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The multidimensional wave propagation method [7℄ for solving hyperboli partial dif-

ferential equations is extended to moving grids of general geometry. Several examples

are presented from aoustis, gas dynamis and elastiity. Some multiphysis examples,

simultaneously solving di�erent sets of onservation laws, are also inluded. The basi

moving grid proedure is ombined with adaptive mesh re�nement to obtain an eÆient

algorithm apable of apturing phenomena with widely varying sales.
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1. INTRODUCTION

Moving omputational domains arise naturally in a number of appliations de-

sribed by hyperboli evolution equations. Simulation of reiproating, internal

ombustion engines involves the omputation of the uid ow in a ylinder with a

moving piston wall [3℄. The study of blood irulation leads to the problem of ow

inside a domain with moving, exible walls [10℄. Aousti [1℄ and eletromagneti

radiation [12℄ from moving surfaes is of interest in a number of appliations rang-

ing from musial instruments [15℄ to miro-eletro-mehanial systems (MEMS) [8℄.

In many appliations the singularities that an arise in hyperboli problems are of

interest. The appearane of shoks in reiproating engines signi�antly inuenes

the engine's eÆieny. Elasti waves in a solid medium may move fast enough that

they indue singularities in an adjoining gas medium.

There is a onsiderable body of work on moving mesh methods appliable to

suh problems. We only ite a few entry points into the literature. Vieelly [14℄

treated the ase of inompressible ow. Demirdzi and Peri [4℄ have presented a

�nite volume method with elements of arbitrary shape appliable to general ows.

Thomas and Lombard [13℄ highlighted the importane of maintaining the same

type of auray in the omputation of geometri quantitites assoiated with grid

motion as that used in the �eld variables. Subsequent work has on�rmed this

observation [9℄. Reently Zwart, Raithby and Raw have presented a general �nite

volume method suitable for moving domains that exhibit large deformations [16℄.

In this paper we onsider the problem of developing high-resolution �nite volume

methods to solve hyperboli partial di�erential equations on moving grids in 2D and

3D. Suh methods are known to be well suited for aurate apturing of singularities

on stationary grids. High-resolution �nite volume methods may be reast in wave

propagation form [7℄ with ertain advantages in ahieving CFL numbers of unity and
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uniform treatment of both onservative and non-onservative hyperboli problems.

The wave propagation form has been applied to one-dimensional moving grids [6℄.

We are interested in extending the method to multi-dimensional moving grids so

as to be able to treat some of the appliations mentioned above. The point of view

taken here is to use a time-dependent oordinate transformation from physial spae

to omputational spae. In physial spae the grid is moving aording to a motion

whih is imposed or perhaps inuened by the hyperboli equation being solved.

In omputational spae the grid is stationary. The essential di�erene is that in

omputational spae the equation beomes more ompliated, exhibiting spae-time

dependent oeÆients even if suh a dependene was not present in the equation

expressed in physial spae. As suh, the problem is an important speial ase of

the more general problem of hyperboli equations with spatially dependent uxes

or oeÆients.

The bene�t of working in omputational spae is that Cartesian logial grid

struture an be maintained. This is espeially useful when the basi method is

ombined with adaptive mesh re�nement (AMR) as is done in this work. The AMR

framework adopted here is esentially that of Berger and LeVeque [2℄. Previous work

on ombining adaptive meshing with moving grids inludes [5℄. The Cartesian grid

struture makes is straightforward to arry out multi-physis omputations in whih

di�erent sets of onservation laws are solved on problem subdomains. The aousti

radiation from moving surfaes is presented as an example in this work, but the

proedure may be readily extended to more ompliated situations suh as uid-

struture interations [11℄.

2. PROBLEM FORMULATION

2.1. Time-dependent grid mappings

It is assumed that a non-singular transformation T from omputational spae to

physial spae may be de�ned at all times. We �rst onsider the two-dimensional

problem. All salient aspets of algorithm development are present in the 2D ase.

Extension to 3D is straightforward. The transformation between the omputational

spae (�; �) and the physial spae (x; y) is given by

T :

�

x = X(�; �; t)

y = Y (�; �; t)

: (1)

The restrition of T to a given time t

n

shall be denoted by T

n

. The Jaobian of

the transformation T shall be denoted by

J =

�

�

�

�

X

�

X

�

Y

�

Y

�

�

�

�

�

= X

�

Y

�

�X

�

Y

�

: (2)

Sine T is assumed non-singular, we have J 6= 0:

2.2. Hyperboli equations in onservation form

Consider the two-dimensional onservation equation governing the evolution in

time of a �eld variable vetor q(x; y; t) with m omponents

q

t

+ f(q)

x

+ g(q)

y

=  (x; y; t; q) : (3)
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The �eld variables and soure term in omputational spae are

~q(�; �; t) = q(X(�; �; t); Y (�; �; t); t);

~

 (�; �; t; q) =  (X(�; �; t); Y (�; �; t); t; q) :

We also introdue the omputational spae uxes

~

f = f(~q), ~g = g(~q) . The onser-

vation equation in omputational spae is

(J ~q)

t

+ F

�

+G

�

= J

~

 (4)

with the omputational spae uxes

F

p

=

�

�

�

�

~

f

p

~g

p

X

�

Y

�

�

�

�

�

�

�

�

�

�

X

t

Y

t

X

�

Y

�

�

�

�

�

~q

p

�

~

F

p

� U ~q

p

; (5)

G

p

=

�

�

�

�

X

�

Y

�

~

f

p

~g

p

�

�

�

�

�

�

�

�

�

X

�

Y

�

X

t

Y

t

�

�

�

�

~q

p

�

~

G� V ~q

p

; (6)

where ~q

p

is the p-th omponent of the vetor q; with similar meanings for the ux

omponents. Appendix A ontains the derivation of these formulas. Note that the

uxes for the transformed equations ontain a part that aptures the physial uxes

expressed in the urrent urvilinear system,

~

F

p

;

~

G

p

and a part that orresponds to

ux due to grid motion, U ~q

p

; V ~q

p

. We shall all these the physial and grid motion

uxes in omputational spae, respetively. Whereas the initial ux funtions f(q),

g(q) depend only on the �eld variables, the grid transformation leads to physial

uxes in omputational spae that also exhibit oordinate dependene

~

F (�; �; t; ~q),

~

G(�; �; t; ~q).

Equation (4) an also be written in non-onservative form as

J ~q

t

+

�

~

F

~q

� UI

�

~q

�

+

�

~

G

~q

� V I

�

~q

�

= J

~

 � (J

t

� U

�

� V

�

) ~q ; (7)

where I is the identity matrix and

~

F

~q

;

~

G

~q

are the ux Jaobians in omputational

spae

~

F

~q

= Y

�

~

f

~q

�X

�

~g

~q

;

~

G

~q

= �Y

�

~

f

~q

+X

�

~g

~q

~

f

~q

=

�

~

f

�~q

; ~g

~q

=

�~g

�~q

:

One an verify that

J

t

� U

�

� V

�

= 0 : (8)

This is a statement of the hange in in�nitesimal area due to the grid motion. It is

an instane of the geometri onservation law introdued by Thomas and Lombard

[13℄. The non-onservative form (7) shows that numerial errors in satisfying the

geometri onservation law (8) at as a soure term that may indue exponential

growth in the �eld variables ~q.
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2.3. Non-onservative hyperboli equations

The non-onservative equation

q

t

+A(x; y)q

x

+B(x; y)q

y

=  (x; y; t)

arises when studying wave propagation in non-uniform media among other appli-

ations. Introduing the oordinate mapping T leads to

~q

t

+ (A�X

t

I)q

x

+ (B� Y

t

I)q

y

=  

sine ~q

t

= q

t

+X

t

q

x

+ Y

t

q

y

. Expressing all derivatives in the omputational spae

gives

~q

t

+

~

A~q

�

+

~

B~q

�

=

~

 

with

~

A =

1

J

[Y

�

(A�X

t

I)�X

�

(B� Y

t

I)℄ =

1

J

[Y

�

A�X

�

B� UI℄ ;

~

B =

1

J

[X

�

(B� Y

t

I)� Y

�

(A�X

t

I)℄ =

1

J

[X

�

B� Y

�

A� V I℄ :

3. COMPUTATIONAL METHOD

3.1. Computational grid

A retangular omputational domain D is de�ned in whih we use a uniform

Cartesian grid with step sizes ��, ��. The grid lines are at �

i�1=2

= (i� 1=2)��,

�

j�1=2

= (j�1=2)��, i = 1; : : : ;m

x

;m

x

+1, j = 1; : : : ;m

y

;m

y

+1. A ell entered

approah is adopted in whih we de�ne values

~

Q

n

ij

to approximate q(�; �; t

n

) over the

ell �

ij

= [�

i�1=2;j

; �

i+1=2;j

℄� [�

i;j�1=2

; �

i;j+1=2

℄, i = 1; 2; : : : ;m

x

, j = 1; 2; : : : ;m

y

.

The mapping T indues the grid node veloities ( _x

i�1=2;j�1=2

(t); _y(t)

i�1=2;j�1=2

) in

physial spae. These veloities are assumed to be onstant over a time step

( _x

i�1=2;j�1=2

(t); _y

i�1=2;j�1=2

(t)) = ( _x

n

i�1=2;j�1=2

; _y

n

i�1=2;j�1=2

); t 2 [t

n

; t

n+1

℄ :

The grid veloities are assumed to vary linearly between nodes so that the ell edges

trae out pieewise ruled surfaes in physial spae.

3.2. Finite volume integration

To obtain a �nite volume method, we integrate (4) over a retangular ell in

omputational spae �

ij

and over a time step [t

n

; t

n+1

℄ to obtain

ZZ

�

ij

�

J(�; �; t

n+1

)~q(�; �; t

n+1

)� J(�; �; t

n

)~q(�; �; t

n

)

�

d� d� + (9)

Z

t

n+1

t

n

Z

�

j+1=2

�

j�1=2

�

F (�

i+1=2

; �; t)� F (�

i�1=2

; �; t)

�

d� dt�

Z

t

n+1

t

n

Z

�

i+1=2

�

i�1=2

�

G(�; �

j+1=2

; t)�G(�; �

j�1=2

; t)

�

d� dt = �����t

~

	

n

ij
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FIG. 1 (a) Transformation between omputational and physial spae. (b) Com-

putational �nite volume.

with

~

	

n

ij

=

1

�����t

Z

t

n+1

t

n

ZZ

�

ij

~

 (�; �; t) d� d� dt :

We an use the mean value theorem in omputational spae to obtain

ZZ

�

ij

J(�; �; t

n

)~q(�; �; t

n

) d� d� = J

n

ij

~

Q

n

ij

����

where we use the notation J

n

ij

= J(�

i

; �

j

; t

n

),

~

Q

n

ij

= ~q(�

i

; �

j

; t

n

) with �

i

2

�

�

i�1=2

; �

i+1=2

�

and �

j

2

�

�

j�1=2

; �

j+1=2

�

being the points within the integration

domain resulting from applying the mean value theorem. The mean value theorem

an also be applied in physial spae to give

ZZ

�

ij

J(�; �; t

n

)~q(�; �; t

n

) d� d� =

ZZ

C

n

ij

q(x; y; t

n

) dx dy = A

n

ij

Q

n

ij

where C

ij

is the image of the omputational ell �

ij

through the transformation T

and A

ij

is the measure of C

ij

(Fig. 1). We should have

A

n

ij

Q

n

ij

= ����J

n

ij

~

Q

n

ij

;

and this serves as a useful onsisteny ondition on the spei� numerial proedure

used to evaluate the Jaobian.

Equation (9) leads to

J

n+1

ij

~

Q

n+1

ij

� J

n

ij

~

Q

n

ij

+ (10)

�t

��

�

F

n

i+1=2;j

�F

n

i�1=2;j

�

+

�t

��

�

G

n

i;j+1=2

� G

n

i;j�1=2

�

=

~

	

n

ij

;

where F ;G are the uxes through the sides of the ontrol volume over the time

interval [t

n

; t

n+1

℄.

3.3. Riemann problems in omputational spae

We an evaluate the uxes F ;G by solving Riemann problems along the dire-

tions �; �: Consider the � Riemann problem for  = 0. At the interfae � = �

i�1=2
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we assume that the left �eld variables have a onstant value

~

Q

n

i�1;j

over the ell

�

i�1;j

. Similarily, to the right the value is

~

Q

n

i;j

and onstant over the ell �

i;j

. The

�-derivative of ~q is therefore null and from (7) we obtain

J ~q

t

+

�

Y

�

~

f

~q

�X

�

~g

~q

� UI

�

~q

�

= 0;

This is a quasi-linear PDE with spae-time varying oeÆients. We obtain a linear

PDE by introduing onstant values of the physial ux Jaobians

~

L

i�1=2;j

=

�

~

f

~q

�

i�1=2;j

;

~

M

i�1=2;j

= (~g

~q

)

i�1=2;j

;

at the � = �

i�1=2

interfae along the ell at �

j�1=2

� � � �

j+1=2

. These would

typially depend on the �eld variables on the two sides of the interfae

~

L

i�1=2;j

=

~

L

i�1=2;j

(

~

Q

n

i�1;j

;

~

Q

n

i;j

);

~

M

i�1=2;j

=

~

M

i�1=2;j

(

~

Q

n

i�1;j

;

~

Q

n

i;j

) :

After making this approximation we obtain the equation

~q

t

+

1

J

�

Y

�

~

L

i�1=2;j

�X

�

~

M

i�1=2;j

� UI

�

~q

�

= 0 : (11)

Physial analysis of the behavior of the solution guides further approximation.

Consider the two ells C

i�1;j

, C

i;j

in physial spae. In the ells we have onstant

�eld values Q

n

i�1;j

, Q

n

i;j

at t = t

n

. We expet the solution to the Riemann problem

to be a family of waves V

p

i�1=2;j

propagating with speeds that depend on the left

and right states. Sine these are assumed onstant, the speeds shall be onstant

along the wave front. Eah wave would propagate part of the initial disontinuity

between Q

n

i�1;j

and Q

n

i;j

. The wave fronts are line segments parallel to the initial

orientation of the interfae between (x; y)

n

i�1=2;j�1=2

and (x; y)

n

i�1=2;j+1=2

at t = t

n

.

Conurrently with the wave propagation, the interfae traes out a ruled surfae

determined by the node veloities ( _x; _y)

n

i�1=2;j�1=2

. The interfae motion may be

suh that a partiular wave V

1

always remains to the left of the interfae. Another

wave V

3

may always stay to the right of interfae. Finally there is also the possibility

that the interfae intersets a wave front V

2

for t > t

n

. Fig. 2(a) depits the various

possibilities. In omputational spae, the wave fronts beome ruled surfaes and

the interfae remains �xed. We again an have purely left going-wavesW

1

; purely

right-going wave W

3

or mixed waves W

2

. Corresponding waves maintain their

nature from physial spae.

To obtain a stable, high-resolution method proper upwinding must be inluded.

The possibility of mixed waves must be aounted for. Upon inspetion of (11)

we observe that the twisting of the wave front as � varies from �

i�1=2;j�1=2

to

�

i�1=2;j+1=2

is given primarily by the the veloities X

t

, Y

t

ontained in the U

fator. We evaluate X

�

, Y

�

, J at a �xed point � = �

i�1=2

, � = �

j

, but maintain the

�-dependene of the veloities X

t

, Y

t

. Equation (11) an be rewritten as

~q

t

+

�

P

i�1=2;j

� !

i�1=2;j

(�)I

�

~q

�

= 0 ;

P

i�1=2;j

=

�

Y

�

J

~

L

�

i�1=2;j

�

�

X

�

J

~

M

�

i�1=2;j

;
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FIG. 2 (a) Waves (V

1

, V

2

, V

3

) and moving grid in physial spae. The wavefronts

are parallel to the initial orientation of the ell edge. V

1

is a left-going wave, V

3

is

right-going. Due to the movement of the ell interfae V

2

has both a left-going and

a right-going part. (b) Waves (W

1

, W

2

, W

3

) in omputational spae. The waves

now trae out ruled surfaes. The nature of the waves remains the same, e.g. W

2

is a mixed wave.

!

i�1=2;j

(�) =

�

Y

�

J

�

i�1=2;j

X

t

(�) �

�

X

�

J

�

i�1=2;j

Y

t

(�) :

The dependene of the veloities upon � is given by linear interpolation between

the node veloities, e.g.

X

t

(�) =

1

��

��

� � �

j�1=2

�

_x

i�1=2;j+1=2

+

�

�

j+1=2

� �

�

_x

i�1=2;j�1=2

�

with a similar expression for Y

t

(�). We shall suppress the indies when their values

an be asertained from ontext to simplify the notation from now on.

Sine the original problem is hyperboli and the transformation T is non-

singular, the eigenvetors of P form a basis. Let R be the matrix of right eigenve-

tors of P and � =diag(�

p

) the diagonal matrix of eigenvalues of P. Inserting the

deomposition P = R�R

�1

in (11) we obtain

~q

t

+R [�� !(�)I℄R

�1

~q

�

= 0 : (12)

Sine R does not depend on � or t we obtain the harateristi deomposition

~v

t

+ [�� !(�)I℄ ~v

�

= 0 ; (13)

with ~v = R

�1

~q. Equation (13) is readily solved, so we have a solution to the

Riemann problem in the approximation of frozen metri oeÆients X

�

, Y

�

, J .

3.4. Wave propagation form

Sine a solution to the Riemann problem is available one ould use this to

evaluate the uxes F ;G needed in the update formula (10). Rather than doing

this, we hoose to reast the algorithm in terms of modi�ations to the �nite volume

averages brought about by the propagation of waves in omputational spae [7℄.
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FIG. 3 (a) Areas of ells �

i�1;j

, �

ij

at t = t

n+1

a�eted by waves emanating from

the jump in

~

Q at t

n

: The left-going wave W

1

a�ets the �

i�1;j

ell average; the

right-going wave W

3

that of �

ij

: The mixed wave W

2

updates both ells.

We now estimate what e�et eah wave has upon the ell average at the new

time level t = t

n+1

. First we split the initial jump among the eigenvetors of P

~

Q

n

i;j

�

~

Q

n

i�1;j

=

m

w

X

p=1

�

p

r

p

i�1=2;j

�

m

w

X

p=1

W

p

i�1=2;j

:

At t = t

n+1

a left-going or right-going wave will �ll a trapezoid in ell �

i�1;j

, �

i;j

respetively, see Fig. (3a). The new ell average is determined from

J

n+1

ij

~

Q

n+1

ij

=

1

����

ZZ

�

ij

J(�; �; t

n+1

)~q(�; �; t

n+1

) d� d� :

The e�et of any one wave W is hange the The hange in the ell average

~

Q

n+1

i;j

brought about by the right-going wave W

3

i�1=2;j

is

�

�

�

3

� !(�

j

)

�

�t

��

W

3

i�1=2;j

;

orresponding to the area of the trapezoid �lled by theW

3

wave. A similar expres-

sion holds for the left-going wave. A mixed wave will �ll two triangular portions in

�

i;j

and �

i�1;j

. Let �

�

j

be the oordinate where �

2

� !(�

�

j

) = 0. The e�et of the

mixed wave W

2

i;j

on the ell to the right �

i;j

is

�

�

�

2

� !(�

+

j

)

�

�

�

�

�

j

� �

+

j

�

�

�t

2����

W

2

i�1=2;j

;

where �

+

j

is the node where �

2

� !(�

�

j

) > 0, either �

+

= �

j�1=2

or �

+

= �

j+1=2

.

Similarily the e�et of the mixed wave upon the ell to the left �

i�1;j

is

�

�

�

2

� !(�

�

j

)

�

�

�

�

�

j

� �

�

j

�

�

�t

2����

W

2

i�1=2;j

;

with an analogous de�nition of �

�

j

.
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The �rst-order update (10) an be expressed in wave propagation form [7℄ as

~

Q

n+1

ij

=

~

Q

n

ij

�

�t

��

h

A

+

�

~

Q

n

i�1=2;j

+A

�

�

~

Q

n

i+1=2;j

i

where A

+

�

~

Q

n

i�1=2;j

and A

�

�

~

Q

n

i+1=2;j

are the right-going and left-going utua-

tions. We introdue the notation �

p

(�) = �

p

� !(�),

�

�

p

i�1=2;j

�

+

=

8

>

>

>

<

>

>

>

:

�

p

i�1=2;j

(�

j

) if �

p

i�1=2;j�1=2

> 0

�

�

�

�

j

� �

+

j

�

�

�

p

i�1=2;j�1=2

2��

if �

p

i�1=2;j�1=2

> 0; �

p

i�1=2;j�1=2

� 0

0 if �

p

i�1=2;j1=2

; �

p

i�1=2;j+1=2

� 0

;

�

�

p

i�1=2;j

�

�

=

8

>

>

>

<

>

>

>

:

�

p

i�1=2;j

(�

j

) if �

p

i�1=2;j�1=2

; �

p

i�1=2;j+1=2

< 0

�

�

�

�

j

� �

�

j

�

�

�

p

i�1=2;j�1=2

2��

if �

p

i�1=2;j�1=2

> 0; �

p

i�1=2;j�1=2

� 0

0 if �

p

i�1=2;j�1=2

; �

p

i�1=2;j+1=2

� 0

:

The utuations may then be expressed as

A

+

�

~

Q

i�1=2;j

=

m

X

p=1

�

�

p

i�1=2;j

�

+

W

p

i�1=2;j

;

A

�

�

~

Q

i�1=2;j

=

m

X

p=1

�

�

p

i�1=2;j

�

�

W

p

i�1=2;j

:

3.5. Conservative average ux Jaobians

We now turn to the problem of determining a suitable averages for the ux

Jaobians. Consider just the � Riemann problem. We would like the sheme to be

onservative and this leads to the ondition

A

ij

�

~

Q

n+1

i+1;j

�

~

Q

n+1

i;j

�

= F (�

i

; �

j

; t

n+1

;

~

Q

n+1

i+1;j

)� F (�

i

; �

j

; t

n+1

;

~

Q

n+1

i;j

) :

Sine A

ij

=

~

A

ij

� U

ij

I and F

ij

=

~

F

ij

� U

ij

~

Q

ij

we obtain

~

A

ij

�

~

Q

n+1

i+1;j

�

~

Q

n+1

i;j

�

=

~

F (

~

Q

n+1

i+1;j

)�

~

F (

~

Q

n+1

i;j

) :

Note that the spae-time dependent part of the average ux Jaobian automatially

satis�es the onservation ondition. We are left just with the part that depends on

the �eld variables.

3.6. Seond order orretions

T

3.7. Transverse orretions

T

9



4. NON-CONSERVATIVE HYPERBOLIC EQUATIONS

T

5. THREE-DIMENSIONAL CASE

The proedures presented for the two-dimensional problem readily generalize to

more dimensions. In three dimensions the general onservation law

q

t

+ f(q)

x

+ g(q)

y

+ h(q)

z

=  (x; y; z; q; t) (14)

beomes

(J ~q)

t

+ F

�

+G

�

+H

�

= J

~

 (15)

with the omputational spae uxes

F =

�

�

�

�

�

�

~

f ~g

~

h

X

�

Y

�

Z

�

X

�

Y

�

Z

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X

t

Y

t

Z

t

X

�

Y

�

Z

�

X

�

Y

�

Z

�

�

�

�

�

�

�

~q

G =

�

�

�

�

�

�

X

�

Y

�

Z

�

~

f ~g

~

h

X

�

Y

�

Z

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X

�

Y

�

Z

�

X

t

Y

t

Z

t

X

�

Y

�

Z

�

�

�

�

�

�

�

~q (16)

H =

�

�

�

�

�

�

X

�

Y

�

Z

�

X

�

Y

�

Z

�

~

f ~g

~

h

�

�

�

�

�

�

�

�

�

�

�

�

�

X

�

Y

�

Z

�

X

�

Y

�

Z

�

X

t

Y

t

Z

t

�

�

�

�

�

�

~q

The ux Jaobian matries are

�F

�~q

= (Y

�

Z

�

� Y

�

Z

�

)

�f

�~q

+ (Z

�

X

�

� Z

�

X

�

)

�g

�~q

+ (X

�

Y

�

�X

�

Y

�

)

�h

�~q

� [(Y

�

Z

�

� Y

�

Z

�

)X

t

+ (Z

�

X

�

� Z

�

X

�

)Y

t

+ (X

�

Y

�

�X

�

Y

�

)Z

t

℄ I

�G

�~q

= (Y

�

Z

�

� Y

�

Z

�

)

�f

�~q

+ (Z

�

X

�

� Z

�

X

�

)

�g

�~q

+ (X

�

Y

�

�X

�

Y

�

)

�h

�~q

(17)

� [(Y

�

Z

�

� Y

�

Z

�

)X

t

+ (Z

�

X

�

� Z

�

X

�

)Y

t

+ (X

�

Y

�

�X

�

Y

�

)Z

t

℄ I

�H

�~q

= (Y

�

Z

�

� Y

�

Z

�

)

�f

�~q

+ (Z

�

X

�

� Z

�

X

�

)

�g

�~q

+ (X

�

Y

�

�X

�

Y

�

)

�h

�~q

� [(Y

�

Z

�

� Y

�

Z

�

)X

t

+ (Z

�

X

�

� Z

�

X

�

)Y

t

+ (X

�

Y

�

�X

�

Y

�

)Z

t

℄ I

These matries have essentially the same struture as the ux Jaobian matries in

physial spae.

6. ACCURACY

6.1. Advetion

We �rst onsider the advetion problem

q

t

+ u q

x

+ v q

y

= 0;

10
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0.6

0.8
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0 0.5 1
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FIG. 4 Comparison of exat solution (line), �xed grid (x) and dilatational moving

grid (o) omputations for the advetion problem.

q

0

(x; y) = q(x; y; 0) = exp

"

�

�

x� x



Æ

x

�

2

�

�

y � y



Æ

y

�

2

#

;

(u; v) = (0:2; 0:1) to verify the over-all orretness of the method and to test a-

uray. We shall ompare the solution obtained numerially under various grid

motions to the analytial solution q(x; y; t) = q

0

(x� ut; y � vt).

First we onsider purely dilatational motions of the grid given by

X(�; �; t) = (1 + a

1

sin!

1

t) �; Y (�; �; t) = (1 + a

2

sin!

2

t) �;

X

�

= 1 + a

1

sin!

1

t; Y

�

= X

�

= 0; Y

�

= 1 + a

2

sin!

2

t;

X

t

= a

1

!

1

� os!

1

t; Y

t

= a

2

!

2

� os!

2

t:

Under suh motions mixed waves annot arise sine the nodes on a ell edge have

the same grid motion veloities. A one-dimensional slie through the data obtained

from the omputation on a �xed mesh, that obtained on the moving mesh and the

analytial solution is shown in Fig. 4. The omputations are arried out using

seond order orretions that eliminate the �rst order di�usive error proportional

to hr

2

q. The moving mesh result exhibits the same type of error as that omputed

on a �xed mesh, a slight displaement of the solution with respet to its exat

position. As shown in [7℄, the moving mesh formulation is not formally seond

order sine the system of equations beomes non-autonomous (J ~q)

t

+F (�; �; t; ~q)

�

+

G(�; �; t; ~q)

�

= 0, even if the original equations in physial spae was autonomous

q

t

+ f(q)

x

+ g(q)

y

= 0. We therefore expet an order of onvergene intermediate

between 1 and 2. This indeed is observed, as shown in Fig. 5.

A seond test is arried out for purely rotational motions of the mesh given by

X(�; �; t) = � os �(t) + � sin �(t); Y (�; �; t) = �� sin �(t) + � os �(t);

X

�

= Y

�

= os �(t); X

�

= sin �(t); Y

�

= � sin �(t);
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FIG. 5 Convergene plots of the �xed grid (x) and dilatational moving grid (o)

omputations for the advetion problem at t = 1, after 250 steps have been exe-

uted.

X

t

= Y �

0

(t); Y

t

= �X �

0

(t); �(t) = �

0

sin!t:

The e�et of grid shearing is investigated thorugh the mapping

X(�; �; t) = (� + a

1

� sin!

1

t) ; Y (�; �; t) = (� + a

2

� sin!

2

t)

7. APPLICATIONS

7.1.

7.2. Aoustis

7.3. Fluid dynamis

7.3.1. Euler equation eigensystem in omputational spae

The Riemann problems in omputational spae require the solutions to the

eigenproblems

�F

�~q

r

F

= �

F

r

F

;

�G

�~q

r

G

= �

G

r

G

(18)

The 2D Euler equations desribing invisid, ompressible ow are

q

t

+

~

r �

~

F = 0;

~

F = f

~

i+ g

~

j ;

q =

�

� �u �v �E

�

T

; (19)

f =

�

�u �u

2

+ p �uv

uH

�

�

T

; g =

�

�v �uv �v

2

+ p

vH

�

�

T

p = ( � 1)(E � (u

2

+ v

2

)=2)�

12



Let

~

k = k

x

~

i + k

y

~

j; k = (k

2

x

+ k

2

y

)

1=2

represent an arbitrary diretion. The right

eigenvetor matrix resulting from the eigenproblem

�

�

~

F=�q �

~

k

�

r = �r is

R(k

x

; k

y

) =

0

B

B

�

1 0 1 1

u� ak

x

=k �k

y

u u+ ak

x

=k

v � ak

y

=k k

x

v v + ak

y

=k

H � a

~

k �

~

V k

x

v � k

y

u (u

2

+ v

2

)=2 H + a

~

k �

~

V

1

C

C

A

(20)

with

~

V = u

~

i+ v

~

j, H = a

2

=( � 1) + (u

2

+ v

2

)=2 and a the loal sound veloity.

The orresponding eigenvalues are

� = (

~

k �

~

V � ak;

~

k �

~

V ;

~

k �

~

V ;

~

k �

~

V + ak): (21)

We see that R(Y

�

;�X

�

) is the right eigenvetor matrix for �F=�~q and the eigen-

values are �

F

i

= �

i

+X

�

Y

t

�X

t

Y

�

; i = 1; : : : ; 4: Similarily R(�Y

�

; X

�

) is the right

eigenvetor matrix for �G=�~q and the eigenvalues are �

G

i

= �

i

+ X

t

Y

�

� X

�

Y

t

;

i = 1; : : : ; 4:

7.3.2. Plane moving piston problem

We onsider �rst the problem of a urved piston moving in a ylinder. The

enter of the piston is at

x

p

(t) = b+ l � r(1� os!t)�

p

l

2

� (r sin!t)

2

(22)

and the piston shape is assumed to be a irular ar of radius R; so the points

(X

p

; Y

p

) on the piston surfae are given by

X

p

(�; t) = x

p

(t) +R(os � � 1); Y

p

(�) = R sin � : (23)

The � oordinate lines interset the piston at angles � satisfying R sin � = (��1=2)d:

The range of � is given by the limiting ases R sin �

min

= �d=2; R sin �

max

= d=2;

The oordinate transformation between the omputational spae D = [0; 1℄� [0; 1℄

and physial spae is

x = X(�; �; t) = �X

p

(�(�); t); y = Y (�; �; t) = d(� � 1=2) (24)

and we have the derivatives

X

�

= X

p

(t); X

�

=

�� (� � 1=2) d

2

p

R

2

� (� � 1=2)

2

d

2

; X

t

= � _x

p

(t) (25)

Y

�

= 0; Y

�

= d; Y

t

= 0

Axisymmetri moving piston problem

Consider now an axisymmetri piston

7.3.3. Three dimensional moving piston problem

A fully 3D piston is omputed next
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7.4. Coupled Elastiity and Aoustis

7.5. Coupled Elastiity and Fluid Dynamis

We now

7.5.1. Plane stress eigensystem

The equations desribing a state of plane stress are

q

t

+

~

r �

~

F = 0;

~

F = f

~

i+ g

~

j ;

q =

�

"

11

"

12

"

13

U V

�

T

;

f =

�

U V 0 a

2

("

11

+ �"

22

) b

2

"

12

�

T

g =

�

0 U V b

2

"

12

a

2

(�"

11

+ "

22

)

�

T

a = 

2

=(1� �

2

); b = 

2

=(2(1 + �)); 

2

= E=�

with " the strain tensor and (U; V ) the displaement veloities

"

11

= u

x

; "

12

= u

y

+ v

x

; "

22

= v

y

U = u

t

; V = v

t

(26)

The right eigenvetor matrix resulting from the eigenproblem

�

�

~

F=�q �

~

k

�

r = �r

is

R(k

x

; k

y

) =

0

B

B

B

B

B

B

B

B

B

�

k

2

y

� �k

2

x

�

k

2

x



a

k

2

x



a

k

x

k

y



b

�

k

x

k

y



b

�2k

x

k

y

(1 + �) �2

k

x

k

y



a

2

k

x

k

y



a

(k

2

y

� k

2

x

)

b

�

(k

2

y

� k

2

x

)

b

k

2

x

� �k

2

y

�

k

2

y



a

k

2

y



a

�

k

x

k

y



b

k

x

k

y



b

0 k

x

k k

x

k �k

y

�k

y

0 k

y

k k

y

k k

x

k k

x

k

1

C

C

C

C

C

C

C

C

C

A

The orresponding eigenvalues are

� =

 

0;�

k

p

2(1 + �)

;

k

p

2(1 + �)

;�

k

p

1� �

2

;

k

p

1� �

2

!

: (27)

8. CONCLUSIONS

APPENDIX A: CURVILINEAR COORDINATE CONSERVATION FORM
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With F;G from (5,6) we have

F

�

= Y

�

~

f

�

� (X

t

Y

�

)~q

�

�X

�

~g

�

+X

�

Y

t

~q

�

+ Y

��

~

f � (X

t

Y

�

)

�

~q �X

��

~g + (X

�

Y

t

)

�

~q (28)

G

�

= X

�

~g

�

� (X

�

Y

t

)~q

�

� Y

�

~

f

�

+ (X

t

Y

�

)~q

�

(29)

+X

��

~g � (X

�

Y

t

)

�

~q � Y

��

~

f + (X

t

Y

�

)

�

~q

Replaing these in the onservation equation (4) we have

J ~q

t

+ (Y

�

~

f

�

� Y

�

~

f

�

) + (X

�

~g

�

�X

�

~g

�

) + (30)

(J

t

� (X

t

Y

�

)

�

+ (X

�

Y

t

)

�

� (X

�

Y

t

)

�

+ (X

t

Y

�

)

�

) ~q = J

~

 

Using (2) one an verify that the oeÆient of ~q in (30) is null, so equation (30)

beomes

J ~q

t

+ Y

�

~

f

�

� Y

�

~

f

�

+X

�

~g

�

�X

�

~g

�

+ (X

�

Y

t

�X

t

Y

�

)~q

�

+ (X

t

Y

�

�X

�

Y

t

)~q

�

= J

~

 

(31)

From ~q(�; �; t) = q(X(�; �; t); Y (�; �; t); t) we have

~q

t

= q

x

X

t

+ q

y

Y

t

+ q

t

;

~q

�

= q

x

X

�

+ q

y

Y

�

;

~q

�

= q

x

X

�

+ q

y

Y

�

; (32)

and one an verify that

J ~q

t

+ (X

�

Y

t

�X

t

Y

�

)~q

�

+ (X

t

Y

�

�X

�

Y

t

)~q

�

= Jq

t

; (33)

so that (31) beomes

q

t

+

Y

�

~

f

�

� Y

�

~

f

�

J

+

X

�

~g

�

�X

�

~g

�

J

=

~

 : (34)

By the impliit funtion theorem

~

f

x

=

Y

�

~

f

�

� Y

�

~

f

�

J

; ~g

y

=

X

�

~g

�

�X

�

~g

�

J

; (35)

so we obtain the initial onservation equation (3) noting that

~

f = f; ~g = g;

~

 =  

at orresponding points in the omputational and physial domains.

The proof for the 3D ase follows the same proedure.
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