

6
+
d

6
+

4e
3

)
q′′′+(3.7)

k4

(
2a
3

+
b

24
+

d

24
+

2e
3

)
q(iv)+(3.8)

O(k5)(3.9)

Setting the coefficient of kq′ to 1 and those of q, q′′, q′′′, q(iv) to zero leads to the
formula

(3.10) q′(t) =
−q(t+ 2k) + 8q(t+ k)− 8q(t− k) + q(t− 2k)

12k
+O(k4)

3.1. Finite difference operators. Finite difference approximations of arbi-
trarily high order of accuracy can be obtained using operator methods. Let E be
the translation operator defined by

(3.11) Eq(t) = q(t+ k) .

Repeated applications of E lead to

(3.12) Enq(t) = q(t+ nk)

with n any integer. E0 is the identity operator

(3.13) E0q(t) = Iq(t) = q(t)

Define the forward and backward difference operators by

∆+ = E − E0(3.14)

∆− = E0 − E−1 .(3.15)

We can also define a central difference operator by

(3.16) δ = E1/2 − E−1/2

whose action is given by

(3.17) δq(t) = q(t+ k/2)− q(t− k/2) .

Say we’re given a set of values of the function q at nodes tn = nk, n = 0, . . . , N
that we denote by Qn. One way we can determine values of the derivative q′ would
be to construct the interpolating polynomial passing through the points (tn, Qn)
and then differentiate the polynomial. The Newton form of the interpolating poly-
nomial pN (t) is given by

pN (t) = Q0 +
[
Q1, Q0

]
(t− t0) +

[
Q2, Q1, Q0

]
(t− t1)(t− t0) + . . .+(3.18) [

QN , QN−1, . . . , Q0
]

(t− tN−1)(t− tN−2) . . . (t− t0)(3.19)
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with the divided differences
[
Qn, Qn−1, . . . , Q0

]
defined recursively by[

Q1, Q0
]

=
Q1 −Q0

t1 − t0
(3.20)

[
Qn, Qn−1, . . . , Q0

]
=

[
Qn, Qn−1, . . . , Q1

]
−
[
Qn−1, Qn−2, . . . , Q0

]
tn − t0

(3.21)

One could just differentiate (3.18), replace t by the point of interest and thus
obtain a finite difference approximation to the derivative. The resulting formula is
unwieldy though since it involves divided differences evaluated recursively. We can
however express the divided differences in terms of the finite difference operators
∆+, ∆−. The first divided difference is

(3.22)
[
Q1, Q0

]
=

∆+q(t0)
k

=
∆+Q

0

k

and one can verify by induction that

(3.23)
[
Qn, Qn−1, . . . , Q0

]
=

∆n
+Q

0

n! kn
=

∆n
−Q

n

n! kn
.

Proof. Formula (3.23) is true for n = 1 by Eq. (3.22). Assuming the above
statement to be true for n, we must show that

(3.24)
[
Qn+1, Qn, . . . , Q0

]
=

∆n+1
+ Q0

(n+ 1)! kn+1
=

∆n+1
− Qn+1

(n+ 1)! kn+1
.

By the recursive definition of divided differences we have

(3.25)
[
Qn+1, Qn, . . . , Q0

]
=

[
Qn+1, Qn, . . . , Q1

]
−
[
Qn, Qn−1, . . . , Q0

]
tn+1 − t0

.

Using (3.23) we have

(3.26)
[
Qn+1, Qn, . . . , Q0

]
=

∆n
+Q

1

n! kn
−

∆n
+Q

0

n! kn
(n+ 1)k

=

∆n
−Q

n+1

n! kn
−

∆n
−Q

n

n! kn
(n+ 1)k

or [
Qn+1, Qn, . . . , Q0

]
=

∆n
+

(n+ 1)!kn+1

(
Q1 −Q0

)
=

∆n+1
+ Q0

(n+ 1)!kn+1
(3.27)

=
∆n
−

(n+ 1)!kn+1
(Qn+1 −Q0) =

∆n
−Q

n+1

(n+ 1)!kn+1
. �(3.28)

�

Using these and replacing t by t = t0 +αk the Newton interpolating polynomial
becomes

(3.29) pN (t) = Q0 + α∆+Q
0 +

α(α− 1)
2

∆2
+Q

0 + . . .+ Cnα∆n
+Q

0

with α ∈ [0, n]. There is a corresponding formula using backward differences

(3.30) pN (t) = QN + β∆−QN +
β(β + 1)

2
∆2
−Q

N + . . .+ (−1)nCn−β∆n
−Q

N

with t = tn + βk and β ∈ [−n, 0]. The above formulas may be succintly written as

(3.31) pN (t) =
(
E0 + ∆+

)α
Q0 =

(
E0 −∆−

)−β
QN
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using the binomial expansion. Differentiation of the interpolating polynomial with
respect to t may be rewritten as

(3.32)
dpN (t)
dt

=
dpN (t0 + αh)

dα

dα

dt
=

1
h

[{
ln(E0 + ∆+)

}
(E0 + ∆+)α

]
Q0

where the quantity between the brackets is an operator. But the first operator to
act on Q0 gives just the evaluation of the Newton interpolant

(3.33)
[
(E0 + ∆+)α

]
Q0 = pN (t)

so

(3.34)
dpN (t)
dt

=
1
k

[
ln(E0 + ∆+)

]
pN (t)

Identifying the operators on the two sides leads to the identity

(3.35)
d

dt
=

1
k

[
ln(E0 + ∆+)

]
Analogously, if we use backward differences we have

(3.36)
d

dt
= −1

k

[
ln(E0 −∆−)

]
The logarithm of an operator is defined by its series representation so we obtain

d

dt
=

1
k

(
∆+ −

1
2

∆2
+ +

1
3

∆3
+ −

1
4

∆4
+ + . . .

)
(3.37)

=
1
k

(
∆− +

1
2

∆2
− +

1
3

∆3
− +

1
4

∆4
− + . . .

)
(3.38)

Truncation of the operator series at term n leads to a finite difference formula of
O(kn). The procedure may be extended to higher order derivatives. The result for
the second order derivative is

d2

dt2
=

1
k2

(
∆2

+ −∆3
+ +

11
12

∆4
+ − . . .

)
(3.39)

=
1
k2

(
∆2
− + ∆3

− +
11
12

∆4
− + . . .

)
(3.40)

Example 3. A second order forward difference formula is obtained by truncat-
ing the series (3.37) to the first two terms

dq(t)
dt
∼=

1
k

(
∆+ −

1
2

∆2
+

)
q(t)(3.41)

=
1
k

{
q(t+ k)− q(t)− q(t+ 2k)− 2q(t+ k) + q(t)

2

}
(3.42)

=
−q(t+ 2k) + 4q(t+ k)− 3q(t)

2k
(3.43)

= q′(t) +O(k2)(3.44)

From the above left and right formulas we can also construct a centered fi-
nite difference representation of the derivative operator. Let D denote the time
differentiation operator, i.e. D = d/dt. From (3.35) and (3.36) we can write

(3.45) ∆+ = ekD − 1, ∆− = 1− e−kD .
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The average of the forward and backward difference operators is

(3.46)
1
2

(∆+ + ∆−) = 2 sinh kD .

Note that the centered difference operator δ can be expressed as the average of the
forward and backward operators for a half step size, so we obtain

(3.47) δ = 2 sinh
kD

2
,

from where

(3.48) D =
2
k

arcsinh
δ

2
.

The Taylor series expansion of arcsinhx around x = 0 is

(3.49) arcsinhx = x− x3

6
+

3x5

40
− 5x7

112
+

35x9

1152
−

so the first few terms from (3.48) are

(3.50) D =
1
k

(
δ − 1

24
δ3 +

3
640

δ5 − 5
7168

δ7 +
35

294912
δ9 − . . .

)
.

Notice that the series only contains odd powers of δ. We can show by induction
that truncation of the series at δ2n−1 gives a formula of O(k2n) accuracy.

4. Common finite difference methods

Let us now consider how numerical algorithms may be built to solve the IVP
(2.1) using finite differences.

4.1. Taylor series. The basic task of a finite difference method that solves
(2.1) numerically is to furnish a value at the next time step q(t + k) in terms of
known values at previous time steps. An immediate way of doing this is by use of
a Taylor series expansion

(4.1) q(t+ k) = q + kq′ +
k2

2!
q′′ +

k3

3!
q′′′ + . . .

To ease notation, function arguments not explicitly written out are considered to
be t, i.e. q′ means q′(t). The ODE specifies that q′ = f(t, q). From this we can
compute higher derivatives

(4.2) q′′ =
d

dt
f(t, q(t)) = ft + fqq

′ =

(4.3) q′′′ =
d

dt
q′′ =

d

dt
(ft + fqf) = ftt + ftqf + (fqt + fqqf) f + fq (ft + fqf)

Truncation of the Taylor series to various orders leads to the algorithms:
(1) O(k), Euler’s method

(4.4) Qn+1 = Qn + kf(Qn)

(2) O(k2)

(4.5) Qn+1 = Qn + kf(Qn) +
k2

2
[ft(Qn) + fq(Qn)f(Qn)]
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(3) O(k3)
(4.6)

Qn+1 = Qn + kf +
k2

2
[ft + fqf ] +

k3

6
[ftt + ftqf + (fqt + fqqf) f + fq (ft + fqf)]

with f and its derivatives evaluated at Qn.
Formulas of arbitrarily high order can be built up through this procedure but

evaluation of all the derivatives of f is tedious. In recent years the symbolic com-
putational capabilities of computers has led to renewed interest in the Taylor series
method.

4.2. Runge-Kutta methods. The Runge-Kutta class of methods aims to
achieve arbitrary accuracy not by evaluating the function f and its derivatives at t
but just by evaluations of the function f at various points in the interval [t, t+ k].
The general form of a Runge-Kutta method is

(4.7) q(t+ k) = q(t) +
s∑
l=0

γlfl

where fl denotes evaluation of the function f at

(4.8) tl = t+ αlk

(4.9) ql = q(t) + k

s∑
m=0

βl,mfm

Essentially this amounts to replacing the Taylor series expansion (4.1) with
a weighted average of the values of f along the integration step. Two common
Runge-Kutta methods should be known to all practitioners of numerical methods.

(1) A common two-stage Runge-Kutta method

K1 = k f(tn, Qn)(4.10)

K2 = k f(tn + k/2, Qn +K1/2)(4.11)

Qn+1 = Qn +K2(4.12)

(2) A common four-stage Runge-Kutta method

K1 = k f(tn, Qn)(4.13)

K2 = k f(tn + k/2, Qn +K1/2)(4.14)

K3 = k f(tn + k/2, Qn +K2/2)(4.15)

K4 = k f(tn + k,Qn +K3)(4.16)

Qn+1 = Qn +
1
6

(K1 + 2K2 + 2K3 +K4)(4.17)

4.3. Linear multi-step methods. Linear multi-step methods (LMM) carry
out the weighted average idea one step further and postulate a relationship of the
form

(4.18)
r∑
j=0

ajQ
(n+j) = k

r∑
j=0

bjf(t(n+j), Q(n+j))

so we not only have a weighted average of the f values but also of the function values
Q. Note that r starting values

{
Q(0), Q(1), . . . , Q(r−1)

}
are needed to apply (4.18),
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but only one initial condition Q(0) = q0 is apparent from the IVP. The additional
starting values are determined by some other procedure, for example by applying
a Runge-Kutta method to determine

{
Q(1), Q(2), . . . , Q(r−1)

}
. It is convenient to

define a LMM by the polynomials

(4.19) ρ(ζ) =
r∑
j=0

ajζ
j , σ(ζ) =

r∑
j=0

bjζ
j .

Some common LMM methods are:
(1) r-step Adams-Bashforth methods

(4.20) ρ(ζ) = ζr − ζr−1, σ(ζ) =

5. Linear difference equations

Relations such as (4.18) arise frequently in both ODE and PDE methods and
it is important to be able to analyze the induced behavior. Consider the finite
difference equation

(5.1)
r∑
j=0

ajQ
(n+j) = 0 .

We wish to find solutions to this equation given r initial conditionsQ(0), Q(1), . . . , Q(r−1),
that is to find the sequence

{
Q(l)

}
l≥r . Parantheses around superscripts are useful

here in order to more easily distinguish between exponents and superscripts. We
try to find solutions of the form

(5.2) Q(l) = ζl

where ζ is some non-zero constant (ζ = 0 leads to uninteresting, trivial solutions).
We see that ζ must satisfy the polynomial equation

(5.3) ρ(ζ) =
r∑
j=0

ajζ
j = 0 .

called the characteristic equation of the linear difference equation (5.1). Similarly
ρ(ζ) is called the characteristic polynomial. Let ζ1, ζ2, . . . , ζr be the roots of the
characteristic polynomial

(5.4) ρ(ζm) = 0, m = 1, 2, . . . , r .

Since (5.1) is linear, a linear combination of the roots is also a solution. The general
form of the solution is

(5.5) Q(n) =
r∑
j=0

cjζ
n
j .

The constants cj are determined from the initial conditions

(5.6)
r∑
j=0

cjζ
l
j = Q(l), l = 0, 1, . . . , r − 1

a linear system of r equations and r unknowns.
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6. Analysis of Convergence

The procedures outlined above can be used to derive various finite difference
algorithms suited to ODE’s. There arises naturally the question of which algo-
rithms are better than others or whether they work for all cases. We would like
an algorithm to give an approximation to the exact solution of the problem and
to get better results as we increase the resolution of the algorithm by decreasing
the step size k. Suppose we are seeking the solution to (2.1) for t ∈ [0, T ] through
an algorithm A that produces the approximations {Qn ∼= q(tn)}n=0,1,...,N tn = nk,
k = T/N . At each step we expect there to be an error En = Qn − q(tn). If we use
exact arithmetic then E0 = 0 since we just apply the initial condition, i.e. Q0 = q0

=⇒ E0 = 0. If we use computer arithmetic however there might be an unavoidable
initial error, e.g. when q0 is irrational.

Definition 2. An algorithm A to solve the IVP (2.1) is convergent if

(6.1) lim
k→0
Nk=T

En = 0

This just states that the error should go to zero as we decrease the step size
but keep the product of step size and number of steps constant, i.e. nk = T .

We now ask whether commonly used algorithms are convergent. Since it is
easier to work on simple cases first we start with the simplest algorithms and
problems first. We know from ODE theory that linear equations can be solved
analytically in closed form and one would expect that any numerical algorithm
should be able to approximate the solution to any desired degree of precision also.
Therefore we first study algorithms that solve the linear IVP

(6.2)
{

q′ = λq + σ
q(t = 0) = q0

,

where σ(t) is a source function. We shall call (6.2) the model problem. In plain
language (6.2) states that the change in q is given by two effects. The first effect is
proportional to q with a constant of proportionality λ while the second is specified
by the source function σ. The analytical solution to this problem is given by

(6.3) q(t) = eλtq0 +
∫ t

0

eλ(t−τ)σ(τ)dτ

which is known as the Duhamel principle. Its interpretation is quite educational.
The first term shows that the initial condition gets amplified by eλt. The function eλt

is known as the propagator function since it transfers the initial condition forward
to time t. Source terms also get propagated forward in time by the same function
but over a time interval reflecting the difference between the time t and the time τ
when the source was applied. There is a cumulation of the effect of source terms
as shown by the integral above.

6.1. Convergence of the forward Euler method for the model prob-
lem. Having selected a suitably simple IVP, we now select a simple numerical
method, namely Euler’s method

(6.4) Qn+1 = Qn + k f(Qn)
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and study its convergence properties. Euler’s method applied to the model problem
gives

(6.5) Qn+1 = (1 + kλ)Qn + k σn.

We must now construct an expression for the error En. Equation (6.5) suggests
that we try to establish a relation recurrence between En+1 and En. A Taylor
series expansion of q(tn+1) gives

(6.6) q(tn+1) = q(tn) + kq′(tn) +
k2q′′(ξn)

2

with ξn ∈ (tn, tn+1) and q′′ assumed to be bounded. Since q′(tn) = f(tn, q(tn)) we
obtain

(6.7) q(tn+1) = (1 + kλ)q(tn) + k σn +
k2q′′(ξn)

2
.

Subtraction of (6.7) from (6.5) leads to the desired recurrence relation between
errors

(6.8) En+1 = (1 + kλ)En − k2q′′(ξn)
2

.

This shows that the error at the previous time step gets amplified by 1 + kλ and
a new error proportional to k2 is introduced during this step of the algorithm.
The additional error introduced during step n of the algorithm shall be called the
one-step error

(6.9) ωn =
k2q′′(ξn)

2
.

Note that Euler’s method is obtained by truncating the forward finite difference
series (3.37) to the first term. This approximation leads to an error in the ap-
proximation of the derivative at time step n which shall be called the truncation
error

τn =
(

1
k

∆+ −
d

dt

)
q(tn)(6.10)

=
q(tn+1)− q(tn)

k
− q′(tn) .(6.11)

Taylor series expansion gives

(6.12) τn =
k q′′(ξn)

2
and we note that ωn = k τn, i.e. the one-step error is one order higher than the
truncation error.

We can repeatedly apply the recurrence relation (6.8)

En = (1 + kλ)En−1 − ωn−1(6.13)

= (1 + kλ)
[
(1 + kλ)En−2 − ωn−2

]
− ωn−1(6.14)

= (1 + kλ)2 [(1 + kλ)En−3 − ωn−3
]
− (1 + kλ)ωn−2 − ωn−1(6.15)

= . . .(6.16)
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and arrive at

(6.17) E(N) = (1 + kλ)N E(0) −
N−1∑
j=0

(1 + kλ)N−1−jω(j) .

We explicitly show superscripts by parantheses to avoid confusion with the expo-
nentiation operations also present. Relation (6.17) is also known as the discrete
Duhamel principle because of the similarity with (6.3). The initial error is ampli-
fied by (1 + kλ)N and the additional error ωj introduced during subsequent time
steps is amplified by (1 + kλ)N−1−j . We see that (1 + kλ)N plays the role of eλT

and is hence called the discrete propagator. Note that the discrete propagator is
a first order truncation of the corresponding continuous propagation operator as
shown by

(6.18) eλT = eλkN =
(
eλk
)N

=
(

1 + kλ+
k2λ2

2
+ . . .

)N
∼= (1 + kλ)N .

Assume that we’re using exact arithmetic and therefore E0 = 0. If we can
show that (1 + kλ)N remains bounded as k → 0 and kN = T then the first term
in (6.17) would have a zero limit. Recall that e can be expressed as a limit

(6.19) lim
n→∞

(
1 +

1
n

)n
= e .

The limit arising from the first term in (6.17) is

(6.20) lim
k→0
kN=T

(1 + kλ)N = lim
N→∞

(
1 +

λT

N

)N
= lim
N→∞

(1 +
λT

N

) N
λT

λT = eλT

so the first term in (6.17) does indeed have a zero limit since it leads to the mul-
tiplication of a finite quantity eλT by E(0) = 0. The second term can be bounded
by

∣∣∣∣∣∣
N−1∑
j=0

(1 + kλ)N−1−jω(j)

∣∣∣∣∣∣ ≤
N−1∑
j=0

|1 + kλ|N−1−j
∣∣∣ω(j)

∣∣∣ ≤ N−1∑
j=0

ek|λ|(N−1−j)
∣∣∣ω(j)

∣∣∣
(6.21)

≤ ek|λ|N
N−1∑
j=0

∣∣∣ω(j)
∣∣∣ = e|λ|T

N−1∑
j=0

∣∣∣ω(j)
∣∣∣ .(6.22)

There are N terms in the sum with N = T/k. Let ‖ω‖∞ be the largest of the
∣∣ω(j)

∣∣
encountered in the sum, this being the one-step error at some ξ

(6.23) ‖ω‖∞ =
k2 |f ′′(ξ)|

2

We then obtain

(6.24)

∣∣∣∣∣∣
n−1∑
j=0

(1 + kλ)n−1−jω(j)

∣∣∣∣∣∣ ≤ e|λ|T N ‖ω‖∞ = e|λ|T T
k |q′′(ξ)|

2
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This last quantity goes to zero as k → 0 since e|λ|T , q′′, T are bounded. We have
therefore established that

(6.25) lim
k→0
kN=T

EN = 0

and that the forward Euler algorithm is convergent in exact arithmetic.

6.2. The effect of inexact arithmetic and truncation error - stability.
The forward Euler method is convergent in exact arithmetic but this does not
necessarily hold true when inexact, computer arithmetic is used. We have shown
that the first term in (6.17) goes to zero if E0 = 0

(6.26) lim
k→0
kN=T

(1 + kλ)N E(0) = 0

but if E0 6= 0 then (1 + kλ)N E(0) could lead to an error bounded by e|λ|TE0.
Clearly, just establishing convergence for exact arithmetic is not sufficient for prac-
tical purposes. We must establish conditions such that inherent computer arith-
metic errors can be controlled. We say that algorithms that permit us to control
error growth are stable while those in which errors grow without bound are unstable.

These intuitive definitions of stability must be made more precise. We take
our cue from the continuous dependence of the solution to an IVP on the initial
conditions. Suppose we could exactly compute the solution to the linear ODE
q′ = λq + σ with slightly different initial conditions q̃0 = q0 + E0. Here E0 6= 0 is
intended to represent any initial error due to inexact computer arithmetic. From
(??) we know that

(6.27) |q (t; q0)− q (t; q̃0)| ≤ eLt |q0 − q̃0| .
For the model problem this result can be sharpened since we know the exact solution
from (6.3), and we have

(6.28) |q (t; q0)− q (t; q̃0)| = eλtE0 .

This means that if an initial error E0 is unavoidable, and all subsequent computa-
tions are done exactly, we can expect an error E(T ) = eλTE0 at time T . Clearly
we cannot hope to better this using approximate computations, so we should rec-
ognize that algorithms that are capable of reproducing this sort of behavior are
good candidates for further study. Such an algorithm should reproduce the error
growth of the exact solutions in the limit of k → 0 though it might have different
behavior when k 6= 0. Note that this discussion in terms of propagation of an initial
error is also applicable to later stages of the algorithm. We can envisage that the
truncation error of the algorithm introduces a certain error at each step. We would
like this error to be kept under control as the algorithm progresses.

Definition 3 (intuitive). An algorithm A producing the approximations {Qn}n=0,1,...

to the exact solution of q′ = f(q), q(0) = q0 is said to be zero-stable if |Qn − q(tn)|
is bounded in the limit of k → 0, n = 1, 2, . . . , N = T/k.

Definition 4 (exact). Let S be the vector with r components of initial errors
in an r-step algorithm that produce the approximations {Qn}n=r,r+1,... to the exact
solution of the IVP q′ = f(q), q(0) = q0

(6.29) S =
[
Q0 − q(t0), Q1 − q(t1), . . . , Qr−1 − q(tr−1)

]
.
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The algorithm A is said to be zero-stable if for any ε > 0 there exist two positive
constants δ, c such that when ‖S‖∞ < ε, k < δ we have

(6.30) ‖Qn − q(tn)‖∞ < c ε

with n = r, r + 1, . . . , N = T/k.

Note that in the above definition we require bounded errors at later times when
two conditions are met:

(1) The initial errors are small, i.e. ‖S‖∞ < ε,
(2) The step size is small k < δ.

By this definition the forward Euler method is zero-stable. It is a one step
method requiring just one starting value Q0 so S is a scalar S = E0 = Q0 − q0.
Suppose we know that error in approximating the starting value (due to computer
imprecise arithmetic) is less than ε,

∣∣E0
∣∣ < ε. By the argument from the previous

section we know that

(6.31) |En| ≤ A
∣∣E0
∣∣+B k

with A = e|λ|t
n

, B = e|λ|t
n

tn |q′′(ξ)| /2. Both A and B are positive finite quantities
for any finite time tn. We can write

(6.32) |En| ≤ A
∣∣E0
∣∣+B k < Aε+Bδ =

(
A+B

δ

ε

)
ε

and choosing δ = ε and c = A+B we verify that

(6.33) |En| < cε

so Euler’s method is zero stable for the model problem. This means that even if
an initial error is introduced, the algorithm produces an approximation in which
the error has not grown faster than we would have expected from solving the exact
equation with perturbed initial conditions provided we use a small enough step
size k < δ. The above is also a proof of convergence for Euler’s method, i.e. for
sufficiently small initial error

∣∣E0
∣∣ < ε and sufficiently small step sizes k < δ the

error at time step n can be bounded by |En| < cε and therefore be made as small as
we’d like. Thus zero-stability is a necessary and sufficient condition for convergence
of Euler’s method.

An immediate question that arises is the effect of using a finite step size k > 0.
In the above proof of zero-stability for Euler’s method we used δ = ε for any ε > 0.
This essentially means that we considered that we can take as small a step size
as we’d like in order to establish the bound (6.33). Practical considerations might
dictate otherwise though since decreasing the step size increases the number of
steps that must be computed. Of course even when using finite step sizes we’d still
want to obtain suitable approximations, in which errors have not grown so much
that they completely mask the true solution. Let’s look again at (6.17) which we
repeat here for some intermediate time t(n)

(6.34) E(n) = (1 + kλ)nE(0) −
n−1∑
j=0

(1 + kλ)n−1−jω(j) .
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When we take a large number of steps n the initial error gets amplified by (1 + kλ)n

and that introduced in the previous step j is amplified by (1 + kλ)n−1−j . An im-
mediate condition that suggests itself is to impose

(6.35) |1 + kλ| ≤ 1

so that the error E(n) does not grow as n increases. The quantity A(z) = 1 + z,
z = kλ is known as the amplification factor for Euler’s method, and (6.35) says
that the absolute value of the amplification factor should be less than one to have
a stable computation.

Definition 5. An algorithm A using step size k whose amplification factor
A(z) satisfies |A(z)| ≤ 1 for the model problem q′ = λq is said to be absolutely
stable. The region in z = kλ over which |A(z)| ≤ 1 is called the region of absolute
stability of the algorithm.

In the above definition the “absolute” epithet is suggested by the taking of
the absolute value of A(z). The inequality (6.35) defines the region of absolute
stability for Euler’s method. Within the region of absolute stability Euler’s method
is convergent in the sense that

(6.36) lim
n→∞

En = 0

which means that as we integrate towards ever larger times tn the error between
the approximation and the exact solution En = Qn − q(tn) goes to zero. Note
the rather subtle difference between zero-stability and absolute stability for Euler’s
method. Zero-stability establishes that the error of Euler’s method at any given,
finite time T that is attained after N = T/k steps goes to zero as the step size k
goes to zero. Absolute stability shows that the asymptotic error En at tn = nk
goes to zero as n→∞ with k finite.

6.3. Convergence on the model problem for other algorithms. From
the study of Euler’s algorithm we have been able to establish the concepts of con-
vergence, zero-stability, absolute stability and amplification factor. For these to
be useful they must be applicable to other algorithms. We have seen that zero-
stability ensures convergence at any fixed time as the step size goes to zero for
Euler’s method. Similarily, absolute stability ensures asymptotic convergence as
t → ∞ for Euler’s method. We would like to know whether this holds for all al-
gorithms or whether additional conditions are required. Also, it would be useful
to find a quicker way to establish convergence than the bounding, “δ − ε” proofs
used above. We now turn to these tasks, still concentrating on the model problem
q′ = f(q) = λq, q(0) = q0.

6.3.1. Consistency. Suppose that a LMM is proposed for the model problem
which leads to the recurrence relation

(6.37)
1
k

r∑
j=0

ajQ
n+j =

r∑
j=0

bjf(Qn+j) = λ

r∑
j=0

bjQ
n+j .

in which some linear combination of values on the lhs is intended to evaluate an
average of the derivative on the rhs. In operator form this can be written as

(6.38) D̃Qn = DQn
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(6.39) D̃ =
1
k

r∑
j=0

ajE
j , D =

r∑
j=0

bjf(Ej) .

Here we interpret D̃ as the truncation of some infinite series that would give as
its exact sum the exact operator D. This relation is intended to approximate the
initial ODE so we expect that

(6.40)
1
k

r∑
j=0

ajq(tn+j) ∼=
r∑
j=0

bjq
′(tn+j)

By analogy with the definition of truncation error for Euler’s method we define the
truncation error for the LMM (6.37) as

(6.41) τn =
(
D̃ −D

)
q(tn)

Taylor series expansion around tn leads to

τn =
1
k


r∑
j=0

aj

 q(tn) +


r∑
j=0

(jaj − bj)

 q′(tn) + . . .(6.42)

+ kp−1


r∑
j=0

[
jp

p!
aj −

jp−1

(p− 1)!
bj

] q(p)(tn) + . . .(6.43)

It is clear that for the method to converge a necessary condition is that

(6.44) lim
k→0

τn = 0.

Definition 6. An algorithm is said to be consistent if its truncation error goes
to zero as the step size goes to zero.

Euler’s method has a truncation error of

(6.45) τn =
k q′′(ξ)

2
and is consistent. A general LMM is consistent if

(6.46)
r∑
j=0

aj = 0,
r∑
j=0

(jaj − bj) = 0

which may be concisely stated in terms of the characteristic polynomials ρ(ζ), σ(ζ)
as

(6.47) ρ(1) = 0, ρ′(1)− σ(1) = 0 .

The definition of consistency can be applied to other classes of methods also.
Taylor’s series methods (4.4-4.6) are obviously consistent and consistency conditions
are imposed in order to determine the coefficients in Runge-Kutta methods.

6.3.2. Operational definitions of stability. The true practical value of the char-
acteristic polynomials is that they allow us to quickly establish whether a LMM is
stable. Here are the principal results of the theory.

Definition 7. The roots ζj of a polynomial are said to satisfy the stability
condition if either |ζj | < 1 or when |ζj | = 1, ζj is a simple root.

Proposition 1. The LMM (6.37) is zero-stable if the roots of the lhs charac-
teristic polynomial ρ(ζ) satisfy the stability condition.
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Proposition 2. The LMM (6.37) is absolutely stable if the roots of π(ζ; z) =
ρ(ζ) − zσ(ζ) satisfy the stability condition. The region of absolute stability is the
region of values of z = kλ for which the roots of π(ζ; z) satisfy the stability condition.

These results are proved using the properties of finite difference equations to
establish “δ− ε” proofs as was done above for Euler’s method. The proofs shall be
omitted here but are given by Henrici. There is an analogy which may be made
with standard calculus. The definition of a derivative f ′(x0) is

(6.48) lim
x→x0

f (x)− f(x0)
x− x0

but we rarely use that definition in practice to compute the derivative of sin(cosx)
say. Rather we establish differentiation rules and tables to more quickly evaluate
derivatives. Likewise the definitions of stability involve bounding arguments which
are incovenient to redo for every new method. Finding the roots of characteristic
polynomials is more straightforward.

6.3.3. Stability of common LMM’s.
Forward Euler.

(6.49) Qn+1 = Qn + λkQn

ρ(ζ) = ζ − 1, σ(ζ) = 1(6.50)

π(ζ; z) = ζ − 1− z(6.51)

The root of ρ(ζ) is ζ1 = 1 which satisfies the stability condition since it is a simple
root of absolute value 1. The method is zero stable. The root of π(ζ) is

(6.52) ζ = 1 + z

so the region of absolute stability is

(6.53) |1 + kλ| ≤ 1

Backward Euler.

(6.54) Qn+1 = Qn + λkQn+1

ρ(ζ) = ζ − 1, σ(ζ) = ζ(6.55)

π(ζ; z) = ζ − 1− zζ(6.56)

The root of ρ(ζ) is ζ1 = 1 so the method is zero stable. The region of absolute
stability is

(6.57) |ζ1| =
1

|1− z|
≤ 1⇒ |1− kλ| ≥ 1

Trapezoidal method.

(6.58) Qn+1 = Qn +
kλ

2
(
Qn +Qn+1

)
(6.59) ρ(ζ) = ζ − 1, σ(ζ) =

1
2

(ζ + 1)

The method is zero stable. The region of absolute stability is defined by

(6.60)
∣∣∣∣2 + z

2− z

∣∣∣∣ ≤ 1 .
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Leapfrog method.

(6.61) Qn+2 = Qn + 2kλQn+1

(6.62) ρ(ζ) = ζ2 − 1, σ(ζ) = 2ζ

The roots of ρ(ζ) are ζ1 = 1, ζ2 = −1 so the method is zero-stable. The absolute
stability region is defined by

(6.63)
∣∣∣z ±√z2 + 1

∣∣∣ ≤ 1

6.3.4. Boundary locus method. Regions of absolute stability defined by condi-
tions such as (6.60) or (6.63) are difficult to analyze. A useful tool to simplify the
analysis is the boundary locus method. We are interested in regions of the values
of z for which the roots of π(ζ; z) satisfy the stability condition. In general z can
take complex values. As z varies a particular root of π takes different values; the
interesting event is when the absolute value of a root is unity. We can therefore
consider the problem of determining the curve in the complex z-plane where one of
the roots of π(ζ; z) has absolute value unity. If |ζ| = 1 then we can write ζ = eiθ

and

(6.64) π(eiθ; z) = ρ(eiθ)− zσ(eiθ) = 0

from whence

(6.65) z(θ) =
ρ(eiθ)
σ(eiθ)

.

The curve defined by (6.65) is known as the boundary locus. In the boundary locus
method we trace z(θ). This delimits the complex z-plane into regions. We then
take an arbitrary point z∗ within each region and find the roots of π(ζ; z∗) = 0. If
the roots satisfy the stability condition then that region of the complex z-plane is
a region of absolute stability; if not it is a region of absolute instability.

Example 4. For the trapezoidal method we have

(6.66) z(θ) = 2
eiθ − 1
eiθ + 1

= 2i tan
θ

2
so the boundary locus is the imaginary axis. We have two regions. To the left of
the imaginary axis the root of π(ζ; z = −1) is ζ1 = 1/3 which satisfies the stability
condition. To the right the root of π(ζ; 1) is ζ1 = 3 which does not satisfy the
stability condition. We conclude that Re z ≤ 0 is the region of absolute stability for
the trapezoidal method.

Example 5. For the leapfrog method we have

(6.67) z(θ) =
e2iθ − 1
eiθ

= 2i sin θ

so the boudary locus is the segment from −i to i along the imaginary axis. There
are two regions. One is outside of this segment. The roots of π(ζ; z = 1) are
ζ1,2 = 1 ±

√
2 that do not satisfy the stability condition. The other region is the

−i to i segment. The roots of π(ζ; z = 0) are ζ1,2 = ±1 which satisfy the stability
condition. The region of absolute stability for the leapfrog method is the segment
from −i to i along the imaginary axis.
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6.3.5. Conditions for convergence. With the above preparation we are able to
state the main result of the theory.

Theorem 3. A LMM is convergent if it is stable and consistent.

Note that the general characterization “stable” is used in the above theorem.
We can use any of the definitions of stability introduced above; we obtain different
types of convergence. When “zero-stability” is used we obtain that the LMM
converges to the solution of the IVP at a fixed time T as k → 0 but nk = T . When
“absolute stability” is used we obtain asymptotic convergence as n→∞.





CHAPTER 4

Fourier Analysis of Common Linear Partial
Differential Equations

1. Fourier Series

Fourier transform techniques are useful in the study of PDE’s in many ways.
Linear equations can often be directly solved by Fourier transforms. Such solutions
are useful in their own right and also as test cases for validation of numerical
algorithms intended for more complicated, non-linear problems. Thinking about the
properties of an analytical or numerical solution both in real space and in Fourier
space brings many insights that guide algorithmic development and analysis. Here
we’ll briefly go over the basic results from Fourier analysis that are especially useful
in numerical work. Most results shall be presented in brief. Further detail will be
presented when spectral methods are studied later.

Consider a real function f defined on [−L,L]. The function may be represented
by a trigonometric or Fourier series

(1.1) f(x) =
a0

2
+
∞∑
k=1

(ak cos ξkx+ bk sin ξkx)

with ξk = kπ/L. Note that the representation (1.1) implicitly prolongs f by pe-
riodicity outside of the original definition interval [−L,L]. Multiplying (1.1) by
cos ξkx, sin ξkx and integrating the result over [−L,L] gives the Fourier coefficients

(1.2) ak =
1
L

∫ L

−L
f(y) cos ξk y dy, bk =

1
L

∫ L

−L
f(y) sin ξk y dy .

Replacing the coefficients (1.2) back into (1.1) leads to

(1.3) f(x) =
1

2L

∫ L

−L
f(y) dy +

∞∑
k=1

1
L

∫ L

−L
f(y) cos ξk(y − x)dy

from which the Fourier transform can be defined in the limit L→∞.
Fourier series are useful in determining solutions to linear PDE’s in conjunction

with separation of variables.

Example 6. Determine the temperature distribution in a bar given the initial
temperatures f(x) and the endpoint temperatures at all times t, g0(t), g1(t). The
problem is modeled by the heat equation with initial and boundary conditions

(1.4)

 qt = qxx
q(x, t = 0) = f(x)

q(x = 0, t) = g0(t), q(x = 1, t) = g1(t)
.

45
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Physical units have been chosen so that the bar length and diffusion coefficient are
equal to one. We can solve the problem by separation of variables by assuming that

(1.5) q(x, t) = X(x)T (t)

which leads to

(1.6)
T ′

T
=
X ′′

X
.

The lhs depends only on t, the rhs only x. The relation has to be true for all x, t
which are independent variables so the only possiblity is that both T ′/T and X ′′/X
are constant.

(1.7)
T ′

T
=
X ′′

X
= C .

Solving for T leads to T (t) = T0e
Ct. Physical reasoning leads to C < 0 since the

temperature in the bar cannot increase without bound. Let C = −a2. Solving for X
then leads to X(x) = Aa cos ax+Ba sin ax. Note that the heat equation is satisfied
for any a. Since the equation is linear, any linear combination of solutions is also
a solution, so the most general form of the solution is

(1.8) q(x, t) =
∑
a

(A′a cos ax+B′a sin ax) e−a
2t

with A′a = T0Aa, B′a = T0Ba and the sum being taken over all possible values of a.
The specific values of the coefficients shall be determined by the initial and boundary
conditions

(1.9) q(x, 0) = f(x) =
∑
a

(A′a cos ax+B′a sin ax)

(1.10)
q(0, t) = g0(t) =

∑
a

A′ae
−a2t, q(1, t) = g1(t) =

∑
a

(A′a cos a+B′a sin a) e−a
2t

The details are problem dependent. If a single series is insufficient to represent
all initial and boundary conditions the original problem may be separated into two
parts

(1.11)

 q
(1)
t = q

(1)
xx

q(1)(x, 0) = f(x)
q(1)(0, t) = 0, q(1)(1, t) = 0

 q
(2)
t = q

(2)
xx

q(2)(x, 0) = 0
q(2)(0, t) = g0(t), q(2)(1, t) = g1(t)

The first problem has simple boundary conditions and the true initial condition and
the second has a simple initial condition and the true boundary conditions. The
solution to the initial problem is then given by q = q(1) + q(2).

2. Fourier Transform

Taking the L→∞ limit of (1.3) leads to

(2.1) f(x) =
1

2π

∫ ∞
−∞

dξ

∫ ∞
−∞

f(y) cos ξ(y − x) dy

We can write cos ξ(y − x) = (exp [iξ(y − x)] + exp [−iξ(y − x)]) /2 and obtain

(2.2) f(x) =
1

2π

∫ ∞
−∞

dξ

∫ ∞
−∞

f(y)eiξ(x−y) dy
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whenever the integration operations above are well defined (e.g. when f is abso-
lutely integrable on R). After the y integration a function of ξ, x is obtained which
is again integrated to give f(x). This suggests looking at the functions obtained in
the intermediate step

(2.3) f̂(ξ) =
1√
2π

∫ ∞
−∞

f(y)e−iξydy =
1√
2π

∫ ∞
−∞

f(x)e−iξxdx .

This is called the Fourier transform of f . We also have from (2.2)

(2.4) f(x) =
1√
2π

∫ ∞
−∞

f̂(ξ)eiξxdξ .

We say that f is the inverse Fourier transform of f̂ . The direct and inverse Fourier
transforms are integral operators usually denoted by F , F−1 respectively

(2.5) f̂ = F f, f = F−1 f̂ .

The transformation is linear

(2.6) f = a g + b h, f̂ = a Fg + b Fh

with a, b scalars.
An important class of functions for which the Fourier transform is well defined

is the L2 functions f for which

(2.7) ‖f‖2 =
∫ ∞
−∞
|f(x)|2 dx

is finite. An important property of the Fourier transform is that it preserves the
L2 norm of a function, i.e.

(2.8) ‖f‖2 =
∥∥∥f̂∥∥∥

2
.

An illuminating analogy is with vectors v in Rn. Linear transformations of
vetors in Rn are given by matrices A. Most matrices do not preserve the norm of a
vector, i.e. in general ‖v‖ 6= ‖Av‖ . But some special matrices do preserve the norm;
examples are rotation and reflection matrices. These basically allow us to look at
vectors from various angles and in some orientations the vector becomes especially
simple. For example by a succession of rotations we can transform a vector to be
parallel to one of the axes in Rn. In an analogous manner, Fourier transforms also
allow us to look at functions from various viewpoints from which further insight is
possible. We often speak of looking at a function in real space or in wavenumber
or Fourier space referring to f or f̂ , respectively.

An immediate benefit is when we consider PDE’s. Note that the Fourier trans-
form is a linear combination of function values amplified by eiξx. The reason why
this particular weighting is useful for PDE’s is that it is an eigenfunction of the
differentiation operator

(2.9) ∂xe
iξx = iξeiξx .

We can read the above relation as saying that of all the functions we might conceive,
for one particular function eiξx the differentiation operator reduces to a simple
multiplication with a scalar. The benefit of using Fourier transform techniques is
that the reduction of differentiation to multiplication carries over to all functions
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when we look at them in Fourier space. Taking the differential of the Fourier
representation of f we obtain

(2.10) fx = ∂xf =
1√
2π

∂

∂x

∫ ∞
−∞

f̂(ξ)eiξxdξ =
1√
2π

∫ ∞
−∞

(iξ) f̂(ξ)eiξxdξ

From this we can deduce that the Fourier transform of fx is given by

(2.11) f̂x = iξ f̂ .

3. Fourier solution of common linear PDE’s

Using the properties of the Fourier transform it is easy to solve linear PDE’s.
Let us do this for our basic model problems.

3.1. Advection equation. Taking the Fourier transform with respect to x
of

(3.1) qt + uqx = 0

gives

(3.2) q̂t + iξuq̂ = 0

which is an ODE in t for q̂. The solution is

(3.3) q̂(ξ, t) = q̂(ξ, 0)e−iξut

which immediately gives q(x, t0

q(x, t) = F−1 q̂ =
1√
2π

∫ ∞
−∞

q̂(ξ, t)eiξxdξ(3.4)

=
1√
2π

∫ ∞
−∞

q̂(ξ, 0)eiξ(x−ut)dξ(3.5)

The initial condition q(x, t = 0) = f(x) gives q̂(ξ, 0) = F f = f̂ . If we write the
Fourier representation of f at x− ut we obtain

(3.6) f(x− ut) =
∫ ∞
−∞

f̂(ξ)eiξ(x−ut)dξ

so the solution to the advection equation is

(3.7) q(x, t) = f(x− ut) .

3.2. Heat equation. We apply the same procedure to

(3.8) qt = qxx

to obtain

(3.9) q̂t = −ξ2q̂

which can be integrated to give

(3.10) q̂(ξ, t) = q̂(ξ, 0)e−ξ
2t .

Using this Fourier transform we obtain

(3.11) q(x, t) =
1√
2π

∫ ∞
−∞

q̂(ξ, 0)e−ξ
2teiξxdξ

It is possible to explicitly evaluate this integral, but we focus instead on interpre-
tation of the behavior of the solution. The formula shows that as time t increases
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each Fourier mode decays exponentially. The rate of decay is proportional to the
square of the wavenumber. Hence, rapid variations in the initial conditions are
more quickly attenuated by the heat equation.

4. Von Neumann stability analysis

An important application of Fourier analysis to numerical solutions of PDE’s is
the ability to quickly determine stability criteria for finite difference schemes. After
a finite difference discretization one works with the values of the unknown at grid
points at various time levels. Consider the one-dimensional case with a the grid
points xj = jh, h = 1/(M + 1). Outside of the definition domain [0, 1] the grid
function is prolonged by periodicity. We shall call the values

{
Qnj
}
j=0,1,...M

a grid

function. The
{
Qnj
}

can be represented by a Fourier integral

(4.1) Qj =
1√
2π

∫ π/h

−π/h
Q̂n (ξ) eiξjhdξ

Note that the wavenumber integral does not go over all possible values, but is re-
stricted to the wavenumbers that can be resolved by the grid. The Fourier transform
of the grid function is given by

(4.2) Q̂n(ξ) =
h√
2π

∞∑
j=−∞

Qnj e
−iξjh .

Parseval’s relation

(4.3)
∥∥{Qnj }∥∥2

=
∥∥∥Q̂n(ξ)

∥∥∥
assures us that we can look at the magnitude of the grid function either in Fourier
space or in real space. It is typically quite easy to determine a relation between the
coefficients Q̂n in Fourier space for finite difference discretizations of linear PDE’s.
Once this is done we can compute the amplification ratio

(4.4) G(ξ) =
Q̂n+1(ξ)
Q̂n(ξ)

.

This ratio shows the growth of various solution components including the truncation
or arithmetic errors. We want these to be kept under control so we shall impose

(4.5) |G(ξ)| ≤ 1





CHAPTER 5

Finite difference methods for the heat equation

1. One space dimension

1.1. Semi-discretized system. We start our analysis of numerical methods
for PDE’s with finite difference methods for the heat equation. The heat equation
defined on the entire real line only requires initial conditions. Typically we solve the
heat equation on a finite domain with boundary conditions that can be of Dirichlet,
Neumann, or mixed type. We shall choose a model problem with Dirichlet boundary
conditions

(1.1)

 qt = qxx
q(x, t = 0) = f(x)

q(x = 0, t) = g0(t), q(x = 2π, t) = g1(t)
.

Physical units have been chosen to obtain the simple form shown above. A time
honored scientific method is to reduce a complicated unknown problem to one whose
solution we already know. We therefore ask whether it is possible to reduce (1.1)
to a system of ODE’s. The idea is to carry out the discretization of just one of the
differential operators. We choose to do this for the spatial derivatives and we shall
approximate ∂2

x by a finite difference expression.
First we define a computational grid xj = jh, h = 2π/(M + 1), tn = nk with

step size h, k in space and time. Define Qj(t) to be the restriction of q(x, t) to
x = xj

(1.2) Qj(t) = q(xj , t), j = 0, 1, . . . ,M + 1 .

The indices j = 1, 2, . . . ,M correspond to points in the interior of the computation
domain. The indices j = 0 and j = M + 1 correspond to points on the boundary
of the computation domain where we can apply the Dirichlet boundary conditions
to get

(1.3) Q0(t) = g0(t), QM+1(t) = g1(t) .

There are many possible finite difference approximations of ∂xx. To show the
general issues involved consider a simple centered approximation which is second
order accurate

(1.4) qxx(xj , t) ∼=
δ2
x

h2
Qj(t) =

Qj+1(t)− 2Qj(t) +Qj−1(t)
h2

.

Using this in the heat equation at x = xj gives an ODE

(1.5)
dQj(t)
dt

=
Qj+1(t)− 2Qj(t) +Qj−1(t)

h2
.
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If we consider all interior points we obtain a system of ODE’s which can be written
in matrix form as

(1.6)
d

dt
Q =

1
h2

(AQ + b)

with

(1.7) Q =
[
Q1 Q2 · · · QM

]T
, b =

[
Q0 0 · · · QM+1

]T
.

(1.8) A =

−2 1 0
. . . 0 0

1 −2 1 0
. . . 0

0 1 −2 1 0
. . .

. . . 0
. . . . . . . . . 0

0
. . . 0 1 −2 1

0 0
. . . 0 1 −2

We have carried our program of reducing the initial PDE to a system of ODE’s.
This method is also known as the method of lines, since we’re solving the initial
PDE on the x = xj lines. Of course there is an approximation involved. We have
used a finite spatial step size h to obtain a finite sized ODE system whereas the
initial PDE is equivalent to an infinite system of ODE’s. We can now apply what
we know from ODE’s to solve (1.6). The boundary condition term does not play
an essential role in the analysis of algorithms so we’ll consider the special case
g0(t) = g1(t) = 0 which leads to b = 0.

1.1.1. Forward Euler method. Using the forward Euler method leads to

(1.9) Qn+1 = Qn +
k

h2
AQn =

(
I +

k

h2
A

)
Qn .

A typical component from this equation reads

(1.10) Qn+1
j = Qnj + σ

(
Qnj+1 − 2Qnj +Qnj−1

)
with σ = k/h2. The same procedure could have been obtained by a Forward in
Time, Centered in Space finite difference approximation of both derivatives appear-
ing in the heat equation hence the name FTCS scheme. It is of O(k, h2), i.e. first
order in time, second order in space. We need to choose a time step size k that will
ensure stability of the method. We’re looking at finite step sizes so the appropriate
concept to use is absolute stability. From Euler’s method for systems we know that
the region of stability is

(1.11) |1 + z| ≤ 1

where z = kλ and λ is an eigenvalue of
(
1/h2

)
A. The eigenvalues of an arbitrary

matrix are difficult to determine in general. For the particular matrix here however
we can use the fruitful analogy between discrete and continuum operators. The
matrix A is an approximation of the second derivative operator ∂2

x. The eigenvalues
and eigenfunctions of the continuum operator are given by

(1.12) ∂2
xe
iξx = −ξ2eiξx .
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We suspect therefore that the eigenvectors of A are discretizations of the continuum
eigenfunction eiξx. We therefore try a discretization of the eigenfunction eiξx

(1.13) Wp =
[
eiph eip2h · · · eipjh · · · eipMh

]
Here p is a discrete wavenumber (an integer in this case because we’ve chosen the
definition domain as [0, 2π]). We compute AWp hoping to obtain an eigenrelation-
ship. The jth component of the result is

(1.14) (AWp)j = eip(j−1)h − 2eipjh + eip(j+1)h = 2 [cos ph− 1] eipjh

and we see that we obtain an unique scalar for an arbitrary component j. Our initial
guess was correct and the eigenvalues of (1/h2)A are

(1.15) λp = −
(

2
h

sin
ph

2

)2

.

The stability region is given by

(1.16) −1 ≤ 1− k
(

2
h

sin
ph

2

)2

≤ 1

which reduces to

(1.17) k ≤ h2

2
1

sin2(ph/2)
The most restrictive condition arises for high values of p, the fast Fourier modes.
A condition that includes all possbile p values is

(1.18) k ≤ h2

2
This condition is quite restrictive in practice since a halving of the spatial step size
(to get better accuracy) imposes a time step four times smaller.

Let us derive stability bounds using Von Neumann analysis. We replace the
grid function values in (1.10) with their Fourier representation to obtain

∫ π/h

−π/h
Q̂n+1(ξ)eijhξdξ =

∫ π/h

−π/h
Q̂n(ξ)eijhξdξ + σ

(∫ π/h

−π/h
Q̂n(ξ)ei(j+1)hξdξ −

(1.19)

2
∫ π/h

−π/h
Q̂n(ξ)eijhξdξ +

∫ π/h

−π/h
Q̂n(ξ)ei(j−1)hξdξ

)
(1.20)

Grouping together terms this can be rewritten as

(1.21)
∫ π/h

−π/h
[G(ξ)− 1− 2σ (coshξ − 1)] Q̂n(ξ)eijhξdξ = 0 .

Since the relation has to be true for all ξ the coefficient of the exponential functions
(which form a basis) must be zero. The only interesting possibility is

(1.22) G = 1− 4
k

h2
sin2 hξ

2
Imposing the condition |G| ≤ 1 leads to the same stability criterion as above,
k ≤ h2/2. This application of von Neumann analysis was carried out in full detail.
Typically we know that we shall arrive at the stage where a relation between Fourier
coefficients is obtained and a number of intermediate steps can be short-circuited.
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1.1.2. Trapezoidal method. Applying the trapezoidal method to (??) leads to
the following relation between components

(1.23) Qn+1
j = Qnj +

σ

2
(
Qnj+1 − 2Qnj +Qnj−1

)
+
σ

2
(
Qn+1
j+1 − 2Qn+1

j +Qn+1
j−1

)
.

The method is known as the Crank-Nicolson scheme. This is now an implicit
relation which requires the solution of a tridiagonal system at each time step. This
is more work than the explicit FTCS method but not prohibitively so. If the method
allows large step sizes the overall work for attaining a specific precision could be
less than for FTCS. The stability criterion for the trapezoidal method is

(1.24) |1− z| ≥ 1

which leads to

(1.25)

∣∣∣∣∣1 + k

(
2
h

sin
ph

2

)2
∣∣∣∣∣ ≥ 1 .

This relation is satisfied for all k > 0 so the Crank-Nicolson method is uncondi-
tionally stable. This means that the only restriction on step size comes from the
accuracy that we wish to attain.

Von Neumann stability analysis leads to

(1.26) G = 1 + σ (cos ξh− 1) +Gσ (cos ξh− 1)

or

(1.27) G =
1− 2 sin2 ξh

2

1 + 2 sin2 ξh
2

from which we see that |G| ≤ 1 always so we again obtain that the Crank-Nicolson
scheme is unconditionally stable.

2. Two space dimensions

A typical 2D (two spatial dimensions) heat equation problem is to solve the
IVBP

(2.1)

 qt = qxx + qyy, for (x, y) ∈ D, T > t > 0
q(x, y, t = 0) = f(x, y) for (x, y) ∈ D
q(x, y, t) = g(x, y, t) for (x, y) ∈ ∂D

.

whereD is a region of the (x, y) plane and ∂D is its boundary. We shall first consider
the simple case of a square region D = [0, 2π]×[0, 2π]. Dirichlet boundary conditions
are given here; we shall consider Neumann and mixed boundary conditions later.
As in the 1D case we introduce an uniform discretization of the computational
domain

(2.2) xj = jh, yl = lh, tn = nk

with h = 2π/(M + 1) the space step size and k = T/N the time step. The exact
value of the unknown function at xj , yl, tn is approximated by

(2.3) Qnjl
∼= q(xj , yl, tn) .

Again the problem can be reduced to that of integrating a system of ODE’s if
we use the method of lines and introduce the functions

(2.4) Qjl(t) = q(xj , yl, t) ,
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and some procedure for approximating the spatial derivatives with finite differences.
The second-order accurate approximation of the Laplace operator is the natural first
thing to try

O2q(xj , yl, t) = qxx(xj , yl, t) + qyy(xj , yl, t) ∼= O2
hQj,l(t)(2.5)

1
h2

[Qj+1,l(t) +Qj−1,l(t) +Qj,l+1(t) +Qj,l−1(t)− 4Qj,l(t)](2.6)

and this leads to an ODE system similar in form to that from the 1D case

(2.7)
d

dt
Q =

1
h2

(AQ + b)

but with different definitions of Q,A,b
(2.8)
Q =

[
Q11 Q1M · · · Q21 Q22 · · · QMM

]T
, b =

[
Q01 +Q10 Q02 · · · QM,M+1 +QM+1,M

]T
.

(2.9) A =

−4 1 0
. . . 1

. . . 0

1 −4 1 0
. . . 1

. . .

0 1 −4 1 0
. . . 1

. . . 0
. . . . . . . . . 0

. . .

1
. . . 0 1 −4 1 0

. . . 1
. . . 0 1 −4 1

0
. . . 1

. . . 0 1 −4

We now have system matrix which is pentadiagonal, arising from the fact that the
2D field Qjl(t) is rendered as a one-dimensional vector Q. The link between the
(j, l) indices and the index m within the vector Q is m = (j − 1)M + l.

Again, the ODE system can be solved by various algorithms such as forward
Euler or trapezoidal. The update we obtain from applying forward Euler is

Qn+1
jl = Qnjl +

k

h2

(
Qnj+1,l +Qnj−1,l +Qnj,l+1 +Qnj,l−1 − 4Qnjl

)
(2.10)

= Qnjl + kO2
hQ

n
jl(2.11)

for 1 ≤ j, l ≤ M . We can determine the time step restriction required for abso-
lute stability if we know the eigenvalues of the matrix A. Since exp [i(ξx+ ηy)] is
an eigenfunction of the continuous O2 operator and the matrix A discretizes this
operator, we guess that the eigenvector should be

(2.12) Wp,r =
[
ei(ph+rh) ei(p2h+rh) · · · ei(pjh+rlh) · · · eip(Mh+Mh)

]
,

the corresponding discretization of the continuous eigenfunction. Straightforward
if somewhat tedious computation leads to

(AWp,r)j,l = ei[p(j−1)h+rlh] + ei[p(j+1)h+rlh] + ei[ph+r(l−1)h] + ei[pjh+r(l+1)h] − 4ei[pjh+rlh]

(2.13)

= 2 [cos ph+ cos rh− 2] ei(pjh+rlh)

(2.14)
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so the eigenvalues are indeed

(2.15) λp,r = 2 [cos ph+ cos rh− 2] = −4
(

sin2 ph

2
+ sin2 rh

2

)
,

since these values do not exhibit any dependence on the j, l indices. The forward
Euler absolute stability region is

(2.16)
∣∣∣∣1 +

kλ

h2

∣∣∣∣ ≤ 1

which leads to

(2.17) −1 ≤ 1− 4k
h2

(
sin2 ph

2
+ sin2 rh

2

)
≤ 1

or

(2.18) k ≤ h2

2

(
sin2 ph

2
+ sin2 rh

2

)−1

.

The most restrictive condition arises for the ph = rh = π wavenumbers; to cover
any possible error growth at all modes we must limit the time step to

(2.19) k ≤ h2

4
.

As in the 1D case this is a severe limitation in practice since the heat equation leads
to an ODE system which is stiff.

Faced with a stiff system, implicit methods for ODE’s are good algorithms to
consider. The trapezoidal method leads to

(2.20) Qn+1
jl = Qnjl +

k

2

(
O2
hQ

n
jl + O2

hQ
n+1
jl

)
an update which is unconditionally stable absolutely for the heat equation since all
of the eigenvalues of A are in the left half complex plane. This is known as the
2D Crank-Nicolson algorithm and is widely used in practice. A diificulty which
appears now is that the linear system of equations resulting from (2.20) is harder
to solve than the simple tridiagonal system obtained in the 1D case. Instead of a
tridiagonal matrix we now have a band matrix with a half-bandwidth of M. The
linear system to be solved is

(2.21) (I − k

2
O2
h)Qn+1

jl = (I +
k

2
O2
h)Qnjl

or

(2.22) MQn+1 = cn = NQn

Direct solvers (Gaussian elimination, LR factorization) would lead to what is known
as zero fill-in. The system matrix M has very few non-zero elements initially;
during the course of Gaussian elimination these zero elements would be replaced
by non-zero quantitities resulting from the elimination of the lower triangle of M .
Furthermore, the matrix M has such a simple structure that it usually is not stored
as such in a computer program and only the non-zero values which are repeated
along the diagonals are stored (two scalar variables). Zero fill-in would lead to the
necessity of actually allocating storage for the matrix M , or at least for its non-zero
band.

Given the above disadvantages of direct methods, iterative solvers are widely
used to solve system (2.21). Let Q[0],Q[1],Q[2], . . . be the succession of iterates
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generated by some iterative method to solve linear systems (Gauss-Seidels succes-
sive over relaxation). We expect the iteration procedure to converge quicky since
we’re always starting with a good initial approximation given by Q at the previous
time steps. We could try:

(1) Q[0] = Q[n], i.e. setting the initial approximation for the iterative linear
system solver to the field from the previous time level;

(2) Q[0] = 2Q[n] −Q[n−1], i.e. setting the initial approximation by extrapo-
lation of the change over the previous two time levels;

(3) Q
[0]
j,l = Qnj,l+kO

2
hQ

n
jl, using forward Euler to give us an initial guess. Typi-

cally this works quite well even though the step size is usually much larger
than that which would be admitted by the absolute stability restriction
for forward Euler (k ≤ h2/4). But since we’re only applying the forward
Euler procedure once, to furnish an initial guess for the iterative linear
solver, stability considerations are not a factor now.





CHAPTER 6

Finite difference methods for hyperbolic equations

1. Scalar equations

1.1. Constant velocity advection in one dimension. The simplest exam-
ple of a hyperbolic equation is the constant velocity advection equation

(1.1) qt + u qx = 0

with some initial condition q(x, t = 0) = q0(x). The equation can be solved along
the entire real axis in x or some portion thereof. In numerical work we always
have a finite subdomain which we shall conveniently choose as [0, 2π] with a view
to applying Fourier analysis later on. When using a finite subdomain the ques-
tion of boundary conditions arises which we shall postpone by considering periodic
boundary conditions q(x+ 2π, t) = q(x, t).

1.1.1. Exact solution by characteristics. A first attack on finding the solution
to (1.1) is to try to reduce it to a simpler problem. One can ask whether there is
any subdomain over which the equation can be cast in a simpler form. For instance
we can inquire whether there are any particular curves within the (x, t) plane over
which the equation simplifies. A general curve Γ of curvilinear parameter is given
by

(1.2) Γ : x = x(s), t = t(s)

and the infinitesimal change in q when going along Γ is

(1.3)
dq

ds
=
∂q

∂t

dt

ds
+
∂q

∂x

dx

ds

Comparing (1.3) with (1.1) we see that if we impose

(1.4)
dt

ds
= 1,

dx

ds
= u

then by (1.1) we must have that

(1.5)
dq

ds
= 0 .

This means that q is constant along the curves Γ defined by (1.4) which are x =
ut+ C. The curves are shown in Fig. (1)

1.1.2. Finite difference methods. We can construct numerical methods for (1.1)
by the same approaches used for the heat equation.

Figure 1. Characteristic curves for qt + qx = 0.

59
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Semi-discretization. Define a computational grid xj = jh, h = 2π/(M + 1),
tn = nk with step size h, k in space and time. Define Qj(t) to be the restriction of
q(x, t) to x = xj

(1.6) Qj(t) = q(xj , t), j = 0, 1, . . . ,M + 1 .

We can choose some approximation of the x derivative. For instance approximating

(1.7)
dq(xj , t)
dx

∼=
δ

h
Qj =

Qj+1(t)−Qj−1(t)
2h

leads to the ODE system

(1.8)
d

dt
Q = − u

2h
BQ

with

(1.9) Q =
[
Q1 Q2 · · · QM

]T

(1.10) B =

0 1 −1
−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1
1 −1 0

We can now try various ODE schemes to solve (1.8). Using Euler’s method
would lead to a FTCS scheme

(1.11) Qn+1 = Qn − uk

2h
BQn =

(
I − uk

2h
B

)
Qn .

If instead of Euler’s scheme we use the midpoint method we obtain the update
formula

(1.12) Qn+1 = Qn−1 − uk

h
BQn

known as the leap-frog or Dufort-Frankel method.
Full discretization. Instead of the semi-discretization or method of lines ap-

proach we can also directly discretize both the space and time derivatives appearing
in (1.1). A first-order forward in time, second-order centered in space discretization
would lead to the FTCS scheme

(1.13) Qn+1
j = Qnj −

uk

2h
(
Qnj+1 −Qnj−1

)
A modification of (1.13) of historical relevance is the Lax-Friedrichs scheme

(1.14) Qn+1
j =

1
2
(
Qnj+1 +Qnj−1

)
− uk

2h
(
Qnj+1 −Qnj−1

)
.

This scheme is obtained by replacing Qnj with its arithmetic average using values to
the left and to the right. Since the formula has not been derived from discretizations
of the derivative which we know to be consistent with the original equation it is
useful to determine the truncation error. The exact advection operator is

(1.15) D =
∂

∂t
+ u

∂

∂x
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and we have Dq = 0 according to (1.1). Our approximation of this operator is

(1.16) D̃q(xj , tn) =
qn+1
j − 1

2

(
qnj+1 + qnj−1

)
k

+
u

2h
(
qnj+1 − qnj−1

)
with qnj = q(xj , tn). The truncation error is therefore

(1.17) τnj =
(
D̃ −D

)
q(xj , tn) =

1
k
qn+1
j − 1

2k
(
qnj+1 + qnj−1

)
+

u

2h
(
qnj+1 − qnj−1

)
We can now carry out a Taylor’s series expansion around (xj , tn). To simplify
notation q and its derivatives will be understood to be evaluated at (xj , tn) if not
explicitly shown otherwise

τnj =
1
k

(
q + kqt +

k2

2
qtt + . . .

)
− 1

2k

(
q + hqx +

h2

2
qxx + . . .+ q − hqx +

h2

2
qxx + . . .

)(1.18)

+
u

2h

(
q + hqx +

h2

2
qxx +

h3

6
qxxx + . . .− q + hqx −

h2

2
qxx +

h3

6
qxxx + . . .

)(1.19)

which gives

(1.20) τnj = qt +
k

2
qtt + . . .− h2

2k
qxx + . . .+ uqx +

uh2

12
qxxx + . . .

Using (1.1) leads to the leading order error

(1.21) τnj
∼=
k

2
qtt +

uh3

12
qxxx = O(k, h2)

The analysis shows that the scheme is first order in time and second order in space.
The Lax-Friedrichs scheme is consistent, i.e.

(1.22) lim
k,h→0

τnj = 0 .

Instead of centered finite differences, other approximations may be introduced.
A good choice would be to use one-sided finite differences. This would take into
account what we know from the exact solution to the advection equation: infor-
mation travels along the characteristic lines. It would make sense to use finite
differences which have a stencil that mimics this behavior. If u > 0 we would use
left-sided differences and for u < 0 we would use right-sided differences. A first
order approximation would be

(1.23) Qn+1
j =


Qnj −

uk

h

(
Qnj −Qnj−1

)
u ≥ 0

Qnj −
uk

h

(
Qnj+1 −Qnj

)
u ≤ 0

This is known, naturally enough, as the upwind scheme.
Taylor series approach. A procedure useful in deriving higher order finite dif-

ference approximations for (1.1) is the Taylor series approach. In practical work it
is economical to only store two time levels at any given stage in the computation.
The general prescription for attaining higher order for the time derivative would
involve keeping more terms from the operator series

(1.24)
∂

∂t
=

1
k

(
∆+ −

∆2
+

2
+

∆3
+

3
− . . .

)
.
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This would be incovenient since the time stencil of the scheme would become wider
and we would need to store more than two time levels. We can however use (1.1)
to convert time derivatives into spatial derivatives

(1.25) qt = −uqx

(1.26) qtt =
∂

∂t
(qt) = − ∂

∂t
(uqx) = −u ∂

∂x
(qt) = u

∂

∂x
(uqx) = u2qxx

The Taylor series approach can now be applied to obtain as high an order of ap-
proximation in time as needed

(1.27) q(t+ k) = q + kqt +
k2

2
qtt +

k3

6
qttt + . . . .

As an example, let us construct a second order scheme by truncating

(1.28) q(t+ k) ∼= q + kqt +
k2

2
qtt

We now replace the time derivatives with spatial derivative

(1.29) q(t+ k) ∼= q − ukqx +
u2k2

2
qxx

and use second order accurate, centered finite differences to approximate the spatial
derivatives. The resulting scheme is

(1.30) Qn+1
j = Qnj −

uk

2h
(
Qnj+1 −Qnj−1

)
+
u2k2

2h2

(
Qnj+1 − 2Qnj +Qnj−1

)
This is known as the Lax-Wendroff scheme.

Instead of centered finite differences we might want to use one-sided formulas
to take into account the direction of the characteristics of (1.1). Let us construct a
second order accurate one sided approximation using (??). One-sided differences
can be obtained to arbitrary order of accuracy using the series

∂

∂x
=

1
h

(
∆x+ −

∆2
x+

2
+

∆3
x+

3
− . . .

)
(1.31)

=
1
h

(
∆x− +

∆2
x−
2

+
∆3
x−
3
− . . .

)
(1.32)

with the finite difference operators defined by

∆x+q(x, t) = q(x+ h, t)− q(x, t)(1.33)

∆x−q(x, t) = q(x, t)− q(x− h, t)(1.34)

Let us assume that u ≥ 0 and therefore that we will be using backward differences
so that the computational stencil mimics the true domain of dependence. A second
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order accurate approximation of qx is given by

qx(xj , tn) =
∂q

∂x
(xj , tn) ∼=

1
h

(
∆x− +

∆2
x−
2

)
q(xj , tn)

(1.35)

=
1
h

[
q(xj , tn)− q(xj−1, t

n) +
1
2

(q(xj , tn)− 2q(xj−1, t
n) + q(xj−2, t

n))
]

(1.36)

∼=
1
h

[
Qnj −Qnj−1 +

1
2
(
Qnj − 2Qnj−1 +Qnj−2

)]
(1.37)

=
1

2h
(
3Qnj − 4Qnj−1 +Qnj−2

)
(1.38)

The second derivative is obtained from

∂2

∂x2
=

∂

∂x

∂

∂x
=

1
h

(
∆x− +

∆2
x−
2

+
∆3
x−
3
− . . .

)
1
h

(
∆x− +

∆2
x−
2

+
∆3
x−
3
− . . .

)(1.39)

=
1
h2

(
∆2
x− + ∆3

x− +
11
12

∆3
x−

)(1.40)

Note that in (??) we have neglected terms of O(k3). The exact solution of the
advection equation is q(x, t) = q0(x−ut). The x−ut argument sugests that similar
step sizes should be used for x and t. This will be confirmed by our stability analysis
below. So let us assume that k = O(h). Since qxx already has a k2 factor in (??)
we only need an O(h) approximation of qxx. The leading order error term from
k2qxx will then be of O(k2h) = O(k3) = O(h3). We can therefore truncate the
series (1.40) to just the first term and approximate

∂2q

∂x2
(xj , tn) ∼=

1
h2

∆2
x−q(xj , t

n) =
1
h2

[q(xj , tn)− 2q(xj−1, t
n) + q(xj−2, t

n)](1.41)

∼=
1
h2

(
Qnj − 2Qnj−1 +Qnj−2

)
(1.42)

Note that this is different from the procedure used in deriving the Lax-Wendroff
scheme where a second order accurate expression of qxx was used. The reason is
that in the Lax-Wendroff scheme the computational stencil already included Qnj−1,
Qnj , Qnj+1 from the approximation of the first derivative qx. Since the second order
accurate approximation of qxx does not widen the stencil there is no penalty in using
the more accurate, second order approximation of qxx. In the one-sided scheme we
are deriving here however, using a second order accurate approximation of qxx
would involve widening the computational stencil to include Qnj−3. This increases
the arithmetic cost of applying the formula without noticeable gain so we choose
to use an O(h) approximation of qxx. Combining the above results we obtain

(1.43) Qn+1
j = Qnj −

uk

2h
(
3Qnj − 4Qnj−1 +Qnj−2

)
+

1
2

(
uk

h

)2 (
Qnj − 2Qnj−1 +Qnj−2

)
for u > 0, which is known as the Beam-Warming scheme.

1.1.3. Stability analysis. We now turn to the analysis of the stability of the
various schemes introduced above. The analysis can be done using the techniques
for systems of ODE’s or using Von Neumann analysis. We shall carry out both
procedures.



64 6. FINITE DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS

Semi-discretized system. The matrix B arising in the semi-discretized approach
is skew-symmetric and will have purely imaginary eigenvalues. We can check this
by explicitly calculating the eigenvalues. As usual, we guess that

(1.44) Wp =
[
eiph eip2h · · · eipjh · · · eipMh

]
will be an eigenvector since B discretizes a derivation operator. Computing the jth

component of BWp we get

(1.45) (BWp)j = eip(j+1)h − eip(j−1)h = 2i sin ph eipjh = 2i sin ph (Wp)j

so the eigenvalue associated with Wp is

(1.46) λp = 2i sin ph

and is indeed purely imaginary.
To establish the stability region for the FTCS method (??) we use the eigen-

values λ of B in the criterion

(1.47) |1 + z| ≤ 1

with z = kλ. It is immediately apparent that the scheme will be unconditionally
unstable because λ is purely imaginary λ = ai so

(1.48) |1 + z| =
√

1 + (ka)2 > 1

for all a > 0.
The interval of stability for the midpoint scheme is Re z = 0, |Im(z)| ≤ 1. Here

we would have

(1.49) z = −uk
h
i sin ph

and the method is stable for

(1.50)
∣∣∣∣ukh

∣∣∣∣ ≤ 1 .

Von Neumann analysis. Obtaining analytical expression for the matrices arising
from the semi-discretized approach becomes increasingly difficult as we use more
accurate approximations of the derivatives in the PDE or study PDE’s more com-
plex than the advection equation. Von Neumann analysis is typically simpler to
apply. We start by determing the stability region for the FTCS scheme (1.13).
Substituting a typical wavemode Qn = Q̂neiξjh we obtain

(1.51) Q̂n+1eiξjh = Q̂neiξjh − uk

2h

(
Q̂neiξ(j+1)h − Q̂neiξ(j−1)h

)
.

The amplification ratio is

(1.52) G =
Q̂n+1

Q̂n
= 1− uk

h
i sin ξh

which is always greater than 1

(1.53) |G| ≥ 1 .

Thus the scheme is unconditionally unstable as we expected from the semi-discretized
stability analysis done above.
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For the Lax-Friedrichs scheme we obtain
(1.54)

Q̂n+1eiξjh =
1
2

(
Q̂neiξ(j+1)h + Q̂neiξ(j−1)h

)
− uk

2h

(
Q̂neiξ(j+1)h − Q̂neiξ(j−1)h

)
and the amplification factor is

(1.55) G = cos ξh− uk

h
i sin ξh

Let us introduce the notation

(1.56) ν =
uk

h
, θ = ξh .

The stability condition is that

(1.57) |G| = cos2 θ + ν2 sin2 θ ≤ 1 = cos2 θ + sin2 θ

from where we obtain

(1.58)
(
ν2 − 1

)
sin2 θ ≤ 0 .

The inequality is satisfied for

(1.59) |ν| ≤ 1 .

The quantity ν that appears repeatedly in analysis of numerical schemes for the
advection equation is known as the Courant-Friedrichs-Lewy number or more con-
cisely as the CFL number. We say that the Lax-Friedrichs scheme is stable for CFL
numbers up to 1, it being implicitly understood that we’re considering the absolute
value of the velocity |u|. From the stability criterion we obtain a bound on the time
step that we can use in the Lax-Friedrichs scheme

(1.60) k ≤ h

|u|
.

For the Lax-Wendroff scheme the amplification ratio is

(1.61) G = 1− νi sin θ + ν2 (cos θ − 1)

We have

|G| = 1 + 2ν2 (cos θ − 1) + ν4 (cos θ − 1)2 + ν2 sin2 θ(1.62)

= 1− 4ν2 sin2 θ

2

(
1− cos2 θ

2

)
+ 4ν4 sin4 θ

2
(1.63)

The stability condition is |G| ≤ 1 leads to

(1.64)
(
ν2 − 1

)
sin2 θ

2
≤ 0

so again the domain of stability is

(1.65) |ν| ≤ 1 .

Lax-Wendroff is a more efficient scheme than Lax-Friedrichs since we obtainO(h2, k2)
precision as opposed to O(h, k2) under the same time step restriction k ≤ h/ |u|.

Turning now to the one-sided schemes, for upwind when u > 0 we have

(1.66) G = 1− ν
(
1− e−iθ

)
(1.67) |G| = 1− 2ν (1− cos θ) + ν2 (1− cos θ)2 + ν2 sin2 θ
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Figure 2. Amplification factor |G(ν, θ)| for the Beam-Warming
scheme evaluated at θ = mπ/8, m = 0, 1, . . . 16.

The stability condition |G| ≤ 1 leads to

(1.68) −2ν (1− cos θ) + ν2 (1− cos θ)2 + ν2 sin2 θ ≤ 0

which can be rewritten in terms of the half-angle θ/2 to give

(1.69) −4ν sin2 θ

2
+ 4ν2 sin4 θ

2
+ 4ν2 sin2 θ

2
cos2 θ

2
≤ 0

and finally

(1.70) ν(ν − 1) ≤ 0

so the stability region is again ν ≤ 1.
For the Beam-Warming scheme we have

(1.71) G = 1− ν

2
(
3− 4e−iθ + e−2iθ

)
+

1
2
ν2
(
1− 2e−iθ + e−2iθ

)
.

Notice that as we look at more complicated schemes the amplification factors be-
come increasingly difficult to evaluate analytically. We can however use a numerical
evaluation of G(ν, θ) to generate plots such as Fig. 2. From the plot we deduce
that the stability region is ν ≤ 2.

1.1.4. Lax equivalence theorem. The importance of establishing consistency and
stability for a finite difference scheme for the advection equation is that these two
properties guarantee convergence by the Lax equivalence theorem.

Theorem 4. A finite difference scheme for a linear PDE is convergent if the
scheme is consistent with the PDE and it is stable.

Convergence means that

(1.72) lim
k,h→0

Qnj = q(x j , tn)

where k, h go to zero in accordance with the stability criterion for the scheme.
Convergence is obtained when the scheme is consistent, i.e. the truncation error
goes to zero

(1.73) lim
k,h→0

τnj = 0

and the step sizes satisfy the stability criterion.
1.1.5. Modified equations. We have established a number of methods for solv-

ing the advection equation (1.1). Up to now we have characterized the error of any
one scheme by its truncation error. Though indicative of the overall quality of an
approximation, the precise nature of the error in the scheme is not apparent. It
has proved very fruitful in the development of better methods to more accurately
describe how a numerical approximation differs from the exact solution. A ques-
tion one can ask is whether a given numerical scheme is perhaps a more accurate
discretization of another PDE than the one it was originally designed for. Let us
exemplify using the upwind scheme for the advection equation with u > 0

(1.74) Qn+1
j = Qnj − ν

(
Qnj −Qnj−1

)
.
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We know that this scheme is O(k, h) accurate for the equation qt+uqx = 0. Suppose
that the scheme is an exact discretization of some unknown PDE Ls = 0 with L
an unknown differential operator and s = s(x, t). Then we would have

(1.75) s(x, t+ k) = s(x, t)− ν [s(x, t)− s(x− h, t)] ,
exactly. Let us carry out Taylor series expansion of s around (x, t)

(1.76) s+ kst +
k2

2
stt +

k3

6
sttt + . . . = s− uk

h

[
hsx −

h2

2
sxx +

h3

6
sxxx − . . .

]
.

To obtain a more concise notation the function arguments have been dropped. We
obtain

(1.77) st + usx = −k
2
stt +

uh

2
sxx −

k2

6
sttt −

uh2

6
sxxx + . . .

This is of the form As = E(h,k)s with A the advection operator A = ∂t + u∂x and
E(h,k) an operator giving the deviation of the modified equation from the advection
equation. Note that if k = h = 0 we obtain the advection equation for which
the scheme (1.74) is O(h, k) accurate. We can interpret (1.77) as stating that the
scheme (1.74) is:

(1) first order accurate for

(1.78) st + usx = 0

(2) second order accurate for

(1.79) st + usx = −k
2
stt +

uh

2
sxx

(3) third order accurate for

(1.80) st + usx = −k
2
stt +

uh

2
sxx −

k2

6
sttt −

uh2

6
sxxx

The equations obtained above are called modified equations. These statements
can be verfied by explicit computation of the truncation error. For example let us
compute the truncation error in applying (1.74) to (??)

(1.81) τnj =
(
D̃ −D

)
s(xj , tn)

The finite difference approximation operator is

(1.82) D̃s(xj , tn) =
sn+1
j − snj

k
+
u

h

(
snj − snj−1

)
The exact operator for the modified equation (??) is

(1.83) D =
∂

∂t
+ u

∂

∂x
+
k

2
∂2

∂t2
− uh

2
∂2

∂x2

and we have Ds = 0. We now expand sn+1
j , snj−1, snj+1 from (1.82) around (xj , tn)

and obtain
(1.84)

τnj =
1
k

(
s+ kst +

k2

2
stt + . . .

)
− 1
k
s+

u

h

(
s− s+ hsx −

h2

2
sxx +

h3

6
sxxx + . . .

)

(1.85) τnj = st +
k

2
stt + usx +

uh

2
sxx +O(k2, h2) = Ds+O(k2, h2) = O(k2, h2)
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so the truncation error is indeed of second order.
Now let us show the benefits of looking at the modified equation by using (??)

for which the upwind scheme (1.77) is second order accurate. First we recast (??)
so as to eliminate higher order derivatives in time. We can rewrite (??) as

(1.86) st = −usx −
k

2
stt +

uh

2
sxx

and differentiate with respect to t to obtain

(1.87) stt = −usxt −
k

2
sttt +

uh

2
sxxt

Replacing (1.87) in (??) gives

st + usx = −k
2

(
−usxt −

k

2
sttt +

uh

2
sxxt

)
+
uh

2
sxx(1.88)

=
uk

2
sxt +

uh

2
sxx +O(k2, h2, kh)(1.89)

We can neglect the higher order terms since this is consistent with the order of
accuracy used in obtaining (??). Differentiating (??) with respect to x yields

(1.90) stx = −usxx −
k

2
sttx +

uh

2
sxxx

and replacing this in (??) gives

(1.91) st + usx = −u
2k

2
sxx +

uh

2
sxx =

uh

2
(1− ν) sxx

Equation (1.91) is the usual way to express the modified equation for the upwind
scheme applied to the advection equation to second order. It shows that the upwind
scheme does indeed model the advection equation in the limit h → 0. For finite
step sizes however the upwind scheme more accurately models the equation (1.91).
The difference between (1.91) and the advection equation is the term

(1.92)
uh

2
(1− ν) sxx

Note that this is a diffusive term whose effect is to smooth out any variations
in s(x, t) as long as |1− ν| ≥ 0 as has been seen in the study of the heat equation.
The condition |1− ν| ≥ 0 is exactly the stability criterion for the upwind scheme.
Indeed if ν > 1 then we would obtain a negative diffusion coefficient for which
the initial value problem is ill-defined. We can see that at exactly ν = 1 there
is no diffusion indicating that for ν = 1 the upwind scheme achieves higher order
accuracy for the advection equation. When ν < 1 the error in the upwind scheme
with respect to the true solution q(x, t) of the advection equation will be diffusive:
gradients will be smoothed out instead of being simply advected.

Now that we have seen the nature of the error introduced by the upwind scheme
applied to the advection equation, we can also use this information to derive better
schemes. Since the error is known to be given by (1.92) we can change the upwind
scheme

(1.93) Qn+1
j = Qnj − ν

(
Qnj −Qnj−1

)
to counteract the known error by including a discretization of (1.92)

(1.94) Qn+1
j = Qnj − ν

(
Qnj −Qnj−1

)
− kuh

2
(1− ν)

Qnj+1 − 2Qnj +Qnj−1

h2
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Working this through leads to the scheme

(1.95) Qn+1
j = Qnj −

ν

2
(
Qnj+1 −Qnj−1

)
+
ν2

2
(
Qnj+1 − 2Qnj +Qnj−1

)
.

Thus we have obtained the Lax-Wendroff scheme (1.30) via another route.
The procedure can be continued to higher orders. We can now ask what is the

modified equation more accurately described by the Lax-Wendroff scheme. Repeat-
ing the same procedures as above we first write
(1.96)

s(x, t+k) = s(x, t)−ν
2

[s(x+ h, t)− s(x− h, t)]+ν2

2
[s(x+ h, t)− 2s(x, t) + s(x− h, t)]

and then carry out Taylor series expansions around (x, t) to obtain

s+ kst +
k2

2
stt +

k3

6
sttt + . . . = s− uk

2h

[
2hsx +

h3

3
sxxx + . . .

]
+(1.97)

u2k2

2h2

[
h2sxx +

h4

12
sxxx

]
(1.98)

from where

(1.99) st + usx = −k
2
(
stt − u2sxx

)
− k2

6
sttt −

uh2

6
sxxx +O(k3, h3)

Note the appearance of the O(k) term. Had we carried out the Taylor expansion
for the advection equation this term would have been proportional to qtt − u2qxx
which is zero according to (1.26). Here we cannot assume that stt − u2sxx is zero
a priori. We must carry the term in the ensuing computations, expecting that it
will give a higher order correction. Let us neglect the O(k3, h3) contributions and
proceed with our technique of replacing higher order time derivatives with spatial
derivatives using

(1.100) stt = −usxt −
k

2
(
sttt − u2sxxt

)
(1.101) sttt = −usxtt.

Higher order terms have been dropped since they would lead to O(k3, h3) contri-
butions in (1.99). Our intermediate result is

(1.102) st + usx = −k
2

[
−usxt −

k

2
(
sttt − u2sxxt

)
− u2sxx

]
+
k2

6
usxtt −

uh2

6
sxxx

and we continue by eliminating mixed derivatives. In the above formula we wish
to express sxtt in terms of x derivatives to O(1)

(1.103) sxtt = sttx = (st)tx = (−usx)tx = −u (st)xx = u2sxxx .

We also need to express sxt in terms of x derivatives to O(k, h)

(1.104) sxt = stx = −usxx −
k

2
(
sttx − u2sxxx

)
and sttt, sxxt to O(1)

(1.105) sttt = −u3sxxx, sxxt = −usxxx .
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Replacing in (1.102) leads to
(1.106)

st+usx = −k
2

{
−u
[
−usxx −

k

2
(
sttx − u2sxxx

)]
− u2sxx −

k

2
(
−u3sxxx + u3sxxx

)}
+
u

6
(
k2u2 − h2

)
sxxx

which simplifies to

(1.107) st + usx =
k2

4
(
sttx − u2sxxx

)
+
u

6
(
k2u2 − h2

)
sxxx

Since sttx = u2sxxx to O(1) we obtain in final

(1.108) st + usx = −uh
2

6
(
1− ν2

)
sxxx .

The third order derivative now obtained shows that the Lax-Wendroff scheme intro-
duces a dispersive error with different wave numbers traveling at different speeds.
As expected, the dispersive error is proportional to h2 since the Lax-Wendroff
scheme is second order. A scheme more accurate than Lax-Wendroff could be ob-
tained by adding a correction term modeling the dispersive error. Since this involves
a third-order derivative the stencil of the scheme would become wider by at least
one unit thereby entailing more computational work.

1.2. Non-linear scalar equations. We have introduced a number of finite
difference methods for the simple constant-velocity advection equation (1.1). Of
course, there is hardly much need for a numerical method in order to solve (1.1).
Rather we have used (1.1) as a model problem to study the properties of numerical
schemes on a simple case. We now proceed to consider more complicated problems
and investigate how the methods already derived apply to these problems.

A general first order, hyperbolic scalar equation is given by

(1.109) qt + u(x, t, q)qx = σ(x, t, q)

where u may be interpretred as local advection velocity that depends in general
upon x, t and q. In a wide range of problems equations of the form

(1.110) qt + f(q)x = σ(x, t, q)

arise where f is known as the flux function. If f is differentiable we can write

(1.111) qt + fqqx = σ(x, t, q)

so fq plays the role of the local advection velocity. Generally u, f depend on q
so that the equations become non-linear in q. Equation (1.110) is said to be in
conservative form as opposed to (1.109) which is said to be in non-conservative
form. Generally we say that a PDE is in conservative form when it can be expressed
as the space-time divergence of a vector field. For equation (1.110) the vector field
would be (q, f(q)) and the space-time divergence is ∇(t,x)· = (∂t, ∂x)· so another
way of writing (1.110) is

(1.112) ∇(t,x) · (q, f(q)) = 0 .

An initial value problem is defined by specifying a solution domain along x and an
initial condition q0(x).
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Figure 3. Characteristic curves for qt + ex+tqx = −βq .

1.2.1. Solution by characteristics. We can solve (1.109) using the method of
characteristics. We again ask whether there are any special curves Γ within the
(x, t) plane on which (1.109) reduces to a simpler form. Along the curves specified
by the differential system

(1.113)
dt

ds
= 1,

dx

ds
= u(x, t, q)

we do indeed obtain the simpler form

(1.114)
dq

ds
= σ.

The essential difference with respect to the constant-velocity case is that the curves
are no longer simple straight lines but depend on x, t and q. Let us consider some
examples in order to see the complications involved.

Variable-velocity advection. Consider the equation

(1.115) qt + u(x, t)qx = σ

which describes the advection of the unknown field variable q by an imposed velocity
field u(x, t). The velocity field is not influenced by q itself; q is said to be a passive
tracer. The characteristic curves are given by the ODE

(1.116)
dx

dt
= u(x, t) .

Note that we are no longer guaranteed that the characteristics exist for all times
as they did for the constant-velocity advection equation. This is the case only if u
is uniformly Lipschitz.

Example 7. Consider the velocity field

(1.117) u(x, t) = x+ t,

the initial condition

(1.118) q0(x) = sinx,

and the source term

(1.119) σ = −βq .
The characteristic curves are

(1.120) x(t) = Cet − t− 1

which are shown in Fig. (3). At t = 0 the characteristic labeled by C passes
through the x coordinate x0 = C−1. Along each characteristic the variable-velocity
advection equation reduces to the ODE

(1.121)
dq

dt
= −βq

which has the solution q(x, t) = Ae−βt. We have to determine the constant A from
the initial conditions. Through any given point (x, t) there passes the characteristic
curve labeled by C = e−t(x+t+1). This particular characteristic curve will intersect
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Figure 4. Solution of qt+ (x+ t)qx = −βq, q(x, t = 0) = sinx for
β = 0.1 at t = 0, 0.2, . . . , 1.

Figure 5. Crossing characteristics for inviscid Burgers equation
with initial condition q0(x) = sinx (shown in thick line).

the x-axis at x0 = C−1 and this is the position from which we must take the initial
value for q

(1.122) q(x, t) = q0(e−t(x+ t+ 1)− 1)e−βt = sin(e−t(x+ t+ 1)− 1)e−βt .

We have found the solution to the PDE using the simpler expression of the PDE
along the characteristics. The solution can be verified by direct substitution in
(1.115) and is depicted in Fig. (4). The initial condition is spread out due to the
spreading out of the characteristic curves and attenuated due to the source term σ.

Burgers equation. A model equation used extensively in the study of non-linear
equations is

(1.123) qt + qqx = 0

known as the inviscid Burgers equation. It is given in non-conservative form above.
In conservative form it becomes

(1.124) qt +
(
q2

2

)
x

= 0

so the flux function is

(1.125) f(q) = q2/2 .

The characteristic curves are given by

(1.126)
dx

dt
= q(x, t)

and along a characteristic curve Γ equation (1.123) reduces to

(1.127)
(
dq

ds

)
Γ

= 0 ,

i.e. there is no variation in q along the characteristic. This implies that the slope of
each characteristic curve is constant and specified by the initial condition q(x, t =
0) = q0(x).

The type of difficulties that arise for non-linear equations is immediately ap-
parent from the consideration of simple initial conditions. Consider q0(x) = sinx.
The characteristics are sketched in Fig. 5. The problem is that the characteristic
curves cross one another. At such a crossing point it is not apparent what the
correct value of q should be since different values are being transported along each
of the crossing characteristics.



1. SCALAR EQUATIONS 73

To get a better idea of what is happening it is useful to simplify the initial
condition as much as possible. This leads to the so-called Riemann problem

(1.128) q0(x) =
{

ql x < 0
qr x > 0

Let us try to solve Burgers equation for this initial condition.
If ql > qr characteristics from x < 0 will overtake those from x > 0. This will

occur on some ray from the origin of equation x = st. To the left of this separating
ray we will observe the value ql while to the right we will observe the value qr. The
solution is therefore

(1.129) q(x, t) =
{

ql x < st
qr x > st

The initial discontinuity propagates at a velocity s. The discontinuity is called a
shock using the language of compressible gas dynamics and s is the shock velocity.
The shock velocity can be determined by using the integrating Burgers equation
over a domain having the shock as its diagonal [st1, st2]× [t1, t2]

(1.130)
∫ st2

st1

∫ t2

t1

[qt + f(q)x] dtdx = 0

from where

(1.131) s =
f(qr)− f(ql)

qr − ql
.

If ql < qr two solutions are possible. We can again have the shock solution
(1.129) but also the solution

(1.132) q(x, t) =

 ql x < qlt
x/t qlt ≤ x ≤ qrt
qr x > qrt

called a rarefaction solution, again using terms from gas dynamics. This an even
worse conundrum, not only can discontinuities arise which invalidate the differen-
tiation operations but multiple solutions seem to be possible. Clearly something is
wrong and a way to correct the model that led to equation (??) must be found.
From the physical point of view certain effects have been neglected, namely the
viscosity of the fluid and we might be led to studying the viscous Burgers equation

(1.133) qt + qqx = νqxx

as a remedy to the difficulties encountered. This can be done and leads to smooth
solutions with very large gradients in the regions where shocks would have formed
for the inviscid Burgers equation. These large gradients are difficult to resolve
properly requiring very fine grids, much finer than needed elsewhere in the solution
domain. So a way that enables us to still work with the inviscid equation is quite
useful.

1.2.2. Weak solutions. The possibility of crossing characteristic curves is in-
dicative with a breakdown of the modeling assumptions that led to a certain hy-
perbolic PDE. In this situation one must revisit the method by which a certain
PDE is derived and consider the validity of all intermediate hypotheses used in the
derivation. Burgers equation serves as a useful example. The PDE

(1.134) qt + f(q)x = 0
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with f = q2/2 was proposed as a model for fluid flow in which the quantity q is
conserved but being advected by itself. The correct formulation of a conservation
principle is through the integral statement

(1.135)
∫ x2

x1

[q(x, t2)− q(x, t1)] dx = −
∫ t2

t1

[f(q(x2, t))− f(q(x1, t))] dt

the one-dimensional expression of (1.10). In this form one can replace

(1.136) q(x, t2)− q(x, t1) =
∫ t2

t1

∂q

∂t
(x, t)dt

(1.137) f(q(x2, t))− f(q(x1, t)) =
∫ x2

x1

∂f

∂x
dx

and obtain Burgers equation by going to the limits t2 → t1, x2 → x1 if the deriva-
tives ∂q/∂t, ∂f/∂x exist. However one cannot do this if q is discontinuous. In this
case only the integral form (1.135) is valid.

Nonetheless it is typically much more convenient to work with differential equa-
tions instead of integral equations. Therefore it is useful to extend the meaning we
associate to “q is a solution of a PDE” to cover the case where q might be dis-
continuous at a few points. This is done through the techniques of the theory of
distributions by requiring that q satisfy a certain integral condition. Namely we
consider the integral

(1.138) I =
∫ ∞

0

∫ +∞

−∞
φ [qt + f(q)x] dxdt

with φ a smooth function of finite support and impose I = 0. Typically we require
that φ be at least differentiable. We can integrate by parts to obtain

(1.139)
∫ ∞

0

∫ +∞

−∞
[φtq + φxf(q)] dxdt = −

∫ +∞

−∞
φ(x, 0)q(x, 0)dx .

By this technique all differentiation operations on q have been removed. We say
that q is a weak solution of (1.134) if (2.28) is satisfied for all φ from some space of
test functions such as φ ∈ C1 (R× R) .

1.2.3. Difficulties of finite difference methods for non-linear hyperbolic equa-
tions. The possibility of shocks for non-linear hyperbolic equations should alert us
to possible difficulties with the finite difference methods we have introduced for
the linear advection equation. Since these are based upon Taylor series expansions
of q(x, t) and q can be discontinuous, the expansions will break down and not be
valid near the discontinuities. Nevertheless, we would expect the methods to be
adequate in regions where q is smooth.

Let us see how we would apply the methods to a non-linear equation, taking
Burgers equation as an example. One possibility is to interpret q as the local
advection velocity u. The upwind method for

(1.140) qt + qqx = 0

then becomes

(1.141) Qn+1
j = Qnj −

{
Qnj
(
Qnj −Qnj−1

)
if Qnj ≥ 0

Qnj
(
Qnj+1 −Qnj

)
if Qnj < 0
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and the Lax-Wendroff methods reads

(1.142) Qn+1
j = Qnj −

Qnj k

2h
(
Qnj+1 −Qnj−1

)
+

(
Qnj
)2
k2

2h2

(
Qnj+1 − 2Qnj +Qnj−1

)
.

Applying this for a Riemann problem leads to a numerical solution similar to
the exact shock solution but with oscillations near the shock (Fig. 1.2.3). There is
also a smearing of the shock, instead of sharp discontinuity we have a smoothing of q
in the vicinity of the shock. Far from the shock the numerical solution is quite good
however. This therefore leads to the search for so-called high-resolution algorithms
that are able to preserve a high order of accuracy away from discontinuities and
also sharply capture discontinuities.

2. Systems of hyperbolic equations

2.1. Linear systems.
2.1.1. Classification of linear systems. Consider now that we are interested in

the simultaneous time evolution of a number of quantities

(2.1) q =
[
q1 q2 . . . qm

]T
that satisfy

(2.2) qt + Aqx = 0

with A a constant m × m matrix of real numbers. Such a system is said to be
hyperbolic if the eigenvectors of A form a basis for real m-vectors.

Example 8. The second order wave equation is given in canonical form as

(2.3) φtt − c2φxx = 0 .

It can be reduced to a system of two first-order equations by introducing

(2.4) u = φt, v = φx

We have

(2.5) ut − c2vx = 0

and since φxt = φtx

(2.6) vt − ux = 0

In vector form we obtain

(2.7)
∂

∂t

[
u
v

]
+
[

0 −c2
−1 0

]
∂

∂x

[
u
v

]
= 0

or

(2.8) qt + Aqx = 0

with

(2.9) q =
[
u
v

]
, A =

[
0 −c2
−1 0

]
The eigenvalues of A are λ1,2 = ±c and the eigenvectors are

(2.10) r1 =
[
c
1

]
, r2 =

[
−c
1

]



76 6. FINITE DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS

The eigenvectors are independent for c 6= 0 and therefore they form a basis for the
space of real 2-vectors. The system (2.8) is hyperbolic.

Example 9. Applying the same procedure to the Laplace equation

(2.11) φtt + φxx = 0

leads to the matrix

(2.12) A =
[

0 1
−1 0

]
whose eigenvalues are λ1,2 = ±i and eigenvectors are

(2.13)
[
i
1

]
,

[
−i
1

]
These have complex values and are not a basis for real 2-vectors. The system (2.12)
is not hyperbolic, it is elliptic.

2.1.2. Solution by method of characteristics and reduction to diagonal form.
For hyperbolic systems we can apply a procedure similar to that used for systems
of ODE’s. We can write

(2.14) A = TΛT−1

with

(2.15) Λ = diag {λ1, λ2, . . . , λm}

(2.16) T = [r1 r2 · · · rm]

(2.17) Arj = λjrj , j = 1, 2, . . . ,m .

and write

(2.18) qt + TΛT−1qx = 0 .

Introducing the notation

(2.19) w = T−1q

we obtain

(2.20) wt + Λwx = 0 .

Since Λ is a diagonal matrix, the equations of the original system have been de-
coupled and we can write the scalar jthcomponent equation

(2.21) w
(j)
t + λjw

(j)
x = 0 ,

for j = 1, 2, . . . ,m. These are now simple constant-velocity advection equations for
which we know the solution

(2.22) w(j)(x, t) = w
(j)
0 (x− λjt)

with w
(j)
0 given by the initial conditions on q

(2.23) w0 = T−1q0 .

The value of each individual component of w(j) is constant along the family of
characteristics x− λjt = Cj . Therefore w are known as the conservative variables.



2. SYSTEMS OF HYPERBOLIC EQUATIONS 77

From a knowledge of the conservative variable solution we can recover the solution
for the original variables

(2.24) q = Tw .

2.1.3. Finite difference methods. The finite difference methods derived for the
constant-velocity advection equation can be applied formally to hyperbolic systems
also. For example, the Lax-Wendroff scheme is

(2.25) Qn+1
j = Qnj −

k

2h
A
(
Qnj+1 −Qnj−1

)
+

k2

2h2
A2
(
Qnj+1 − 2Qnj +Qnj−1

)
There are some new features though due to the fact that there is no longer just a
single “advection” or characteristic velocity. Let us try to apply the upwind method
to the system (2.8). It is not apparent what the upwind direction should be for
q. We can ascertain this for the conservative variables though. We have λ1 = −c,
λ2 = c,

(2.26) r1 =
[
c
1

]
, r1 =

[
−c
1

]

(2.27) T =
[
c −c
1 1

]
, T−1 =

[
1
2c

1
2

− 1
2c

1
2

]
, Λ =

[
−c 0
0 c

]
and the conservative variable system is

(2.28)
∂

∂t

[
w(1)

w(2)

]
+
[
−c 0
0 c

]
∂

∂x

[
w(1)

w(2)

]
= 0 .

This system can be discretized in an upwind manner and we obtain the scheme

(2.29)
(
W (1)

)n+1

j
=
(
W (1)

)n
j

+
ck

h

[(
W (1)

)n
j+1
−
(
W (1)

)n
j

]

(2.30)
(
W (2)

)n+1

j
=
(
W (2)

)n
j
− ck

h

[(
W (2)

)n
j
−
(
W (2)

)n
j−1

]
In matrix form this reads

(2.31) Wn+1
j = (1− ν)Wn

j + CWn
j−1 + DWn

j+1

with

(2.32) ν =
ck

h
, C =

[
0 0
0 ν

]
, D =

[
ν 0
0 0

]
Multiplying by T leads to

(2.33) Qn+1
j = (1− ν)Qnj + TCT−1Qnj−1 + TDT−1Qnj+1

(2.34) TCT−1 =
ν

2

[
1 −c
−1
c

1

]
, TDT−1 =

ν

2

[
1 c
1
c

1

]
This is the upwind scheme for the system (2.8).

2.2. Non-linear systems.
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2.2.1. Classification. Non-linear systems are written as

(2.35) qt + f(q)x = 0

with

(2.36) q =
[
q1 q2 . . . qm

]T
, f =

[
f1 f2 . . . fm

]T
The classification of non-linear systems is made in accordance with the properties
of the Jacobian of f with respect to q

(2.37) fq =



∂f1

∂q1

∂f1

∂q2
· · · ∂f1

∂qm
∂f2

∂q1

∂f2

∂q2
· · · ∂f2

∂qm
...

...
. . .

...
∂fm
∂q1

∂fm
∂q2

· · · ∂fm
∂qm


If the eigenvectors of fq form a basis for q-vectors the system is said to be hyperbolic,
otherwise it is elliptic or parabolic. Note that in this case the eigenvectors typically
depend on the variables q themselves so that the same system of equations may
be hyperbolic in some regions and elliptic in others. The classification of PDE’s as
hyperbolic, parabolic and elliptic may be more familiar from the classification of
second order equations. Let us show the equivalence of the two usages.

The canonical elliptic second order PDE is the Laplace equation

(2.38) φtt + φxx = 0 .

We reduce it to a system of first-order PDE’s by introducing u = φt, v = φx. The
Laplace equation states ut + vx = 0 and we also have ux = vt by the equality of
mixed derivatives. These two relations can be written in matrix form as

(2.39) qt + Aqx = 0

(2.40) q =
[
u
v

]
, A =

[
0 1
−1 0

]
= 0

The matrix A has the eigenvalues λ1,2 = ±i and eigenvectors r1,2 =
[
±i 1

]
.

The eigenvectors r1,2 do not form a basis for two-component real vectors such as
q so the system is classified as elliptic in accord with the second-order Laplace
equation’s classification.

The canonic hyperbolic second order PDE is the wave equation

(2.41) φtt − φxx = 0 .

Following the same procedure we arrive at the study of the eigensystem of

(2.42) B =
[

0 −1
−1 0

]
which is given by λ1,2 = ±1, r1,2 =

[
±1 1

]
. The eigenvectors now do form a

basis for two-component real vectors and the system is classified as hyperbolic as
expected from the wave equation.

Finally, the typical parabolic equation is

(2.43) φx = φtt
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for which we denote u = φt to obtain

(2.44) qt + Cqx = σ

with

(2.45) q =
[
φ
u

]
, C =

[
0 0
1 0

]
, σ =

[
u
0

]
.

The eigensystem of C is λ1,2 = 0, r1 =
[

0 1
]
, r2 =

[
0 0

]
which does not

form a basis for two-component real vectors. Note that in this case the rank of C is
less than the dimension of the system; this is characteristic of parabolic equations.

2.2.2. Solution by characteristics. Let A be the Jacobian matrix for a non-
linear hyperbolic system

(2.46) qt + A(q)qx = 0,

with q a vector with m components. By the definition of a hyperbolic system we
know that A can be represented as

(2.47) A = TΛT−1 .

The difference with respect to the linear system case is that the matrices T, Λ
are no longer constant but depend on q and hence on (x, t). Nevertheless, we
can follow the same procedure of reduction to characteristic form locally for some
neighborhood of a point (x0, t0) where q(x, t) = q0. We can write

(2.48) q(x, t) = q0 + q̃(x, t)

where q̃ is the perturbation from the value q0. System (2.46) can now be written

(2.49) q̃t + A0q̃x = 0 ,

from where we obtain

(2.50) w̃t + Λ0w̃x = 0

with the perturbation characteristic variables given by

(2.51) w̃ = T−1q̃0 .

The characteristic system (2.50) leads to the ODE’s

(2.52)
dw̃(i)

dsi
= 0, i = 1, . . . ,m .

where d/dsi indicates the derivative along the ith characteristic direction whose
slope is given by the λ0i eigenvalue of A0

(2.53)
d

dsi
=

∂

∂t
+ λ0i

∂

∂x
.

A solution to (2.46) can be found by locally solving the ODE’s (2.52). This is the
method of characteristics for non-linear hyperbolic systems.





CHAPTER 7

Finite volume methods for hyperbolic equations

1. Basic aspects

We have seen that the appearance of discontinuities even when starting from
smooth initial data is a generic situation for non-linear hyperbolic PDE’s. To
define what is meant by a solution in such cases the concept of weak solutions was
introduced which involved integrating the discontinuous solution over some domain.
This suggests that it might be advantageous to construct a numerical method which
involves an integration step. It is also the case that a large class of PDE’s of
practical interest are derived from conservation laws in which a direct expression
of the quantity being conserved might prove useful in a numerical algorithm. To
evaluate a conserved quantity an integration step is again required.

Let us construct a numerical method based upon the above observations. Con-
sider a scalar hyperbolic equation in conservation form

(1.1) qt + f(q)x = 0

for which initial data

(1.2) q (x, t = 0) = q0(x)

is given over some domain, say 0 ≤ x ≤ 1. We divide the domain into a number of
cells

(1.3) Ci = [xi−1, xi] , i = 1, . . . , n

with 0 = x0 < x1 < . . . < xn = 1. From our knowledge of the properties of
equations of form (1.1), specifically the existence of characteristics, we expect an
explicit time marching scheme to be an efficient numerical procedure. The basic
problem faced in constructing such a procedure is to advance from time level tn to
time level tn+1. Since we wish to involve conserved quantities in our formulation
we are led to integrating (1.1) over [xi−1, xi]× [tn, tn+1]

(1.4)
∫ xi

xi−1

∫ tn+1

tn
[qt + f(q)x] dtdx = 0 .

This leads to

(1.5)
∫ xi

xi−1

[
q(x, tn+1)− q(x, tn)

]
dx+

∫ tn+1

tn
[f(q(xi, t))− f(q(xi−1, t))] = 0 .

We introduce the quantities

(1.6) Qni =
1
hi

∫ xi

xi−1

q(x, tn)dx, i = 1, . . . , n
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with hi = xi − xi−1. Each Qni expresses the total amount of the physical quantity
q within cell Ci at time tn. We also introduce

(1.7) Fni =
1
k

∫ tn+1

tn
f(q(xi, t))dt

with k = tn+1 − tn which denotes the flux of quantity q through the interface
between two cells at x = xi over the time interval [tn, tn+1]. We thus obtain the
scheme

(1.8) Qn+1
i = Qni −

hi
k

(
Fni − Fni−1

)
, i = 1, . . . , n .

Such a scheme is known as a finite volume scheme and it satisfies our requirements
that conserved physical quantities are used and that the derivation of the method
allows for discontinuous functions q(x, t). The quantities Qni are known as cell
averages, and they are taken to represent the value of q(x, tn) somewhere within
cell Ci, typicall at the midpoint (xi−1 + xi)/2. Our representation of the solution
can be interpreted simply as a piecewise constant approximation

(1.9) q(x, tn) ∼= Qni , xi−1 < x < xi .

One ingredient is still required to obtain a complete method: a procedure to
compute the fluxes Fni must be given. We know that hyperbolic equations have
finite domains of depedence. If we choose a small enough time step the fluxes should
only depend on the cell averages to the left and the right of the interface

(1.10) Fni
∼= F(Qi, Qi+1), i = 1, . . . , n− 1 .

The function F(Qi, Qi+1) defines an approximation of the true flux and is known
as the numerical flux at interface xi. The basic task faced in the construction of a
finite volume method is to specify how the numerical fluxes are computed starting
from knowledge of the cell average data.

2. Godunov methods

One important aspect of finite volume methods is that their construction follows
quite closely the physical behavior of the problem solution. This can be exploited
further in constructing numerical fluxes. Consider that we have the cell average
data {Qni }. If we interpret this as specifying a piecewise-constant approximation of
q(x, t) we note that at each interface x = xi a Riemann problem has been specified.
If the solution qg(xi, t) to the Riemann problem can be determined then an exact
evaluation of the fluxes is possible by evaluating the physical flux function f at
qg(xi, t).

(2.1) Fni = f(qg(xi, tn)).

Such methods that use the true physical solution in construction of the numerical
fluxes are known as Godunov methods and were introduced to study gas dynamics
problems.

A very simple example is given by the scalar, constant-velocity, advection equa-
tion

(2.2) qt + uqx = 0
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solved on a uniform grid xi − xi−1 = h. The solution to the Riemann problem is
immediate

(2.3) qg(xi, tn) =
{

Qni u > 0
Qni+1 u < 0

leading to the numerical flux

(2.4) f(qg(xi, tn)) =
{

uQni u > 0
uQni+1 u < 0

and the scheme

(2.5) Qn+1
i =

{
Qni − uh

k

(
Qni −Qni−1

)
u > 0

Qni − uh
k

(
Qni+1 −Qni

)
u < 0

.

We recognize this as the upwind scheme derived in our study of finite difference
methods. The interpretation is however a bit different. Whereas Qni in the upwind
finite difference scheme denoted the value of q at cell nodes xi, here Qni is the value
at cell centers. The difference is however non-essential and we find that a large
number of finite volume schemes have a close finite difference equivalent. This is
especially useful in determining stability restrictions since we can apply the theory
derived for finite difference methods.

In a Godunov method we use the exact physical flux f(q) to evaluate the numer-
ical flux F(Qi, Qi+1). This still involves an approximation, namely the piecewise
constant approximation of q(x, tn), thus limiting the basic Godunov method to first
order accuracy, τni = O(h, k). To obtain better accuracy we can introduce more
accurate representations of q(x, tn). An obvious idea is to use a piecewise linear
approximation

(2.6) q(x, tn) = Qni + σni
(
x− xi−1/2

)
, xi−1 < x < xi

with xi−1/2 = (xi−1 +xi)/2. Here we have assumed that Qni represents the value of
q(x, tn) at the midpoint xi−1/2. The slope σni may be constructed by interpolation
between adjoining cell average values. A number of possibilities exist:

(1) Downwind or Lax-Wendroff slope

(2.7) σni =
Qni+1 −Qni

h

(2) Upwind or Beam-Warming slope

(2.8) σni =
Qni −Qni−1

h

(3) Centered or Fromm slope

(2.9) σni =
Qni+1 −Qni−1

2h

The names used for the slopes refer to the fact that when applied to the constant
velocity advection equation each choice of slope leads to the corresponding finite
difference scheme.

One problem associated with the desire for higher accuracy is that disconti-
nuities can lead to non-physical oscillations in the numerical approximation. The



84 7. FINITE VOLUME METHODS FOR HYPERBOLIC EQUATIONS

Figure 1. Non-physical oscillations introduced by piecewise-
linear reconstruction. At t = tn a shock profile at x = xi is recon-
structed using centered slopes. The profile is then advected to the
new time level tn+1 and used to construct new cell averages, some
of which are in error (open circles).

difficulty is easily understood if we consider the Riemann problem for constant-
velocity advection

qt + uqx = 0(2.10)

q(x, 0) =
{

ql x > xi
qr x < xi

(2.11)

Reconstruction of the sharp discontinuity leads to overshoots not present in the ini-
tial condition. These are then advected downstream and contaminate the numerical
solution as shown in Fig. 1.

Non-physical oscillations can lead to a breakdown of the entire computation
in some applications. A common example is encountred when q is some positive
quantity physically but the numerical scheme oscillations lead to negative values.
Typically the physical hypotheses used in constructing the algorithm are no longer
valid and a runtime error results. This has led to the search for high-resolution
algorithms that exhibit higher order accuracy (typically O(h2, k2) ) away from dis-
continuities and capture discontinuities without oscillations. Typically the accuracy
of the algorithm is only O(h, k) near a discontinuity but this is not a problem since
first-order accuracy is all we could expect. The procedure used in constructing such
algorithms rests upon the identification of discontinuities in the initial data. If a
discontinuity is identified a low-order, piecewise constant reconstruction of q(x, t)
is used. Otherwise a higher-order, say piecewise-linear, reconstruction is used. The
technique is known as a slope-limiter method, since it attempts to maintain zero
slope near discontinuities. Various slope-limiters have been proposed and analyzed:

(1) minmod limiter

(2.12) σni = minmod
(
Qni −Qni−1

h
,
Qni+1 −Qni

h

)
where the minmod function is defined by

(2.13) minmod(a, b) =

 a if |a| < |b| , ab > 0
b if |b| < |a| , ab > 0
0 ab ≤ 0


(2) monotonized central-difference

(2.14) σni = minmod
(
Qni+1 −Qni−1

2h
, 2
Qni −Qni−1

h
, 2
Qni+1 −Qni

h

)



CHAPTER 8

Equations of mixed type

1. Splitting methods

We have determined numerical methods suitable for various types of PDE’s such
as diffusion modeled by a parabolic equation or advection modeled by a hyperbolic
equation. In very many applications multiple effects are present. A typical example
would be the advection-diffusion equation

(1.1) qt + uqx + vqy = α (qxx + qyy) .

The question naturally arises what to do when faced with the solution of such mixed
equations. We could develop methods for each new class encountered or combine
the methods already developed for simpler equations. The development of new
methods for a certain problem class follows the general procedure introduced so
far: a discretization is proposed and then stability and accuracy issues are studied.

We shall show however that it is also possible to combine methods developed for
simple PDE’s in order to obtain schemes for more complicated problems. A general
abstract framework is quite useful in this context. Let A,B be any two operators
that act upon the unknown function q. We assume q satisfies sufficient regularity
hypothesis for the problem at hand. We are interested in whether a solution to the
combined problem

(1.2) ∂tq = (A+ B)q

can be obtained by schemes suited to the simpler problems

∂tq = Aq(1.3)

∂tq = Bq(1.4)

Formally we can solve each of these equations using operator series. The solu-
tion to (1.2) is

(1.5) q(t+ k) = e(A+B)kq(t)

where the exponential of the operators is defined by its series representation

(1.6) e(A+B)k = I + k(A+ B) +
k2

2!
(A+ B)2 +

k3

3!
(A+ B)3 + . . .

We assume that the series above converge.
The procedure proposed to solve the original problem by breaking it down into

two steps is:

(1) Solve ∂tq = Aq to obtain an intermediate value q∗(t+ k)
(2) Use the intermediate value as an initial condition to the second step ∂tq =
Bq.
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This can be expressed formally as

(1.7) qS(t+ k) = eBkeAkq(t)

where the S superscript denotes this procedure as a splitting approximation. The
question is what is the error introduced by the split method. We therefore evaluate

(1.8) E(t+ k) = Eq(t) =
(
e(A+B)k − eBkeAk

)
q(t) .

The error operator E can be evaluated by taking the series expansions of all
terms involved. In doing this we must be careful in the algebraic manipulations
since A,B do not necessarily commute. For instance if A = ∂x and B = α(x)∂x
we have

(1.9) AB = a′(x)∂x + α(x)∂xx
but

(1.10) BA = α(x)∂xx .

We have

(1.11) e(A+B)k = I + k(A+ B) +
k2

2
(A2 +AB + BA+ B2) + . . .

eBkeAk =
(
I + kB +

k2

2
B2 + . . .

)(
I + kA+

k2

2
A2 + . . .

)
(1.12)

= I + k(A+ B) +
k2

2
(A2 + 2BA+ B2) + . . .(1.13)

The error operator is therefore

(1.14) E = (AB − BA)
k2

2
+ . . . = [A,B]

k2

2
+ . . . .

The quantity [A,B] = AB−BA is known as the commutator of A, B. We see that
the splitting procedure introduces an O(k2) error in each time step and we take
O(1/k) steps so overall it reduces the numerical accuracy to first order irrespective
of the accuracy employed in the individual steps.

A way to avoid the degradation of accuracy is to use a slightly more complicated
splitting approach known as Strang splitting

(1.15) qSS(t+ k) = eAk/2eBkeAk/2q(t) .

A Taylor series expansion of eAk/2eBkeAk/2 shows that the leading order error
introduced in each time step is O(k3) for Strang splitting and O(k2) overall.



CHAPTER 9

Spectral methods

1. Preliminaries

We have so far used Fourier methods in the theoretical analysis of numerical
algorithms. However Fourier methods are also very useful in the construction of
numerical methods for PDE’s. By way of an introduction to spectral methods
we shall concentrate on solving time dependent problems with periodic boundary
conditions over a finite domain which we take to be [−π, π], f(x + 2π) = f(x). If
‖f‖1 <∞ the function f(x) can be expressed as a Fourier series

(1.1) f(x) =
∞∑

k=−∞

f̂ke
ikx

with the Fourier coefficients given by

(1.2) f̂k =
1

2π

∫ π

−π
f(x)e−ikxdx .

This is the discrete wavenumber equivalent of the continuum Fourier transform
introduced previously

(1.3) f(x) =
1√
2π

∫ ∞
−∞

f̂(k)eiξxdξ, f̂(k) =
1√
2π

∫ ∞
−∞

f̂(x)e−iξxdξ.

Typically we are interested in finding solutions that are smooth, say of class
C1 over [−π, π] except a finite number of points of discontinuity. The important
result from Fourier analysis relevant to this class of problems is:

Theorem 5. If f is piecewise smooth with period 2π then the Fourier series of
converges to f(x)

(1.4) lim
K→∞

K∑
k=−K

f̂ke
ikx = f(x) .

At a point of discontinuity we extend f by the definition f(x) = (f(x−)+f(x+))/2.

2. Evaluation of derivatives

Assume that f ∈ C1 and periodic over [−π, π] so that both f and f ′ have
convergent Fourier series. The series expansion of f ′ is

(2.1) f ′(x) =
∞∑

k=−∞

dke
ikx .
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Derivation of the Fourier series of f leads to

(2.2) f ′(x) = i

∞∑
k=−∞

kf̂ke
ikx

so we conclude that

(2.3) dk = ikf̂k .

If we know the Fourier coefficients of f , the Fourier coefficients of the derivatives
of f are obtained by multiplication with ik. This again is essentially a consequence
of the exponential being an eigenfunction of the differentiation operator

(2.4) ∂xe
ikx = ikeikx .

3. Discrete Fourier transform

In practical work we can only use a finite number of wave modes and a finite
number of function values. The finite version of the Fourier transform is known as
the discrete Fourier transform and is given by

(3.1) fj =
N/2∑

k=−N/2+1

f̂ke
ikxj

(3.2) f̂k =
1
N

N−1∑
j=0

fje
−ikxj

where the function values are known at xj = jh−π, h = 2π/N , j = 0, 1, · · · , N −1
and the wavenumbers run from −N/2 + 1 to N/2. Introducing ωN = e2πi/N , the
N th root of unity the transformation formulas can be written

(3.3) fj =
N/2∑

k=−N/2+1

f̂kω
jk
N , f̂k =

1
N

N−1∑
j=0

fjω
−jk
N .

These specify two matrix-vector multiplication operations

(3.4) f = F−1f̂ , f̂ = Ff

and would seem to require O(N2) arithmetic operations to carry out. The opera-
tion count can be drastically reduced by use of the fast Fourier transform (FFT)
algorithm. If N is even, N = 2P we can separate the sequence {f0, f1, . . . , f2P−1}
into two parts, one containing even indices and the other the odd ones

(3.5) uj = f2j , vj = f2j+1, j = 0, . . . , P − 1 .

The Fourier coeffcients f̂k are then computed by

f̂k =
1

2P

P−1∑
j=0

(
ujω

−2jk
N + vjω

−(2j+1)k
N

)
(3.6)

=
1

2P

P−1∑
j=0

ujω
−jk
P + ωkN

P−1∑
j=0

vjω
−jk
P

(3.7)

and instead of one matrix-vector multiply costing O(N2) we obtain two matrix-
vector multiplies each costing O(N2/4) for a total computational effort of O(N2/2).
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Figure 1. An example of aliasing. sinx, sin 5x, sin 9x are the
same when sampled on a coarse grid (circles).

The beauty of this approach is that if N = 2p we can continue the procedure and
reduce the operation count down to O(N log2N) a significant improvement over
O(N2). The FFT can be also implemented for N as some composite of other powers
of small prime numbers. Through application of the FFT we see that derivatives
are economically evaluated using (2.3).

If we do not use a sufficient number of Fourier modes to completely capture
all variations in the function, an error known as aliasing can occur. The minimum
number of points needed to capture all variations in a function is given by the
Nyquist criterion. If K is the highest wavenumber present in function f then we
need at least N = 2K points to completely represent f through a discrete Fourier
series. Aliasing is easily understood as an artefact of too coarse a sampling of
a function. Consider for instance the case when N = 4 so the grid nodes are
xj = −π + jπ/2, j = 0, . . . , 3. Note that sinx, sin 5x, sin 9x are indistinguishable
on this grid, Fig. 1. Aliasing leads to contamination of low wavenumber modes from
higher wavenumbers present in f that are not resolved by the chosen grid resolution.
The errors thus introduced can be quite significant since the low wavenumber modes
govern the coarse features of f . There exist a number of techniques to eliminate
aliasing. Besides the obvious one of ensuring the Nyquist criterion is met filtering
the high wavenumbers or using higher resolution in certain stages of a computation
are also used.

4. Applications to PDE’s

Fourier methods are especially useful in solving problems for which we know
the solution is smooth. This is a result of a number of results from Fourier analysis.
If f is L2 then we can state:

Theorem 6. If f has p − 1 continuous derivatives in L2 for p ≥ 0 and a pth

derivative of bounded variation then

(4.1) f̂(ξ) = O(|ξ|−p−1) as |ξ| → ∞ .

This statement tells us how the Fourier coefficients decay at high wavenumbers.
In particular for infinitely differentiable functions the Fourier coefficents decay faster
than any polynomial power. This behavior implies that once enough Fourier modes
have been introduced to capture the characteristic scales of f the amplitude of
higher modes is essentially zero. For numerical work we expect that a finite number
of modes will essentially reproduce the exact behavior of the smooth function and its
derivatives. It is the combination of accuracy and ease of evaluation of derivatrives
that make Fourier methods valuable in solving PDE’s numerically. Note however
that this is generally the case only when we have smooth functions and for very
special boundary conditions such as the periodic boundary conditions considered
here.
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Let us now sketch how various common PDE’s can be solved through Fourier
methods. In all cases we shall consider periodic boundary conditions over the
interval [−π, π] along each spatial direction.

4.0.3. Advection equation. For the problem

qt + uqx = 0(4.2)

q(x, t = 0) = q0(x)(4.3)

with u constant, we introduce the Fourier series

(4.4) qj(t) =
N/2∑

k=−N/2+1

q̂k(t)ωjkN

giving the values of q at the points xj = −π + jh, h = 2π/N . This is a semi-
discretization formulation in which time is kept as a continuous variable at this
stage. The values of the x-derivative at xj are given by

(4.5)
(
∂q

∂x

)
j

(t) =
N/2∑

k=−N/2+1

ikq̂k(t)ωjkN

The powers of ωN form a basis for grid functions so replacing the series into (4.2)
leads to

d

dt
q̂k + iukq̂k = 0(4.6)

q̂k(t = 0) = q̂0,k(4.7)

for k = −N/2 + 1, . . . , N/2 with q̂0,k the Fourier coefficents of the initial condition.
For real q we have q̂k = (q̂−k)∗ so the complete Fourier coefficients can be obtained
from a knowledge of the positive wavenumbers only. The system of ODE’s is thus
reduced to k = 0, 1, . . . , N/2. Each equation can be solved analytically

(4.8) q̂k(t) = q̂0,k exp(−iukt)
and the problem is solved. Note that if q is C∞ and N large enough to capture all
the modes present in q0(x) the solution is essentially exact and we would expect to
observe errors on the order of machine zero when carrying out this computation in
practice.

For the 2D adevction equation

qt + uqx + vqy = 0(4.9)

q(x, y, t = 0) = q0(x, y)(4.10)

the procedure is quite similar. We shall employ a double Fourier series representa-
tion

(4.11) qm,n =
M/2∑

k=−M/2+1

N/2∑
l=−N/2+1

q̂k,l(t)ωmkM ωnlN

to obtain the system
d

dt
q̂k,l + i(uk + vl)q̂k,l = 0(4.12)

q̂k,l(t = 0) = q̂0,k,l(4.13)

again easily solvable.
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4.0.4. Diffusion equation. For the diffusion equation

qt = αqxx(4.14)

q(x, t = 0) = q0(x)(4.15)

the same procedure leads to the system of ODE’s

d

dt
q̂k = −αk2q̂k(4.16)

q̂k(t = 0) = q̂0,k(4.17)

In the 2D case

qt = α(qxx + qyy)(4.18)

q(x, y, t = 0) = q0(x, y)(4.19)

we obtain
d

dt
q̂k,l = −α(k2 + l2)q̂k,l(4.20)

q̂k,l(t = 0) = q̂0,k,l(4.21)

Note that solving this system of ODE’s is quite easy. Compare with the necessity
of solving an implicit system of MN equations that would be obtained if we use a
standard finite difference formulation such as Crank-Nicolson.

4.0.5. Variable velocity advection. Let us now consider

qt + u(x)qx = 0(4.22)

q(x, t = 0) = q0(x)(4.23)

Here things get more complicated since we have to introduce a Fourier series for
u(x) also to mimic the procedure followed above. This however would lead to a
convolution product in Fourier space and the system of ODE’s

(4.24)
d

dt
q̂k + i

∑
l+m=k

ûlq̂m = 0

and the solution of this system is no longer immediate; we need to also solve a dense
linear system. This costs O((N/2)3/3) much more than the Fourier transforms or
the O(N) cost we would expect from a finite difference method. Instead of adopting
this procedure we can carry out the following operations to advance our numerical
solution from

{
Qnj
}

to {Qn+1
j } (we have reverted to theQ notation since the method

is now fully discretized and we no longer will be able to solve the ODE systems
that arise analytically):

(1) Compute
{
Q̂nk

}
from

{
Qnj
}

(2) Compute the Fourier coefficients of the derivative qx,
{
ikQ̂nk

}
(3) Carry out the inverse Fourier transform to find

{
(Qx)nj

}
. We have at this

stage completed the evaluation of the derivatives, qx through a process
known as numerical spectral differentiation.

(4) Compute cj = u(xj) (Qx)nj for j = 0, . . . , N − 1
(5) Find the Fourier coefficients of the {cj} grid function, {ĉk}
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(6) Solve the system of ODE’s

d

dt
q̂k + ikĉk = 0(4.25)

q̂k(0) = Q̂nk(4.26)

over a time step ∆t

(4.27) q̂k(tn+1) = Q̂nk exp (−ikĉk∆t)

This is known as a pseudo-spectral method since we work both in spectral
space to evaluate derivatives and in real space to evaluate products. There arises
the problem that the product uj(Qx)nj might be affected by aliasing errors. This is
avoided typically by using a higher resolution at this stage of the algorithm, 3N/2
instead of N points being used to sample cj .

4.0.6. 2D incompressible Navier-Stokes equations in ω−ψ formulation. Let us
conclude with a realistic practical example. The 2D incompressible Navier-Stokes
equations

ux + vy = 0(4.28)

ut + uux + vuy = −px + α (uxx + uyy)(4.29)

vt + uvx + vvy = −py + α(vxx + vyy)(4.30)

describe viscous fluid flow with velocity (u, v) and pressure p. They are a widely
used model in weather prediction in which periodic boundary conditions apply. The
system of 3 PDE’s can be reduced to 2 equations through use of the vorticity (ω)
stream function (ψ) formulation. The vorticity is defined as the curl of the velocity
field. For a 2D flow there is only one non-zero component, perpendicular to the
plane of flow

(4.31) ω = vx − uy
The streamfunction is defined by

(4.32) ψy = u, ψx = −v

and is constant along a streamline of flow. Taking ∂y of (4.29) and -∂x of (4.30)
and adding the result leads to the vorticity transport equation

(4.33) ωt + uωx + vωy = α(ωxx + ωyy) .

The vorticity can be expressed in terms of the stream function

(4.34) ω = (−ψx)x − (ψy)y

or

(4.35) ∇2ψ = −ω

Note that velocities obtained from a stream function automatically satisfy the con-
tinuity equation (4.28)

(4.36) ux + vy = ψyx − ψxy = 0 .

We can solve (4.33) and (4.35) by the following algorithm:
(1) From the current approximation of the vorticity field {Ωnij} compute the

Fourier transform {Ω̂nkl}
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(2) Solve the Poisson equation for the stream function to find

(4.37) Ψ̂n
kl =

1
k2 + l2

Ω̂nkl

(3) Evaluate the derivatives of the stream function needed to compute the
velocities

(4.38) Ûnkl = ilΨ̂n
kl, V̂

n
kl = −ikΨ̂n

kl

(4) Apply the inverse Fourier transform to find the velocity field in real space
{Unij}, {V nij }

(5) Compute the derivatives of the vorticity in Fourier space

(4.39) ikΩ̂nkl, ilΩ̂
n
kl

(6) Use the inverse Fourier transform to real space and obtain {(Ωx)nij},
{(Ωy)nij}

(7) Compute the convection term in real space

(4.40) Cnij = Unij (Ωx)nij + V nij (Ωy)nij

(8) Fourier transform the convection term {Ĉnkl}
(9) Apply an ODE solver to advance the vorticity forward in time by solving

(4.41)
d

dt
Ω̂kl + Ĉkl = −α(k2 + l2)Ω̂kl

The evaluation of the convective term can potentially introduce aliasing errors
so this is carried out either with filtering or on an extended grid.





CHAPTER 10

Finite difference methods revisited

1. Compact finite difference schemes

1.1. Construction by Taylor series expansions. Spectral methods have
been shown to be very accurate methods in the computation of smooth solutions to
PDE’s. For a wide class of problems we are interested in high order approximation of
the solution to a PDE but are not able to use a spectral method. Typical difficulties
involve the appearance of complicated boundary conditions or some limited region
of rapid variation in the solution which should be treated separately from the entire
computational domain. Spectral methods are global methods and hence difficult
to adapt locally. This difficulty has become overcome in recent years through the
spectral element method but significant complications of method arise.

From spectral methods we can notice that the accurate evaluation of deriva-
tives is based upon knowledge of the entire grid function not just a few adjoining
values. This leads to the idea of extending a finite difference stencil to include more
points. As we do this however the stencil becomes unwieldy encompessing perhaps
a significant portion of the computational domain. We are interested in more accu-
rate evaluations of the derivative but would like to keep the stencil compact. This
has led to the application of Hermite polynomial interpolation ideas in which we
seek the derivatives of a function f(x) at the nodes of a uniform grid {xj} through
formulas of the type
(1.1)
a

2h
(fj+1 − fj−1)+

b

4h
(fj+2 − fj−2)+

c

6h
(fj+3 − fj−3) = βf ′j−2+αf ′j−1+f ′j+αf

′
j+1+βf ′j+2

Note that the computational stencil is widened and we have to solve a banded
system to find the approximations of the derivative.

Taylor series expansions lead to relations among the coefficients introduced
above

O(1) : a+ b+ c = 2β + 2α+ 1(1.2)

O(h2) :
a

6
+

2b
3

+
3c
2

= 4β + α(1.3)

O(h4) :
a

120
+

2b
15

+
27c
40

=
4β
3

+
α

12
(1.4)

· · ·(1.5)

The powers of h corresponding to each relation are indicated in (1.2-1.4). We obtain
second order accuracy if we apply just the first relation (1.2), O(h4) accuracy if we
apply the first 2 formulas and so on. Each relation adds another restriction to
the values of available coefficients. There are 5 unknown coefficients in the set of
equations above. For example, choosing just the first three relations leads to a two
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parameter family

(1.6) a =
1
6
α− 10

3
β +

3
2
, b =

32
15
α+

62
15
β − 3

5
, c =

6
5
β − 3

10
α+

1
10

.

In such a family of solutions we can impose additional constraints. Should we wish
to solve a tridiagonal system for the derivatives we would impose β = 0 and obtain

(1.7) a =
1
6
α+

3
2
, b =

32
15
α− 3

5
, c = − 3

10
α+

1
10

.

Conversely, we might wish to obtain the smallest possible stencil for a given
order of accuracy. This would lead to imposing c = 0 and the family

(1.8) a =
16
9
− 2

3
α, b =

19
6
α− 17

18

with β = (3α− 1)/12. Thus we obtain a famil
Second derivatives are constructed throough a similar procedure

(1.9)
a

h2
(fj+1 − 2fj + fj−1)+

b

4h2
(fj+2 − 2fj + fj−2)+

c

9h2
(fj+3 − 2fj + fj−3) = βf ′′j−2+αf ′′j−1+f ′′j +αf ′′j+1+βf ′′j+2

Taylor series expansions lead to the system

a+ b+ c = 2α+ 2β + 1(1.10)
a

12
+
b

3
+

3c
4

= α+ 4β(1.11)

a

360
+

2b
45

+
9c
40

=
α

12
+

4β
3

(1.12)

with the two-parameter solution family

(1.13) a =
3
2
− 3β − 9

4
α, b =

24
5
α− 6

5
β − 3

5
, c =

31
5
β − 11

20
α+

1
10

.

1.2. Fourier analysis of compact finite difference schemes. The benefits
of the procedure outlined above are shown by Fourier analysis of the ensuing finite
difference formulas. Consider a periodic function f(x+ 2π) = f(x) and a uniform
discretization xj = −π + jh, h = 2π/N . The finite wavenumber, discrete Fourier
series representing f on this grid is

(1.14) fj =
N/2∑

k=−N/2+1

f̂kω
jk
N

with ωN = exp(2πi/N), the N th root of unity. The full Fourier series representing
the function is

(1.15) f(x) =
∞∑

k=−∞

cke
ikx

and that representing its derivative is

(1.16) f ′(x) =
∞∑

k=−∞

ikcke
ikx .
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Assume that N is large enough so all Fourier components of f and f ′ are captured
on the finite representation and there is no aliasing error, i. e. f̂k = ck for k =
−N/2 + 1, . . . , N/2 and the derivative can be expressed as

(1.17) f ′j =
N/2∑

k=−N/2+1

ikf̂kω
jk
N

We pose the problem of how well the Fourier representation of the derivative is
approximated by various finite difference formulas. For instance the standard O(h2)
centered formula leads to

(1.18) f ′j
∼=
fj+1 − fj−1

2h
=

N/2∑
k=−N/2+1

i sin kh
h

f̂kω
jk
N

so the factor multiplying each Fourier coefficent is i (sin kh) /h instead of the exact
factor ik. We can form a relative error

(1.19) e(κ) =
∣∣∣∣ sinκ− κκ

∣∣∣∣ =
∣∣∣∣A(κ)− κ

κ

∣∣∣∣
with κ = kh. A number of such expressions shall arise which will differ by A(κ),
the particular finite difference approximation of the correct Fourier differencing
coefficient. For the family of schemes that result from imposing (1.1) we obtain

(1.20) A(κ) =
a sinκ+ (b/2) sin 2κ+ (c/3) sin 3κ

1 + 2α cosκ+ 2β cos 2κ
.

For a formula to reproduce as accurately as possible the Fourier representation
of the derivative we would want A(κ) = κ. This may be used to impose additional
constraints on the coefficients a, b, c, α, β. For instance we could construct the sum
over the represented wavenumbers

(1.21) S =
N/2∑

k=−N/2+1

[
a sin kh+ (b/2) sin 2kh+ (c/3) sin 3kh

1 + 2α cos kh+ 2β cos 2kh
− kh

]2

and minimize the this sum with respect to some of the coefficients to obtain addi-
tional restrictions.

A graphical representation of A(κ) versus κ is most useful in interpretation of
the quality of various finite difference approximations in Fourier space. Let us write
down some particular A(κ) expressions:

(1) Standard, O(h2) centered finite difference formula

(1.22) A1(κ) = sinκ

(2) O(h4), compact stencil, tridiagonal system for f ′

(1.23) a = α = −1, b = c = β = 0

(1.24) A2(κ) =
3 sinκ

2 + cosκ

(3) O(h6), tridiagonal system for f ′

(1.25) A3(κ) =
1
3

(4− cosκ) sinκ
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Figure 1. Accuracy in capture of wavemodes present in f ′ using
various finite difference formulas. A1 - circles, A2 - x, A3 - diamond.

This is shown in Fig. 1. The behavior of the exact Fourier coefficients of the
derivative is shown by the x = y line. We see that the standard O(h2) centered
formula leads to large errors starting at κ ∼= π/6. The full range of wave numbers
resolvable by the grid is from κ = 0 to κ = π. The largest wavenumber corresponds
to the Nyquist criterion. We can interpret these findings as suggesting that when
using the standard centered formula we are able to accurately resolve Fourier com-
ponents if they are sampled with 6 times the number of points suggested by the
Nyquist criterion, 12 points instead of 2. The formula corresponding to A2 shows
much better behavior, requiring only 6 sample points per wavelength, still more
than the theoretical minimum given by the Nyquist criterion. The higher order
compact finite difference formulas, optimized to reproduce the derivatives spectral
behavior do reach the Nyquist limit, thus reproducing the desirable behavior of the
spectral schemes.



CHAPTER 11

Finite element methods

1. Preliminaries

For a number of applications the restrictions imposed by finite difference or
spectral methods with respect to the computational grid are too severe. This is
especially the case in structural engineering where the elasticity equations are solved
in domains of complicated geometry such as the interior of an automobile engine.
A review of the finite difference and spectral methods would show that the reason
relatively simple grids are required is that the differential form of the equation is
used. Finite volume methods had no such restriction since they used an integral
formulation, and indeed complicated geometries may be treated by finite volume
methods. Another class of methods which are based upon an integral formulation
are the finite element and closely related boundary element methods. We shall
concentrate on finite element methods for now.

The basic idea behind the finite element methods is to employ a piecewise local
approximation q̃ of the unknown function q that satisfies some PDE of interest.
The piecewise local approximation is defined over some general discretization of
the domain of definition of q denoted by Ω. Instead of directly using the piecewise
local approximation in the PDE we employ a weighted residual formulation. There
arises the significant question of how to best relate the integral formulation to the
PDE of interest. Once the discretization, piecewise local approximation and integral
formulation are determined a system of equations is obtained whose solution gives
the complete approximation to the problem of interest. We shall look at each of
these components in detail.

1.1. Spatial discretizations. A domain Ω may be discretized into simple
elements in very many ways. Nonetheless only a few are typically used in practice.
General affine geometry furnishes some guidance for general discretization tech-
niques. We know for instance that any d−dimensional domain may be expressed
as a reunion of simplicia

(1.1) Ω = ∪kSk .

Simplicia are the simplest continuum geometric entitites one can construct in a
space of dimension d. For 1D spaces the simplicia are line segments. In 2D they
are triangles and in 3D they are tetrahedra. The measure of each of these elements
is easily determined by the formulas:

(1) line segment in 1D of nodes {x1, x2}

(1.2) l = x2 − x1 =
∣∣∣∣ 1 1
x1 x2

∣∣∣∣
99
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Figure 1. Example of the discretization into triangles of the do-
main between a circle and a NACA-0012 airfoil.

(2) triangle in 2D with nodes {(x1, y1), (x2, y2), (x3, y3)}

(1.3) A =
1
2

∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
(3) tetrahedron in 3D with nodes {(x1, y1, z1), (x2, y2, z2), (x3, y3, z3)}

(1.4) V =
1
6

∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z3 z3 z4

∣∣∣∣∣∣∣∣
In the above formulas the element measures are given with sign, the sign cor-

responding to orientation of the nodes. We understand that the positive value is
to be taken whenever a true geometric measure (length, area, volume) is required.
Simplicia have many attractive theoretical properties, in particular there exists a
definition of what an optimal discretization is for a number of PDE’s of interest,
especially elliptic PDE’s such as the Poisson equation. Fig. 1 shows an example of
such a discretization.

Another widely used discretization is into generalized polyhedra having 2d sides,
i.e. line segments in 1D, quadrilaterals in 2D, hexahedra in 3D. These have the ad-
vantage of enabling easier organization of programs since there is a natural ordering
of the indices identifying each element. Thus discretizations which use these types
of elements give rise to structured computational grids, similar to those encoun-
tered in finite difference methods whereas discretizations using simplicia lead to
unstructured computational grids.

1.2. Piecewise interpolations. Once a discretization scheme for the geo-
metric domain has been established the next step is to define a local approximation
of q over the element E. Typically the approximation is an interpolation based
upon values Qj defined somewhere within the element E, but this is not obligatory
and other approximations (spectral elements, Chebyshev elements) may be used.
The position where the values Qj are to be defined must be established. A simple
choice is the element nodes but again this is not obligatory and the values may
be positioned at other points within E. Finally an interpolation scheme must be
established such as polynomial interpolation. Let us give some typical examples:

1.2.1. Linear elements in 1D. The element E has two nodes {x1, x2}, x2 > x1.
Values representing q(x) are defined at the nodes {Q1, Q2}. These define a linear
polynomial approximation valid over E

(1.5) q̃(x) =
(x− x1)Q2 + (x2 − x)Q1

x2 − x1
= N1(x)Q1 +N2(x)Q2

The functions N1(x), N2(x) have properties reminiscent of the Dirac delta

N1(x1) = 1, N1(x2) = 0(1.6)

N2(x1) = 0, N2(x2) = 1(1.7)
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Figure 2. Linear 1D form functions.

Figure 3. Quadratic element form functions in 1D.

and are called form functions. The particular ones used here are called the 1D
linear form functions and are depicted in Fig. (2)

1.2.2. Quadratic elements in 1D. The element E has three nodes {x1, x2, x2}
and the local approximation is

(1.8) q̃(x) = N1(x)Q1 +N2(x)Q2 +N3(x)Q3

with the form functions

N1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
(1.9)

N2(x) =
(x− x3)(x− x1)

(x2 − x3)(x2 − x1)
(1.10)

N3(x) =
(x− x1)(x− x3)

(x3 − x1)(x3 − x2)
(1.11)

1.2.3. Linear elements on triangles in 2D. The element E has 3 nodes of coor-
dinates {(x1, y1), (x2, y2), (x3, y3)} at which the values Q1, Q2, Q3 are defined. The
local approximation of q is given by

(1.12) q̃(x, y) = N1(x, y)Q1 +N2(x, y)Q2 +N3(x, y)Q3

with the form functions
(1.13)

N1(x, y) =
1

2A

∣∣∣∣∣∣
1 1 1
x x2 x3

y y2 y3

∣∣∣∣∣∣ =
1

2A
(xy2 − yx2 − xy3 + yx3 + x2y3 − x3y2)

(1.14)

N2(x, y) =
1

2A

∣∣∣∣∣∣
1 1 1
x1 x x3

y1 y y3

∣∣∣∣∣∣ =
1

2A
(yx1 − xy1 + xy3 − yx3 − x1y3 + y1x3)

(1.15)

N3(x, y) =
1

2A

∣∣∣∣∣∣
1 1 1
x1 x2 x
y1 y2 y

∣∣∣∣∣∣ =
1

2A
(xy1 − yx1 − xy2 + yx2 + x1y2 − x2y1)

Notice how the properties of simplicia enable the form functions to be easily deter-
mined.

1.2.4. Linear along each direction elements on quadrilaterals in 2D. The ele-
ment E has 4 nodes {(x1, y1), (x2, y2), (x3, y3), (x4, y4}. It is convenient to introduce
a local coordinate system (ξ, η) so that the nodes correspond to the local coordi-
nates (±1,±1). The local approximation is then given in the local coordinates
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by

(1.16) q̃(ξ, η) =
4∑
k=1

Nk(ξ, η)Qk

with the form functions

N1(ξ, η) =
1
4

(1 + ξ)(1 + η)(1.17)

N2(ξ, η) =
1
4

(1− ξ)(1 + η)(1.18)

N3(ξ, η) =
1
4

(1− ξ)(1− η)(1.19)

N4(ξ, η) =
1
4

(1 + ξ)(1− η)(1.20)

The local transformation of coordinates can also be written in terms of the form
functions

(1.21) x(ξ, η) =
4∑
k=1

Nk(ξ, η)xk, y(ξ, η) =
4∑
k=1

Nk(ξ, η)yk

2. Variational derivation of weighted residual formulations

We now turn to the problem of how to obtain a measure of the error introduced
in approximating the exact solution q to the PDE of interest with its piecewise
approximation q̃. Some techniques were presented in the general presentation of
weighted residual methods carried out in Chapter 2. For a wide class of problems
of interest, especially elliptic problems there exist alternative formulations that
lead to more efficient numerical algorithms. These are based upon variational and
functional analysis and we shall consider the basics of the theory here.

2.1. Variational calculus. Consider the problem of determining the extremum
of the integral

(2.1) I(q) =
∫ b

a

f(x, q, q′)dx

over all functions q : R → R that belong to some class, for example piecewise
continuous functions and that satisfy the boundary conditions q(x = a) = qa,
q(x = b) = qb. I(q) is called a functional in that it associates a scalar value to
each element from a space of functions. We can consider small perturbations of
the function q that we denote by δq̇ The perturbations maintain the boundary
conditions, i.e.

(2.2) δq(x = a) = 0, δq(x = b) = 0 .

The change in I is

(2.3) δI = I(q + δq)− I(q) =
∫ b

a

f(x, q + δq, q′ + δq′)dx−
∫ b

a

f(x, q, q′)dx .

We shall consider q, q′ as independent variables in f and carry out series expansions
to obtain

(2.4) δI =
∫ b

a

[(
∂f

∂q

)
δq +

(
∂f

∂q′

)
δq′
]
dx .
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We can interchange the δ and d/dx operators in the second term and then integrate
by parts ∫ b

a

(
∂f

∂q′

)
δq′dx =

∫ b

a

(
∂f

∂q′

)
δ
dq

dx
dx =

∫ b

a

(
∂f

∂q′

)
d

dx
(δq) dx =(2.5)

=
(
∂f

∂q′

)
(δq)

∣∣∣∣x=b

x=a

−
∫ b

a

d

dx

(
∂f

∂q′

)
(δq) dx(2.6)

Applying the boundary conditions and then replacing the above result in (2.4) leads
to

(2.7) δI =
∫ b

a

[(
∂f

∂q

)
− d

dx

(
∂f

∂q′

)]
δqdx .

For I to be at an extremum δI must maintain the same sign under any perturbation
of the extremum. This is only possible if the factor multiplying δq in the above
integral is zero everywhere. If it were not then δq1 would give some value δI1 and
−δq1 would lead to the opposite value −δI1 and I would not be at an extremum.
We therefore have

(2.8)
(
∂f

∂q

)
− d

dx

(
∂f

∂q′

)
= 0

as the condition for I to be at an extremum. This is known as the Euler variational
principle. At the extremum we obviously have δI = 0.

The importance of the Euler variational principle for numerical solution of
PDE’s rests upon the link it furnishes between an integral formulation I(q) and
a differential equation (2.8). We can write down specific forms of f that lead to
PDE’s of great practical interest. For example replacing

(2.9) f(x, q, q′) =
1
2

(
dq

dx

)2

− gq

in (2.8) leads to the differential equation

(2.10) q′′ = g

with the boundary conditions q(x = a) = qa, q(x = b) = qb. This is the standard
2 point boundary problem for a second order ODE. Recall that this can be solved
by either direct discretization leading to the linear system of equations

(2.11) Qj−1 − 2Qj +Qj+1 = h2gj , j = 1, . . . , N − 1

or by using a shooting method combined with an initial value solve in which we
seek z = q′(x = a) that leads to q(x = b; z) = qb. The variational formulation
above suggests a third approach. Instead of directly solving the ODE we can seek q
that minimizes I(q) with f given by (2.9). This is extremely useful in constructing
finite element approximations as we will see below.

Other important expressions of the Euler variational principle can be derived
for various situations. Let us consider the ones most often encountered.

(1) Functional of two functions in 1D. The functional is

(2.12) I(p, q) =
∫ b

a

f(x, p, p′, q, q′)dx
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and the Euler variational principle leads to

(2.13)
(
∂f

∂p

)
+
(
∂f

∂q

)
− d

dx

(
∂f

∂p′

)
− d

dx

(
∂f

∂q′

)
= 0

(2) Functional of a 2D function.

(2.14) I(q) =
∫ d

c

∫ b

a

f(x, y, q, qx, qy)dxdy

(2.15)
(
∂f

∂q

)
− ∂

∂x

(
∂f

∂qx

)
− ∂

∂y

(
∂f

∂qy

)
= 0

(3) Functional involving second order derivatives in 1D.

(2.16) I(p, q) =
∫ b

a

f(x, p, p′, p′′)dx

(2.17)
(
∂f

∂q

)
− d

dx

(
∂f

∂q′

)
+

d2

dx2

(
∂f

∂q′′

)
= 0

2.2. Ritz methods. In the Ritz formulation of the finite element method we
seek a piecewise approximation that minimizes the functional associated with the
PDE of interest. The piecewise local approximation can be expressed as

(2.18) q̃(x) =
∑
e

∑
k

QekN
e
k(x)

where the e sum is over all elements and the k sum is over all nodes within an
element. The unknowns of the problem are the nodal values Qek. The form functions
Ne
k(x) correspond to some chosen approximation scheme. Let f be associated with

the PDE we are interested in solving. The problem reduces to finding {Qek} that
minimizes

(2.19) I(q̃) =
∫ b

a

f(x, q̃, q̃x)dx .

This can be solved by finding the solution to the system of equations

(2.20)
∂

∂Qek
I(q̃) = 0

with e going over all elements and k over all element nodes.
Note that the entire procedure rests upon the ability to determine a function

f that corresponds to a PDE of practical interest. In many situations we have
physical guidance that such a variational principle formulation exists. The basic
underpinning is furnished by analytical mechanics and the physical principle of
least action which finds various expressions in different disciplines. The principle of
least action asserts that of all the generalized trajectories (p, q) = {qk(t), pk(t) | k =
1, . . . , 3N} of a system of N particles, the one actually followed minizes the action
S

(2.21) S =
∫ t1

t0

L(t, p, q)dt

with L being the Lagrangean of the system. Here qk denote generalized coordinates
and pk generalized momenta. Though not always immediately apparent this leads
to other expressions typically called minimum energy functionals. These can be
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written for systems with no dissipative effects. Here are some examples of functions
f linked to important PDE’s:

(1) Poisson equation in 2D

(2.22) f =
1
2
(
q2
x + q2

y

)
− gq

for which (2.15) gives

(2.23) qxx + qyy = g

(2) Poisson equation in 3D

(2.24) f =
1
2
(
q2
x + q2

y + q2
z

)
− gq

for which the Euler variational principle

(2.25)
(
∂f

∂q

)
− ∂

∂x

(
∂f

∂qx

)
− ∂

∂y

(
∂f

∂qy

)
− ∂

∂z

(
∂f

∂qz

)
= 0

gives

(2.26) qxx + qyy + qzz = g

2.3. Galerkin methods. The Ritz formulation typically leads to a system of
equations which has nice numerical properties. However there are many systems
for which a variational formulation is not possible typically because the system has
dissipative behavior. In such situations we can again use an integral reformulation
of the PDE of interest based upon the concept of a weak solution already introduced
in the study of hyperbolic problems. Suppose we’re looking for a solution to the
problem

(2.27) Aq = g

with A some differential operator. A function q that directly satisfies (2.27) is
called a classical solution. Consider now some space of test functions v and a scalar
product defined for the functions q and v. From (2.27) we can derive

(2.28) (Aq, v) = (g, v)

where (·, ·) denotes the scalar product, e.g.

(2.29) (u, v) =
∫ b

a

u(x)v(x)dx .

In (2.28) we can apply integration by parts to obtain

(2.30) (q,A∗v) = (g, v)

where A∗ is the adjoint operator of A. This typically enables us to avoid differenti-
ating functions q that might be discontinuous. We can now use (2.30) to determine
the unknown coefficients of a finite element approximation

(2.31) q̃(x) =
∑
e

∑
k

QekN
e
k(x)

by requiring

(2.32)
∑
e

∑
k

Qek (Ne
k(x),A∗v) = (g, v) .
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The only piece missing is how we choose the test functions v. In a Galerkin formu-
lation these are chosen to be the form functions themselves leading to

(2.33)
∑
e

∑
k

Qek
(
Ne
k(x),A∗Ne

j (x)
)

= (g,Ne
j (x)) ,

thus defining a linear system

(2.34) AQ = b

(2.35) Ajk =
(
Ne
k(x),A∗Ne

j (x)
)
.

2.4. A detailed example. Let us now carry out the steps involved in solving
a Poisson equation in 2D using a Ritz formulation and quadrilateral elements. The
mathematical statement of the problem is

(2.36)
{
qxx + qyy = g (x, y) ∈ Ω

q = b (x, y) ∈ ∂Ω

with the domain Ω = [a, b] × [c, d] and ∂Ω denoting the boundary of Ω on which
Dirichlet conditions are given. The element form functions are given by (1.17)-
(1.20) and the function f is given by (2.22). The function I(q̃) is

(2.37) I(q̃) =
∫ d

c

∫ b

a

f(x, y, q̃, q̃x, q̃y)dxdy =
∫ d

c

∫ b

a

[
1
2
(
q̃2
x + q̃2

y

)
− gq̃

]
dxdy .

The finite element approximation is determined by the chosen form functions and
the nodal values {Qek}. The extremum of I(q̃) is attained when

(2.38)
∂

∂Qek
I(q̃) = 0

which leads to

(2.39)
∫ d

c

∫ b

a

[(
q̃x
∂q̃x
∂Qek

+ q̃y
∂q̃y
∂Qek

)
− g ∂q̃

∂Qek

]
dxdy = 0

Note that

(2.40)
∂q̃

∂Qek
= Ne

k ,
∂q̃x
∂Qek

=
∂Ne

k

∂x
,
∂q̃y
∂Qek

=
∂Ne

k

∂y

so these derivatives no longer contain the unknowns {Qek}. We thus obtain

(2.41)
∑
e

∑
j

[∫∫ (
∂Ne

j

∂x

∂Ne
k

∂x
+
∂Ne

j

∂y

∂Ne
k

∂y

)
dxdy

]
Qek =

∑
e

∫∫
gNe

k dxdy

with k going over all the element nodes. The sum over the elements is typically
known as an assembly operation, leading to the computation of the matrix elements

(2.42) Ajk =
∑
e

∫∫ (
∂Ne

j

∂x

∂Ne
k

∂x
+
∂Ne

j

∂y

∂Ne
k

∂y

)
dxdy

known as the system stiffness matrix. We can easily compute the elements of this
matrix. Analytical computation is possible as in

(2.43)
∂Ne

k

∂x
=
∂Ne

k

∂ξ

∂ξ

∂x
+
∂Ne

k

∂η

∂η

∂x
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(2.44)
∂ξ

∂x
=

D(ξ,y)
D(ξ,η)

D(x,y)
D(ξ,η)

=
1
J

∣∣∣∣ 1 0
yξ yη

∣∣∣∣ =
yη
J

(2.45)
∂η

∂x
=

D(η,y)
D(ξ,η)

D(x,y)
D(ξ,η)

=
1
J

∣∣∣∣ 0 1
yξ yη

∣∣∣∣ = −yξ
J

(2.46) J =
∣∣∣∣ xξ xη
yξ yη

∣∣∣∣ = xξyη − xηyξ

The x(ξ, η) and y(ξ, η) dependencies are given by (1.21) so we obtain

∂x

∂ξ
=

4∑
k=1

∂Nk
∂ξ

xk,
∂y

∂ξ
=

4∑
k=1

∂Nk
∂ξ

yk(2.47)

∂x

∂η
=

4∑
k=1

∂Nk
∂η

xk,
∂y

∂η
=

4∑
k=1

∂Nk
∂η

yk(2.48)

But analytical evaluations are not really required in this case. We can recognize
that the integrand in (2.42) is quadratic in (x, y) and that a 4-point Gauss-Legendre
quadrature leads to an exact evaluation.


