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The multidimensional wave propagation method [7] for solving hyperbolic partial dif-
ferential equations is extended to moving grids of general geometry. Several examples
are presented from acoustics, gas dynamics and elasticity. Some multiphysics examples,
simultaneously solving different sets of conservation laws, are also included. The basic
moving grid procedure is combined with adaptive mesh refinement to obtain an efficient
algorithm capable of capturing phenomena with widely varying scales.
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1. INTRODUCTION

Moving computational domains arise naturally in a number of applications de-
scribed by hyperbolic evolution equations. Simulation of reciprocating, internal
combustion engines involves the computation of the fluid flow in a cylinder with a
moving piston wall [3]. The study of blood circulation leads to the problem of flow
inside a domain with moving, flexible walls [10]. Acoustic [1] and electromagnetic
radiation [12] from moving surfaces is of interest in a number of applications rang-
ing from musical instruments [15] to micro-electro-mechanical systems (MEMS) [8].
In many applications the singularities that can arise in hyperbolic problems are of
interest. The appearance of shocks in reciprocating engines significantly influences
the engine’s efficiency. Elastic waves in a solid medium may move fast enough that
they induce singularities in an adjoining gas medium.

There is a considerable body of work on moving mesh methods applicable to
such problems. We only cite a few entry points into the literature. Viecelly [14]
treated the case of incompressible flow. Demirdzic and Peric [4] have presented a
finite volume method with elements of arbitrary shape applicable to general flows.
Thomas and Lombard [13] highlighted the importance of maintaining the same
type of accuracy in the computation of geometric quantitites associated with grid
motion as that used in the field variables. Subsequent work has confirmed this
observation [9]. Recently Zwart, Raithby and Raw have presented a general finite
volume method suitable for moving domains that exhibit large deformations [16].

In this paper we consider the problem of developing high-resolution finite volume
methods to solve hyperbolic partial differential equations on moving grids in 2D and
3D. Such methods are known to be well suited for accurate capturing of singularities
on stationary grids. High-resolution finite volume methods may be recast in wave
propagation form [7] with certain advantages in achieving CFL numbers of unity and



uniform treatment of both conservative and non-conservative hyperbolic problems.
The wave propagation form has been applied to one-dimensional moving grids [6].
We are interested in extending the method to multi-dimensional moving grids so
as to be able to treat some of the applications mentioned above. The point of view
taken here is to use a time-dependent coordinate transformation from physical space
to computational space. In physical space the grid is moving according to a motion
which is imposed or perhaps influenced by the hyperbolic equation being solved.
In computational space the grid is stationary. The essential difference is that in
computational space the equation becomes more complicated, exhibiting space-time
dependent coefficients even if such a dependence was not present in the equation
expressed in physical space. As such, the problem is an important special case of
the more general problem of hyperbolic equations with spatially dependent fluxes
or coefficients.

The benefit of working in computational space is that Cartesian logical grid
structure can be maintained. This is especially useful when the basic method is
combined with adaptive mesh refinement (AMR) as is done in this work. The AMR
framework adopted here is esentially that of Berger and LeVeque [2]. Previous work
on combining adaptive meshing with moving grids includes [5]. The Cartesian grid
structure makes is straightforward to carry out multi-physics computations in which
different sets of conservation laws are solved on problem subdomains. The acoustic
radiation from moving surfaces is presented as an example in this work, but the
procedure may be readily extended to more complicated situations such as fluid-
structure interactions [11].

2. PROBLEM FORMULATION

2.1. Time-dependent grid mappings

It is assumed that a non-singular transformation 7" from computational space to
physical space may be defined at all times. We first consider the two-dimensional
problem. All salient aspects of algorithm development are present in the 2D case.
Extension to 3D is straightforward. The transformation between the computational
space (£,7n) and the physical space (z,y) is given by

o e=X(En,t)
T'{yzYﬁmﬂ ’ @

The restriction of 7" to a given time ¢" shall be denoted by 7. The Jacobian of
the transformation 7" shall be denoted by

Xe X,

=y vy,

= XV, - X, Y;. (2)

Since T is assumed non-singular, we have J # 0.

2.2. Hyperbolic equations in conservation form

Consider the two-dimensional conservation equation governing the evolution in
time of a field variable vector ¢(x,y,t) with m components

@+ [(@)z +9(q)y = ¥(2,y,t,q). (3)



The field variables and source term in computational space are

q(&,n,t) = q(X(&mn,1),Y (&, t),t), Y& n,t,q) = (X (En,t),Y(En,t)t,q).

We also introduce the computational space fluxes f = f(@), § = g(q). The conser-
vation equation in computational space is

(JQe + Fe + Gy = J (4)

with the computational space fluxes

P _ fp g* _ Xy Y P = FP — UgP
B = X, Y, ‘ X, Y, ¢=F > (5)
4( ) 4( ) o~ =~ o~
GP = fﬁ gf, - Xi Yi F=G-Vg, (6)

where ¢P is the p-th component of the vector ¢, with similar meanings for the flux
components. Appendix A contains the derivation of these formulas. Note that the
fluxes for the transformed equations contain a part that captures the physical fluxes
expressed in the current curvilinear system, F?, G? and a part that corresponds to
flux due to grid motion, U@P, V ¢P. We shall call these the physical and grid motion
fluxes in computational space, respectively. Whereas the initial flux functions f(q),
g(q) depend only on the field variables, the grid transformation leads to physical
fluxes in computational space that also exhibit coordinate dependence F‘(f, 7,t,4G),
G(f? 777 t7 Q) *

Equation (4) can also be written in non-conservative form as
Jio+ (Fq = U) Ge + (Gq = VI) Gy = Jd = (= Ug = Vi)d,  (7)

where I is the identity matrix and f‘q, éq are the flux Jacobians in computational
space

F; =Y, 8 — X,8;, Gj=-Yef; + Xc8;

p_of o %
"o ST g
One can verify that
Jy—Ug =V, =0. (8)

This is a statement of the change in infinitesimal area due to the grid motion. It is
an instance of the geometric conservation law introduced by Thomas and Lombard
[13]. The non-conservative form (7) shows that numerical errors in satisfying the
geometric conservation law (8) act as a source term that may induce exponential
growth in the field variables §.



2.3. Non-conservative hyperbolic equations

The non-conservative equation

g + A(z,y)q: + B(z,y)qy = Y(z,y,1)

arises when studying wave propagation in non-uniform media among other appli-
cations. Introducing the coordinate mapping 7' leads to

+(A - XiD)g, + (B -Yil)g, =9

since G; = q; + X¢qs + Yiqy. Expressing all derivatives in the computational space
gives

@ + Age + By =

with

~| =

[V, (A = X,I) — X,(B - V;I)] = 1

A - [V,A - X,B - UT],

- 1 1
B =~ [Xe(B-YI) - Ye(A - X)) = - [XcB ~ YA - V1] .

3. COMPUTATIONAL METHOD

3.1. Computational grid

A rectangular computational domain D is defined in which we use a uniform
Cartesian grid with step sizes Aﬁ, An. The grid lines are at &§;_1/, = (i — 1/2)A¢,
Nj—1y2 = (G—1/2)An,i=1,... ,my,m,+1,5=1,... ,my,my,+1. A cell centered
approach is adopted in Wthh we define values Q to approx1mate q(&,n,t") over the

cell oj; = [€iz 1/2,]76@4—1/2,]] X [77@,; 1/27”1,]4—1/2] 1=1,2,...,mg, j=1,2,...,my.
The mapping T induces the grid node velocities (m,ﬂ/g jil/Q( ), u(t )lil/Qdil/Q)
physical space. These velocities are assumed to be constant over a time step

(i'izlzl/zj:tl/z (t):yi:tl/zj:tl/z(t)) = (i?il/z,jil/zay?¢1/2,ji1/2): te [tnathrl]-

The grid velocities are assumed to vary linearly between nodes so that the cell edges
trace out piecewise ruled surfaces in physical space.

3.2. Finite volume integration

To obtain a finite volume method, we integrate (4) over a rectangular cell in
computational space 0;; and over a time step [t",¢"T!] to obtain

/ / (6 m )€ m, 7Y — T(6, m tM)a(E, )] dedn+ (9)

t"+
/t
tn+1

§z+1/2 -
/E G(&,mjt1/2,1) _G(f;ﬂj—l/zat)] dédt = A§ Anp At V3%
tn i—1/2

77]+1/2
/ F(&ip1/2,m5t) — F(&i—1y2,m,t)] dndt —
;i

j—1/2
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FIG. 1 (a) Transformation between computational and physical space. (b) Com-
putational finite volume.

with

it
= xeagm ), J[, denndana

We can use the mean value theorem in computational space to obtain
[ e dean = siapacay
where we use the notation Ji = J(ay,Bj,t"), N% = §(a;, Bj,t") with a; €
(&i—1/2,&i41/2) and B; € (nj_1/2,Mmj4+1/2) being the points within the integration

domain resulting from applying the mean value theorem. The mean value theorem
can also be applied in physical space to give

// (&, 496,y #7) dE diy = //Cr! a(@,y,t") dudy = AT

where Cj; is the image of the computational cell o;; through the transformation 7'
and A;; is the measure of Cy; (Fig. 1). We should have

AZQE = AEARTE Qr

]

and this serves as a useful consistency condition on the specific numerical procedure
used to evaluate the Jacobian.
Equation (9) leads to

Jg+1Q"+1 Ji Z + (10)
At At ~
At ( i+1/24 ~ fﬁl/m) A, ( hjr1/z Q{fj,l/z) =i,

where F,G are the fluxes through the sides of the control volume over the time
interval [t", t"T1].
3.3. Riemann problems in computational space

We can evaluate the fluxes F,G by solving Riemann problems along the direc-
tions &, 1. Consider the { Riemann problem for 1) = 0. At the interface { = &;_,/»



we assume that the left field variables have a constant value Q?AJ over the cell

0;—1,;. Similarily, to the right the value is Q;‘] and constant over the cell o; ;. The
n-derivative of ¢ is therefore null and from (7) we obtain

TG, + (Ynfq — X8 — UI) de =0,

This is a quasi-linear PDE with space-time varying coefficients. We obtain a linear
PDE by introducing constant values of the physical flux Jacobians

Li 12;= (fq)i_l/w, Mi 12, = (8d)i1/2; >

at the § = &;_1/» interface along the cell at n;_1/2 < 17 < nj41/2. These would
typically depend on the field variables on the two sides of the interface

Li 125 = Li71/27j(Q?—17j: Q?;), M; 12,5 = Mifl/Z,j(Q?—Lj: Q?;) .

After making this approximation we obtain the equation

.1 = - -
@+ 5 (YnLi—l/m —XyMi_1/2; — UI) g =0. (11)

Physical analysis of the behavior of the solution guides further approximation.
Consider the two cells C;_1,j, C;; in physical space. In the cells we have constant
field values Q7" ;, Q7; at t =t". We expect the solution to the Riemann problem
to be a family of waves Vl.p_l /2,] propagating with speeds that depend on the left
and right states. Since these are assumed constant, the speeds shall be constant
along the wave front. Each wave would propagate part of the initial discontinuity
between Q' ; and Q7';. The wave fronts are line segments parallel to the initial
orientation of the interface between (z, 3/)?71/27].71/2 and (z, y)?flm’jﬂ/2 at t =t".
Concurrently with the wave propagation, the interface traces out a ruled surface
determined by the node velocities (i’y)?—l/ljilﬂ‘ The interface motion may be

such that a particular wave V! always remains to the left of the interface. Another
wave V2 may always stay to the right of interface. Finally there is also the possibility
that the interface intersects a wave front V? for ¢t > t". Fig. 2(a) depicts the various
possibilities. In computational space, the wave fronts become ruled surfaces and
the interface remains fixed. We again can have purely left going-waves W*, purely
right-going wave W2 or mixed waves W?2. Corresponding waves maintain their
nature from physical space.

To obtain a stable, high-resolution method proper upwinding must be included.
The possibility of mixed waves must be accounted for. Upon inspection of (11)
we observe that the twisting of the wave front as n varies from 7;_1/5 1/ to
Mi—1/2,j+1/2 18 given primarily by the the velocities X, Y; contained in the U
factor. We evaluate X, Yy, J at a fixed point £ = §;_, 5, n = n;, but maintain the
n-dependence of the velocities X, Y;. Equation (11) can be rewritten as

G+ [Pic1/2j —wic1/2,;(MI] Ge =0,

Y, - X, ~
P =(35) L, (79 Ly
i—1/2,j i—1/2,j



FIG. 2 (a) Waves (V!, V2, V?) and moving grid in physical space. The wavefronts
are parallel to the initial orientation of the cell edge. V! is a left-going wave, V? is
right-going. Due to the movement of the cell interface V? has both a left-going and
a right-going part. (b) Waves (W', W2, W3) in computational space. The waves
now trace out ruled surfaces. The nature of the waves remains the same, e.g. W?
is a mixed wave.

Y, X
wi—1/2,j(n) = |- Xi(n) — — Yi(n) .
J i—1/2,j J i—1/2,j

The dependence of the velocities upon 7 is given by linear interpolation between
the node velocities, e.g.

1 . .
Xt(TI) = A_ﬂ [(77 - 773'71/2) Ti—1/2,5+1/2 + (T}j+1/2 - T}) $i71/27j71/2]

with a similar expression for Y;(n). We shall suppress the indices when their values
can be ascertained from context to simplify the notation from now on.

Since the original problem is hyperbolic and the transformation 7' is non-
singular, the eigenvectors of P form a basis. Let R be the matrix of right eigenvec-
tors of P and A =diag(AP) the diagonal matrix of eigenvalues of P. Inserting the
decomposition P = RAR ' in (11) we obtain

G+ R[A —w()I] R G = 0. (12)
Since R does not depend on £ or ¢t we obtain the characteristic decomposition
Or + [A—w(mI] g =0, (13)

with & = R7'G. Equation (13) is readily solved, so we have a solution to the
Riemann problem in the approximation of frozen metric coefficients X, Y, J.

3.4. Wave propagation form

Since a solution to the Riemann problem is available one could use this to
evaluate the fluxes F,G needed in the update formula (10). Rather than doing
this, we choose to recast the algorithm in terms of modifications to the finite volume
averages brought about by the propagation of waves in computational space [7].
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FIG. 3 (a) Areas of cells 0;_1 j, 0;; at t = t"*! affected by waves emanating from
the jump in @ at ¢". The left-going wave W' affects the o;_; ; cell average; the
right-going wave W3 that of o;;. The mixed wave W? updates both cells.

(@)

We now estimate what effect each wave has upon the cell average at the new
time level t = ¢"*!. First we split the initial jump among the eigenvectors of P

Maw
p
i i1y = ZO‘ i 1/2,5 — Zwifl/Z,j'
p=1

At t = ¢+ a left-going or right-going wave will fill a trapezoid in cell o;_1 ;, 0y ;
respectively, see Fig. (3a). The new cell average is determined from

T = xemy [ @ thiE et dedn.

The effect of any one wave W is change the The change in the cell average Q”+1

brought about by the right-going wave W 1/2,j is

N —w(n;)] At
Rl M

2

corresponding to the area of the trapezoid filled by the W? wave. A similar expres-
sion holds for the left-going wave. A mixed wave will fill two triangular portions in
oij and o1 ;. Let 0} be the coordinate where A*> — w(n?) = 0. The effect of the
mixed wave Wf ; on the cell to the right o; ; is

2A§An =120

where nj+ is the node where \* — w(n?) > 0, either ™ = n;_1 /5 or " = nj41/5.
Similarily the effect of the mixed wave upon the cell to the left o;_; ; is

Y — ()] [nj —ny| Aty ,
2A¢AD /2

with an analogous definition of 7;.



The first-order update (10) can be expressed in wave propagation form [7] as

A An At An — AN
Q?j—H = Wi — A_f [A+AQi—1/2,j +A AQi+1/2,j
where AJFAQ?—I/M and A’AQ?H/QJ are the right-going and left-going fluctua-

tions. We introduce the notation p?(n) = A? — w(n),

) .
| llf+|1/27j(77j) if 'u‘f—l/Q,jﬂ:l/Z >0
+ 77‘.‘ —n; /141-)7 .
P - RSV RES Vo
('u"—l/QJ) h 2A7 if 'u‘f—l/2,j¥1/2 >0, 'u‘f—l/2,ji1/2 <0
L 0 if “571/27]'1/27 qufl/Z,jJrl/Z <0
. .
| Hf_f/2’j(’71) 1 pago1yo0 Hizayaignge <0
_ * — p
P _ M =5 | K1y j+1/2 .
(“i*l/w) - 2A7 if 151312 > 00 11 S0
\ 0 i 1 g2y Bimayagnye 20

The fluctuations may then be expressed as

m

B +

ATAQ; 10 = Z (Nf—1/2,j) W12,
p=1

ATAGQicy2g =) (“ffl/z,j)_ Wiz
p=1

3.5. Conservative average flux Jacobians

We now turn to the problem of determining a suitable averages for the flux
Jacobians. Consider just the ¢ Riemann problem. We would like the scheme to be
conservative and this leads to the condition

Aij (Q?jl{j - QZ?I) = F(€i7 UiD tn+17 Q?lel,j) - F(fia M5, tn+17 QZ;l) .
Since Al’j = Aij - UZJI and Fij = Fij - UijQij we obtain
Ay (Quty - Qi) = F@iE) - F@Qih.

Note that the space-time dependent part of the average flux Jacobian automatically
satisfies the conservation condition. We are left just with the part that depends on
the field variables.

3.6. Second order corrections

3.7. Transverse corrections



4. NON-CONSERVATIVE HYPERBOLIC EQUATIONS

5. THREE-DIMENSIONAL CASE

The procedures presented for the two-dimensional problem readily generalize to
more dimensions. In three dimensions the general conservation law

@+ f(@)e +9(0)y + ). = ¥(x,y,2,q,t) (14)

becomes
(J§)t + Fe + Gy + He = Ji (15)

with the computational space fluxes

f g h X, Y. Z
F=|X, Y, Z, |—| Xy Yy Z, |d
X Yo Z; Xe Yo Zg
Xe Ye Z¢ Xe Ye Zg¢
G=|f g h|-|Xs Vi Z |G (16)
Xe Yo Z X Yo Z¢
Xe Yo Z Xe Yo Zg
H= Xﬁ Y, Zﬁ =Xy Yy Zy |4
f g h X: Yo Z;
The flux Jacobian matrices are
OF af oh
% (YnZ¢ = YeZy ) +(ZyX¢ = Zc X, ) + (XY — X¢Yy) == 9
—[(Yy2Z; - )Xt + (ZyX¢ = Zc X)) Yo + (XY — XcYy) Zi] T
oG oh
YZe - Y Z ZeXe —Ze Xe) =+ (X¢Ye — X¢Yr) — 1
% = (YeZ¢ gc) + (Z¢Xe sg)a + (XY — »zc)aq~ (17)
—[(YeZe —YeZo) Xt + (ZeXe — Ze X¢) Vi + (X Ye — XYe) Zi] T
6 oh

of dg
YeZy — Y, Z ZeX, — ZyX, -
= ( s) - +( ¢ Ry 9q 9
—[(YeZy — Yy Z) Xt (ZeXy — ZpXe) Ve + (X Yy — XYe) Zi) T

(XEYU - XnYE)

These matrices have essentially the same structure as the flux Jacobian matrices in
physical space.

6. ACCURACY

6.1. Advection

We first consider the advection problem

Qt+U(h+'U‘Jy:0:

10



FIG. 4 Comparison of exact solution (line), fixed grid (x) and dilatational moving
grid (o) computations for the advection problem.

w(9) = a(w,5,0) = exp [— (552) - (yé;y)] ,

(u,v) = (0.2,0.1) to verify the over-all correctness of the method and to test ac-
curacy. We shall compare the solution obtained numerically under various grid
motions to the analytical solution ¢(x,y,t) = go(z — ut,y — vt).

First we consider purely dilatational motions of the grid given by

X(fﬂ?;t) = (1 +ay Sinwlt) 67 Y(fﬂ?;t) = (1 + az Sinw?t) 7,
Xe=1+asinwit, Ye=X,=0, Y,=1+azsinwst,

X = ajwi€coswit, Yy = aswen coswst.

Under such motions mixed waves cannot arise since the nodes on a cell edge have
the same grid motion velocities. A one-dimensional slice through the data obtained
from the computation on a fixed mesh, that obtained on the moving mesh and the
analytical solution is shown in Fig. 4. The computations are carried out using
second order corrections that eliminate the first order diffusive error proportional
to hV2q. The moving mesh result exhibits the same type of error as that computed
on a fixed mesh, a slight displacement of the solution with respect to its exact
position. As shown in [7], the moving mesh formulation is not formally second
order since the system of equations becomes non-autonomous (J§):+F(§,n,t,§)e +
G(&m,t,§)y = 0, even if the original equations in physical space was autonomous
gt + f(q)z + 9(q)y = 0. We therefore expect an order of convergence intermediate
between 1 and 2. This indeed is observed, as shown in Fig. 5.

A second test is carried out for purely rotational motions of the mesh given by

X(&n,t) = EcosO(t) +nsinf(t), Y (E,n,t) = —Esind(t) +ncos(t),
Xe =Y, =cos(t), X, =sinf(t), Ye=—sinf(t),

11



1-norm convergence inf-norm convergence
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moving grid 1.2 moving grid 1.3
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FIG. 5 Convergence plots of the fixed grid (x) and dilatational moving grid (o)
computations for the advection problem at t = 1, after 250 steps have been exe-
cuted.

X, =Y0'(t), Yi=-X6(t),0(t) = 0 sinwt.
The effect of grid shearing is investigated thorugh the mapping

X(&m,t) = (E+amsinwit), Y(§n,t) = (n+ azfsinwat)

7. APPLICATIONS
7.1.
7.2. Acoustics
7.3. Fluid dynamics
7.3.1.  Euler equation eigensystem in computational space

The Riemann problems in computational space require the solutions to the
eigenproblems

8_F F _ \F.F

G ¢ _\a .G
&jr = A\"r (18)

) aqv
The 2D Euler equations describing inviscid, compressible flow are

T
g=[p pu pv pE ]|,

T
uH vH
f=|pu pv»+p puww 7] ,gz[pv puv  pv> +p —

p=(y—1(E - (u’+v%)/2)p

12



Let k = kyi + kyj, k= (k2 + ch)l/2 represent an arbitrary direction. The right
eigenvector matrix resulting from the eigenproblem (8.7? /0q - E) r=Aris

1 0 1 1
| w—ak/k —ky u u+ aky/k
Rike, ky) = v—aky/k k. v v+ aky/k (20)

H—ak-V kyv —kyu  (u? +0?)/2 H+ak-V

with V =ui+vj, H=1a2/(y—1) + (u® + v?)/2 and a the local sound velocity.
The corresponding eigenvalues are

A= (k-V —ak,k-V.E-V,E-V + ak). (21)

We see that R(Y;, —X,) is the right eigenvector matrix for 0F /0§ and the eigen-
values are A" = \; + X,,Y; — X;Y,,, i = 1,... 4. Similarily R(—Y, X¢) is the right
eigenvector matrix for G/8¢ and the eigenvalues are \Y = \; + X; Y — X¢V,
i=1,...,4

7.3.2.  Plane moving piston problem

We consider first the problem of a curved piston moving in a cylinder. The
center of the piston is at

zp(t) =b+1—1r(l — coswt) — /12 — (rsinwt)? (22)

and the piston shape is assumed to be a circular arc of radius R, so the points
(Xp,Y,) on the piston surface are given by

X,(0,t) = z,(t) + R(cosf — 1), Y, (8) = Rsin6. (23)

The 7 coordinate lines intersect the piston at angles 6 satisfying Rsinf = (n—1/2)d.
The range of € is given by the limiting cases Rsinfpin = —d/2, Rsinbnax = d/2,
The coordinate transformation between the computational space D = [0,1] x [0, 1]
and physical space is

r=X(&nt)=EXp(00n),t), y=Y(nt)=dn-1/2) (24)
and we have the derivatives

£ -1/2)&
VI == 18

Xe = Xp(t): Xy = X = fip(t) (25)

Ye=0, Y,=d, Y;=0

Axisymmetric moving piston problem
Consider now an axisymmetric piston

7.3.3.  Three dimensional moving piston problem

A fully 3D piston is computed next

13



7.4. Coupled Elasticity and Acoustics
7.5. Coupled Elasticity and Fluid Dynamics

We now

7.5.1.  Plane stress eigensystem

The equations describing a state of plane stress are

qH—ﬁ-f:O, f:f7+gf,

g=[el &2 B8 U V]T,

F=[U V 0 @ +ve2) 22 ]"

g=[0 U V be? a*(ve! +e22) ]T

a=¢/(1=17), b=c/@1+v), &=E/p
with ¢ the strain tensor and (U, V') the displacement velocities

11 12
€=Uy, €7 =Uy+Ug, €7 =y

U= U, V= V¢ (26)

The right eigenvector matrix resulting from the eigenproblem (8f /0q - IZ) r=Ar

is

12—k _@ @ kykyc kakyc
' ) ok ok (k2 bk2) (k2 — k2)
ko, (1+v) —272vC 9leTwC ybfc - ybwc

Bk, ky) = . Ke ke kokyc kokyc

k2 — vk? - — -
Y a a b b
0 ckyk ckyk —cky —cky
0 ckyk ckyk ck .k ck,k

The corresponding eigenvalues are

ck ck ck ck
)‘:(0’_\/2(1+u)’\/2(1+u)’_\/1—u2’\/1—u2>' 27)

8. CONCLUSIONS

APPENDIX A: CURVILINEAR COORDINATE CONSERVATION FORM
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With F,G from (5,6) we have
Fe =Yy fe — (XiYy)3e — Xy e + X, Vee
+ Y'Enf - (Xtyn)é q-— Xﬁng + (Xnyt)é q (28)

Gy =Xegy — (XEYt)‘jn - Y'Efn + (XtYE)(jn (29)
+ Xﬁng - (XEYt)n‘j - YEnf + (XtYE)n‘j

Replacing these in the conservation equation (4) we have

Jqr + (YnfE - YEfn) + (Xegy — Xy9¢) + (30)

(Jt - (XtYn)E + (Xnyt)ﬁ - (XEY;f)n + (XtYE)n) q= JZ/;

Using (2) one can verify that the coefficient of ¢ in (30) is null, so equation (30)
becomes

G + YnfE - Yﬁfn + Xegn — Xpge + (XnYt - XtYn)qNE + (XtYE - XEE)QNH = Jz/;

(31)
From (¢, m,t) = q(X (& n,t),Y (£, n,t),t) we have
Gt =Xt + @Y +qr
(jﬁ = QwX£ + QyY£ )
Iy = Xy + qyYy, (32)
and one can verify that
J + (XY — XoV3)Ge + (XiYe — XeYi)gy = Jqu, (33)
so that (31) becomes
Vofe = Yefy  Xegn — Xp0e -
@ + nfe = Yefy 4 2890 ng¢ — 4. (34)
J J
By the implicit function theorem
P _Yafe—Yefy . XeGy— Xy
f$:n£J£n7 Gy = 577J 7767 (35)

so we obtain the initial conservation equation (3) noting that f =fd=ug, 1/; =
at corresponding points in the computational and physical domains.
The proof for the 3D case follows the same procedure.
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