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The multidimensional wave propagation method [7℄ for solving hyperboli
 partial dif-

ferential equations is extended to moving grids of general geometry. Several examples

are presented from a
ousti
s, gas dynami
s and elasti
ity. Some multiphysi
s examples,

simultaneously solving di�erent sets of 
onservation laws, are also in
luded. The basi


moving grid pro
edure is 
ombined with adaptive mesh re�nement to obtain an eÆ
ient

algorithm 
apable of 
apturing phenomena with widely varying s
ales.

Key Words: Moving mesh methods, �nite volume method, wave propagation,

adaptive mesh re�nement.

1. INTRODUCTION

Moving 
omputational domains arise naturally in a number of appli
ations de-

s
ribed by hyperboli
 evolution equations. Simulation of re
ipro
ating, internal


ombustion engines involves the 
omputation of the 
uid 
ow in a 
ylinder with a

moving piston wall [3℄. The study of blood 
ir
ulation leads to the problem of 
ow

inside a domain with moving, 
exible walls [10℄. A
ousti
 [1℄ and ele
tromagneti


radiation [12℄ from moving surfa
es is of interest in a number of appli
ations rang-

ing from musi
al instruments [15℄ to mi
ro-ele
tro-me
hani
al systems (MEMS) [8℄.

In many appli
ations the singularities that 
an arise in hyperboli
 problems are of

interest. The appearan
e of sho
ks in re
ipro
ating engines signi�
antly in
uen
es

the engine's eÆ
ien
y. Elasti
 waves in a solid medium may move fast enough that

they indu
e singularities in an adjoining gas medium.

There is a 
onsiderable body of work on moving mesh methods appli
able to

su
h problems. We only 
ite a few entry points into the literature. Vie
elly [14℄

treated the 
ase of in
ompressible 
ow. Demirdzi
 and Peri
 [4℄ have presented a

�nite volume method with elements of arbitrary shape appli
able to general 
ows.

Thomas and Lombard [13℄ highlighted the importan
e of maintaining the same

type of a

ura
y in the 
omputation of geometri
 quantitites asso
iated with grid

motion as that used in the �eld variables. Subsequent work has 
on�rmed this

observation [9℄. Re
ently Zwart, Raithby and Raw have presented a general �nite

volume method suitable for moving domains that exhibit large deformations [16℄.

In this paper we 
onsider the problem of developing high-resolution �nite volume

methods to solve hyperboli
 partial di�erential equations on moving grids in 2D and

3D. Su
h methods are known to be well suited for a

urate 
apturing of singularities

on stationary grids. High-resolution �nite volume methods may be re
ast in wave

propagation form [7℄ with 
ertain advantages in a
hieving CFL numbers of unity and
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uniform treatment of both 
onservative and non-
onservative hyperboli
 problems.

The wave propagation form has been applied to one-dimensional moving grids [6℄.

We are interested in extending the method to multi-dimensional moving grids so

as to be able to treat some of the appli
ations mentioned above. The point of view

taken here is to use a time-dependent 
oordinate transformation from physi
al spa
e

to 
omputational spa
e. In physi
al spa
e the grid is moving a

ording to a motion

whi
h is imposed or perhaps in
uen
ed by the hyperboli
 equation being solved.

In 
omputational spa
e the grid is stationary. The essential di�eren
e is that in


omputational spa
e the equation be
omes more 
ompli
ated, exhibiting spa
e-time

dependent 
oeÆ
ients even if su
h a dependen
e was not present in the equation

expressed in physi
al spa
e. As su
h, the problem is an important spe
ial 
ase of

the more general problem of hyperboli
 equations with spatially dependent 
uxes

or 
oeÆ
ients.

The bene�t of working in 
omputational spa
e is that Cartesian logi
al grid

stru
ture 
an be maintained. This is espe
ially useful when the basi
 method is


ombined with adaptive mesh re�nement (AMR) as is done in this work. The AMR

framework adopted here is esentially that of Berger and LeVeque [2℄. Previous work

on 
ombining adaptive meshing with moving grids in
ludes [5℄. The Cartesian grid

stru
ture makes is straightforward to 
arry out multi-physi
s 
omputations in whi
h

di�erent sets of 
onservation laws are solved on problem subdomains. The a
ousti


radiation from moving surfa
es is presented as an example in this work, but the

pro
edure may be readily extended to more 
ompli
ated situations su
h as 
uid-

stru
ture intera
tions [11℄.

2. PROBLEM FORMULATION

2.1. Time-dependent grid mappings

It is assumed that a non-singular transformation T from 
omputational spa
e to

physi
al spa
e may be de�ned at all times. We �rst 
onsider the two-dimensional

problem. All salient aspe
ts of algorithm development are present in the 2D 
ase.

Extension to 3D is straightforward. The transformation between the 
omputational

spa
e (�; �) and the physi
al spa
e (x; y) is given by

T :

�

x = X(�; �; t)

y = Y (�; �; t)

: (1)

The restri
tion of T to a given time t

n

shall be denoted by T

n

. The Ja
obian of

the transformation T shall be denoted by

J =

�

�

�

�

X

�

X

�

Y

�

Y

�

�

�

�

�

= X

�

Y

�

�X

�

Y

�

: (2)

Sin
e T is assumed non-singular, we have J 6= 0:

2.2. Hyperboli
 equations in 
onservation form

Consider the two-dimensional 
onservation equation governing the evolution in

time of a �eld variable ve
tor q(x; y; t) with m 
omponents

q

t

+ f(q)

x

+ g(q)

y

=  (x; y; t; q) : (3)
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The �eld variables and sour
e term in 
omputational spa
e are

~q(�; �; t) = q(X(�; �; t); Y (�; �; t); t);

~

 (�; �; t; q) =  (X(�; �; t); Y (�; �; t); t; q) :

We also introdu
e the 
omputational spa
e 
uxes

~

f = f(~q), ~g = g(~q) . The 
onser-

vation equation in 
omputational spa
e is

(J ~q)

t

+ F

�

+G

�

= J

~

 (4)

with the 
omputational spa
e 
uxes

F

p

=

�

�

�

�

~

f

p

~g

p

X

�

Y

�

�

�

�

�

�

�

�

�

�

X

t

Y

t

X

�

Y

�

�

�

�

�

~q

p

�

~

F

p

� U ~q

p

; (5)

G

p

=

�

�

�

�

X

�

Y

�

~

f

p

~g

p

�

�

�

�

�

�

�

�

�

X

�

Y

�

X

t

Y

t

�

�

�

�

~q

p

�

~

G� V ~q

p

; (6)

where ~q

p

is the p-th 
omponent of the ve
tor q; with similar meanings for the 
ux


omponents. Appendix A 
ontains the derivation of these formulas. Note that the


uxes for the transformed equations 
ontain a part that 
aptures the physi
al 
uxes

expressed in the 
urrent 
urvilinear system,

~

F

p

;

~

G

p

and a part that 
orresponds to


ux due to grid motion, U ~q

p

; V ~q

p

. We shall 
all these the physi
al and grid motion


uxes in 
omputational spa
e, respe
tively. Whereas the initial 
ux fun
tions f(q),

g(q) depend only on the �eld variables, the grid transformation leads to physi
al


uxes in 
omputational spa
e that also exhibit 
oordinate dependen
e

~

F (�; �; t; ~q),

~

G(�; �; t; ~q).

Equation (4) 
an also be written in non-
onservative form as

J ~q

t

+

�

~

F

~q

� UI

�

~q

�

+

�

~

G

~q

� V I

�

~q

�

= J

~

 � (J

t

� U

�

� V

�

) ~q ; (7)

where I is the identity matrix and

~

F

~q

;

~

G

~q

are the 
ux Ja
obians in 
omputational

spa
e

~

F

~q

= Y

�

~

f

~q

�X

�

~g

~q

;

~

G

~q

= �Y

�

~

f

~q

+X

�

~g

~q

~

f

~q

=

�

~

f

�~q

; ~g

~q

=

�~g

�~q

:

One 
an verify that

J

t

� U

�

� V

�

= 0 : (8)

This is a statement of the 
hange in in�nitesimal area due to the grid motion. It is

an instan
e of the geometri
 
onservation law introdu
ed by Thomas and Lombard

[13℄. The non-
onservative form (7) shows that numeri
al errors in satisfying the

geometri
 
onservation law (8) a
t as a sour
e term that may indu
e exponential

growth in the �eld variables ~q.
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2.3. Non-
onservative hyperboli
 equations

The non-
onservative equation

q

t

+A(x; y)q

x

+B(x; y)q

y

=  (x; y; t)

arises when studying wave propagation in non-uniform media among other appli-


ations. Introdu
ing the 
oordinate mapping T leads to

~q

t

+ (A�X

t

I)q

x

+ (B� Y

t

I)q

y

=  

sin
e ~q

t

= q

t

+X

t

q

x

+ Y

t

q

y

. Expressing all derivatives in the 
omputational spa
e

gives

~q

t

+

~

A~q

�

+

~

B~q

�

=

~

 

with

~

A =

1

J

[Y

�

(A�X

t

I)�X

�

(B� Y

t

I)℄ =

1

J

[Y

�

A�X

�

B� UI℄ ;

~

B =

1

J

[X

�

(B� Y

t

I)� Y

�

(A�X

t

I)℄ =

1

J

[X

�

B� Y

�

A� V I℄ :

3. COMPUTATIONAL METHOD

3.1. Computational grid

A re
tangular 
omputational domain D is de�ned in whi
h we use a uniform

Cartesian grid with step sizes ��, ��. The grid lines are at �

i�1=2

= (i� 1=2)��,

�

j�1=2

= (j�1=2)��, i = 1; : : : ;m

x

;m

x

+1, j = 1; : : : ;m

y

;m

y

+1. A 
ell 
entered

approa
h is adopted in whi
h we de�ne values

~

Q

n

ij

to approximate q(�; �; t

n

) over the


ell �

ij

= [�

i�1=2;j

; �

i+1=2;j

℄� [�

i;j�1=2

; �

i;j+1=2

℄, i = 1; 2; : : : ;m

x

, j = 1; 2; : : : ;m

y

.

The mapping T indu
es the grid node velo
ities ( _x

i�1=2;j�1=2

(t); _y(t)

i�1=2;j�1=2

) in

physi
al spa
e. These velo
ities are assumed to be 
onstant over a time step

( _x

i�1=2;j�1=2

(t); _y

i�1=2;j�1=2

(t)) = ( _x

n

i�1=2;j�1=2

; _y

n

i�1=2;j�1=2

); t 2 [t

n

; t

n+1

℄ :

The grid velo
ities are assumed to vary linearly between nodes so that the 
ell edges

tra
e out pie
ewise ruled surfa
es in physi
al spa
e.

3.2. Finite volume integration

To obtain a �nite volume method, we integrate (4) over a re
tangular 
ell in


omputational spa
e �

ij

and over a time step [t

n

; t

n+1

℄ to obtain

ZZ

�

ij

�

J(�; �; t

n+1

)~q(�; �; t

n+1

)� J(�; �; t

n

)~q(�; �; t

n

)

�

d� d� + (9)

Z

t

n+1

t

n

Z

�

j+1=2

�

j�1=2

�

F (�

i+1=2

; �; t)� F (�

i�1=2

; �; t)

�

d� dt�

Z

t

n+1

t

n

Z

�

i+1=2

�

i�1=2

�

G(�; �

j+1=2

; t)�G(�; �

j�1=2

; t)

�

d� dt = �����t

~

	

n

ij
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FIG. 1 (a) Transformation between 
omputational and physi
al spa
e. (b) Com-

putational �nite volume.

with

~

	

n

ij

=

1

�����t

Z

t

n+1

t

n

ZZ

�

ij

~

 (�; �; t) d� d� dt :

We 
an use the mean value theorem in 
omputational spa
e to obtain

ZZ

�

ij

J(�; �; t

n

)~q(�; �; t

n

) d� d� = J

n

ij

~

Q

n

ij

����

where we use the notation J

n

ij

= J(�

i

; �

j

; t

n

),

~

Q

n

ij

= ~q(�

i

; �

j

; t

n

) with �

i

2

�

�

i�1=2

; �

i+1=2

�

and �

j

2

�

�

j�1=2

; �

j+1=2

�

being the points within the integration

domain resulting from applying the mean value theorem. The mean value theorem


an also be applied in physi
al spa
e to give

ZZ

�

ij

J(�; �; t

n

)~q(�; �; t

n

) d� d� =

ZZ

C

n

ij

q(x; y; t

n

) dx dy = A

n

ij

Q

n

ij

where C

ij

is the image of the 
omputational 
ell �

ij

through the transformation T

and A

ij

is the measure of C

ij

(Fig. 1). We should have

A

n

ij

Q

n

ij

= ����J

n

ij

~

Q

n

ij

;

and this serves as a useful 
onsisten
y 
ondition on the spe
i�
 numeri
al pro
edure

used to evaluate the Ja
obian.

Equation (9) leads to

J

n+1

ij

~

Q

n+1

ij

� J

n

ij

~

Q

n

ij

+ (10)

�t

��

�

F

n

i+1=2;j

�F

n

i�1=2;j

�

+

�t

��

�

G

n

i;j+1=2

� G

n

i;j�1=2

�

=

~

	

n

ij

;

where F ;G are the 
uxes through the sides of the 
ontrol volume over the time

interval [t

n

; t

n+1

℄.

3.3. Riemann problems in 
omputational spa
e

We 
an evaluate the 
uxes F ;G by solving Riemann problems along the dire
-

tions �; �: Consider the � Riemann problem for  = 0. At the interfa
e � = �

i�1=2
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we assume that the left �eld variables have a 
onstant value

~

Q

n

i�1;j

over the 
ell

�

i�1;j

. Similarily, to the right the value is

~

Q

n

i;j

and 
onstant over the 
ell �

i;j

. The

�-derivative of ~q is therefore null and from (7) we obtain

J ~q

t

+

�

Y

�

~

f

~q

�X

�

~g

~q

� UI

�

~q

�

= 0;

This is a quasi-linear PDE with spa
e-time varying 
oeÆ
ients. We obtain a linear

PDE by introdu
ing 
onstant values of the physi
al 
ux Ja
obians

~

L

i�1=2;j

=

�

~

f

~q

�

i�1=2;j

;

~

M

i�1=2;j

= (~g

~q

)

i�1=2;j

;

at the � = �

i�1=2

interfa
e along the 
ell at �

j�1=2

� � � �

j+1=2

. These would

typi
ally depend on the �eld variables on the two sides of the interfa
e

~

L

i�1=2;j

=

~

L

i�1=2;j

(

~

Q

n

i�1;j

;

~

Q

n

i;j

);

~

M

i�1=2;j

=

~

M

i�1=2;j

(

~

Q

n

i�1;j

;

~

Q

n

i;j

) :

After making this approximation we obtain the equation

~q

t

+

1

J

�

Y

�

~

L

i�1=2;j

�X

�

~

M

i�1=2;j

� UI

�

~q

�

= 0 : (11)

Physi
al analysis of the behavior of the solution guides further approximation.

Consider the two 
ells C

i�1;j

, C

i;j

in physi
al spa
e. In the 
ells we have 
onstant

�eld values Q

n

i�1;j

, Q

n

i;j

at t = t

n

. We expe
t the solution to the Riemann problem

to be a family of waves V

p

i�1=2;j

propagating with speeds that depend on the left

and right states. Sin
e these are assumed 
onstant, the speeds shall be 
onstant

along the wave front. Ea
h wave would propagate part of the initial dis
ontinuity

between Q

n

i�1;j

and Q

n

i;j

. The wave fronts are line segments parallel to the initial

orientation of the interfa
e between (x; y)

n

i�1=2;j�1=2

and (x; y)

n

i�1=2;j+1=2

at t = t

n

.

Con
urrently with the wave propagation, the interfa
e tra
es out a ruled surfa
e

determined by the node velo
ities ( _x; _y)

n

i�1=2;j�1=2

. The interfa
e motion may be

su
h that a parti
ular wave V

1

always remains to the left of the interfa
e. Another

wave V

3

may always stay to the right of interfa
e. Finally there is also the possibility

that the interfa
e interse
ts a wave front V

2

for t > t

n

. Fig. 2(a) depi
ts the various

possibilities. In 
omputational spa
e, the wave fronts be
ome ruled surfa
es and

the interfa
e remains �xed. We again 
an have purely left going-wavesW

1

; purely

right-going wave W

3

or mixed waves W

2

. Corresponding waves maintain their

nature from physi
al spa
e.

To obtain a stable, high-resolution method proper upwinding must be in
luded.

The possibility of mixed waves must be a

ounted for. Upon inspe
tion of (11)

we observe that the twisting of the wave front as � varies from �

i�1=2;j�1=2

to

�

i�1=2;j+1=2

is given primarily by the the velo
ities X

t

, Y

t


ontained in the U

fa
tor. We evaluate X

�

, Y

�

, J at a �xed point � = �

i�1=2

, � = �

j

, but maintain the

�-dependen
e of the velo
ities X

t

, Y

t

. Equation (11) 
an be rewritten as

~q

t

+

�

P

i�1=2;j

� !

i�1=2;j

(�)I

�

~q

�

= 0 ;

P

i�1=2;j

=

�

Y

�

J

~

L

�

i�1=2;j

�

�

X

�

J

~

M

�

i�1=2;j

;
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FIG. 2 (a) Waves (V

1

, V

2

, V

3

) and moving grid in physi
al spa
e. The wavefronts

are parallel to the initial orientation of the 
ell edge. V

1

is a left-going wave, V

3

is

right-going. Due to the movement of the 
ell interfa
e V

2

has both a left-going and

a right-going part. (b) Waves (W

1

, W

2

, W

3

) in 
omputational spa
e. The waves

now tra
e out ruled surfa
es. The nature of the waves remains the same, e.g. W

2

is a mixed wave.

!

i�1=2;j

(�) =

�

Y

�

J

�

i�1=2;j

X

t

(�) �

�

X

�

J

�

i�1=2;j

Y

t

(�) :

The dependen
e of the velo
ities upon � is given by linear interpolation between

the node velo
ities, e.g.

X

t

(�) =

1

��

��

� � �

j�1=2

�

_x

i�1=2;j+1=2

+

�

�

j+1=2

� �

�

_x

i�1=2;j�1=2

�

with a similar expression for Y

t

(�). We shall suppress the indi
es when their values


an be as
ertained from 
ontext to simplify the notation from now on.

Sin
e the original problem is hyperboli
 and the transformation T is non-

singular, the eigenve
tors of P form a basis. Let R be the matrix of right eigenve
-

tors of P and � =diag(�

p

) the diagonal matrix of eigenvalues of P. Inserting the

de
omposition P = R�R

�1

in (11) we obtain

~q

t

+R [�� !(�)I℄R

�1

~q

�

= 0 : (12)

Sin
e R does not depend on � or t we obtain the 
hara
teristi
 de
omposition

~v

t

+ [�� !(�)I℄ ~v

�

= 0 ; (13)

with ~v = R

�1

~q. Equation (13) is readily solved, so we have a solution to the

Riemann problem in the approximation of frozen metri
 
oeÆ
ients X

�

, Y

�

, J .

3.4. Wave propagation form

Sin
e a solution to the Riemann problem is available one 
ould use this to

evaluate the 
uxes F ;G needed in the update formula (10). Rather than doing

this, we 
hoose to re
ast the algorithm in terms of modi�
ations to the �nite volume

averages brought about by the propagation of waves in 
omputational spa
e [7℄.
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FIG. 3 (a) Areas of 
ells �

i�1;j

, �

ij

at t = t

n+1

a�e
ted by waves emanating from

the jump in

~

Q at t

n

: The left-going wave W

1

a�e
ts the �

i�1;j


ell average; the

right-going wave W

3

that of �

ij

: The mixed wave W

2

updates both 
ells.

We now estimate what e�e
t ea
h wave has upon the 
ell average at the new

time level t = t

n+1

. First we split the initial jump among the eigenve
tors of P

~

Q

n

i;j

�

~

Q

n

i�1;j

=

m

w

X

p=1

�

p

r

p

i�1=2;j

�

m

w

X

p=1

W

p

i�1=2;j

:

At t = t

n+1

a left-going or right-going wave will �ll a trapezoid in 
ell �

i�1;j

, �

i;j

respe
tively, see Fig. (3a). The new 
ell average is determined from

J

n+1

ij

~

Q

n+1

ij

=

1

����

ZZ

�

ij

J(�; �; t

n+1

)~q(�; �; t

n+1

) d� d� :

The e�e
t of any one wave W is 
hange the The 
hange in the 
ell average

~

Q

n+1

i;j

brought about by the right-going wave W

3

i�1=2;j

is

�

�

�

3

� !(�

j

)

�

�t

��

W

3

i�1=2;j

;


orresponding to the area of the trapezoid �lled by theW

3

wave. A similar expres-

sion holds for the left-going wave. A mixed wave will �ll two triangular portions in

�

i;j

and �

i�1;j

. Let �

�

j

be the 
oordinate where �

2

� !(�

�

j

) = 0. The e�e
t of the

mixed wave W

2

i;j

on the 
ell to the right �

i;j

is

�

�

�

2

� !(�

+

j

)

�

�

�

�

�

j

� �

+

j

�

�

�t

2����

W

2

i�1=2;j

;

where �

+

j

is the node where �

2

� !(�

�

j

) > 0, either �

+

= �

j�1=2

or �

+

= �

j+1=2

.

Similarily the e�e
t of the mixed wave upon the 
ell to the left �

i�1;j

is

�

�

�

2

� !(�

�

j

)

�

�

�

�

�

j

� �

�

j

�

�

�t

2����

W

2

i�1=2;j

;

with an analogous de�nition of �

�

j

.
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The �rst-order update (10) 
an be expressed in wave propagation form [7℄ as

~

Q

n+1

ij

=

~

Q

n

ij

�

�t

��

h

A

+

�

~

Q

n

i�1=2;j

+A

�

�

~

Q

n

i+1=2;j

i

where A

+

�

~

Q

n

i�1=2;j

and A

�

�

~

Q

n

i+1=2;j

are the right-going and left-going 
u
tua-

tions. We introdu
e the notation �

p

(�) = �

p

� !(�),

�

�

p

i�1=2;j

�

+

=

8

>

>

>

<

>

>

>

:

�

p

i�1=2;j

(�

j

) if �

p

i�1=2;j�1=2

> 0

�

�

�

�

j

� �

+

j

�

�

�

p

i�1=2;j�1=2

2��

if �

p

i�1=2;j�1=2

> 0; �

p

i�1=2;j�1=2

� 0

0 if �

p

i�1=2;j1=2

; �

p

i�1=2;j+1=2

� 0

;

�

�

p

i�1=2;j

�

�

=

8

>

>

>

<

>

>

>

:

�

p

i�1=2;j

(�

j

) if �

p

i�1=2;j�1=2

; �

p

i�1=2;j+1=2

< 0

�

�

�

�

j

� �

�

j

�

�

�

p

i�1=2;j�1=2

2��

if �

p

i�1=2;j�1=2

> 0; �

p

i�1=2;j�1=2

� 0

0 if �

p

i�1=2;j�1=2

; �

p

i�1=2;j+1=2

� 0

:

The 
u
tuations may then be expressed as

A

+

�

~

Q

i�1=2;j

=

m

X

p=1

�

�

p

i�1=2;j

�

+

W

p

i�1=2;j

;

A

�

�

~

Q

i�1=2;j

=

m

X

p=1

�

�

p

i�1=2;j

�

�

W

p

i�1=2;j

:

3.5. Conservative average 
ux Ja
obians

We now turn to the problem of determining a suitable averages for the 
ux

Ja
obians. Consider just the � Riemann problem. We would like the s
heme to be


onservative and this leads to the 
ondition

A

ij

�

~

Q

n+1

i+1;j

�

~

Q

n+1

i;j

�

= F (�

i

; �

j

; t

n+1

;

~

Q

n+1

i+1;j

)� F (�

i

; �

j

; t

n+1

;

~

Q

n+1

i;j

) :

Sin
e A

ij

=

~

A

ij

� U

ij

I and F

ij

=

~

F

ij

� U

ij

~

Q

ij

we obtain

~

A

ij

�

~

Q

n+1

i+1;j

�

~

Q

n+1

i;j

�

=

~

F (

~

Q

n+1

i+1;j

)�

~

F (

~

Q

n+1

i;j

) :

Note that the spa
e-time dependent part of the average 
ux Ja
obian automati
ally

satis�es the 
onservation 
ondition. We are left just with the part that depends on

the �eld variables.

3.6. Se
ond order 
orre
tions

T

3.7. Transverse 
orre
tions

T

9



4. NON-CONSERVATIVE HYPERBOLIC EQUATIONS

T

5. THREE-DIMENSIONAL CASE

The pro
edures presented for the two-dimensional problem readily generalize to

more dimensions. In three dimensions the general 
onservation law

q

t

+ f(q)

x

+ g(q)

y

+ h(q)

z

=  (x; y; z; q; t) (14)

be
omes

(J ~q)

t

+ F

�

+G

�

+H

�

= J

~

 (15)

with the 
omputational spa
e 
uxes

F =

�

�

�

�

�

�

~

f ~g

~

h

X

�

Y

�

Z

�

X

�

Y

�

Z

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X

t

Y

t

Z

t

X

�

Y

�

Z

�

X

�

Y

�

Z

�

�

�

�

�

�

�

~q

G =

�

�

�

�

�

�

X

�

Y

�

Z

�

~

f ~g

~

h

X

�

Y

�

Z

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X

�

Y

�

Z

�

X

t

Y

t

Z

t

X

�

Y

�

Z

�

�

�

�

�

�

�

~q (16)

H =

�

�

�

�

�

�

X

�

Y

�

Z

�

X

�

Y

�

Z

�

~

f ~g

~

h

�

�

�

�

�

�

�

�

�

�

�

�

�

X

�

Y

�

Z

�

X

�

Y

�

Z

�

X

t

Y

t

Z

t

�

�

�

�

�

�

~q

The 
ux Ja
obian matri
es are

�F

�~q

= (Y

�

Z

�

� Y

�

Z

�

)

�f

�~q

+ (Z

�

X

�

� Z

�

X

�

)

�g

�~q

+ (X

�

Y

�

�X

�

Y

�

)

�h

�~q

� [(Y

�

Z

�

� Y

�

Z

�

)X

t

+ (Z

�

X

�

� Z

�

X

�

)Y

t

+ (X

�

Y

�

�X

�

Y

�

)Z

t

℄ I

�G

�~q

= (Y

�

Z

�

� Y

�

Z

�

)

�f

�~q

+ (Z

�

X

�

� Z

�

X

�

)

�g

�~q

+ (X

�

Y

�

�X

�

Y

�

)

�h

�~q

(17)

� [(Y

�

Z

�

� Y

�

Z

�

)X

t

+ (Z

�

X

�

� Z

�

X

�

)Y

t

+ (X

�

Y

�

�X

�

Y

�

)Z

t

℄ I

�H

�~q

= (Y

�

Z

�

� Y

�

Z

�

)

�f

�~q

+ (Z

�

X

�

� Z

�

X

�

)

�g

�~q

+ (X

�

Y

�

�X

�

Y

�

)

�h

�~q

� [(Y

�

Z

�

� Y

�

Z

�

)X

t

+ (Z

�

X

�

� Z

�

X

�

)Y

t

+ (X

�

Y

�

�X

�

Y

�

)Z

t

℄ I

These matri
es have essentially the same stru
ture as the 
ux Ja
obian matri
es in

physi
al spa
e.

6. ACCURACY

6.1. Adve
tion

We �rst 
onsider the adve
tion problem

q

t

+ u q

x

+ v q

y

= 0;

10
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x
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0
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0.4
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0.8

1

x

q t=1

FIG. 4 Comparison of exa
t solution (line), �xed grid (x) and dilatational moving

grid (o) 
omputations for the adve
tion problem.

q

0

(x; y) = q(x; y; 0) = exp

"

�

�

x� x




Æ

x

�

2

�

�

y � y




Æ

y

�

2

#

;

(u; v) = (0:2; 0:1) to verify the over-all 
orre
tness of the method and to test a
-


ura
y. We shall 
ompare the solution obtained numeri
ally under various grid

motions to the analyti
al solution q(x; y; t) = q

0

(x� ut; y � vt).

First we 
onsider purely dilatational motions of the grid given by

X(�; �; t) = (1 + a

1

sin!

1

t) �; Y (�; �; t) = (1 + a

2

sin!

2

t) �;

X

�

= 1 + a

1

sin!

1

t; Y

�

= X

�

= 0; Y

�

= 1 + a

2

sin!

2

t;

X

t

= a

1

!

1

� 
os!

1

t; Y

t

= a

2

!

2

� 
os!

2

t:

Under su
h motions mixed waves 
annot arise sin
e the nodes on a 
ell edge have

the same grid motion velo
ities. A one-dimensional sli
e through the data obtained

from the 
omputation on a �xed mesh, that obtained on the moving mesh and the

analyti
al solution is shown in Fig. 4. The 
omputations are 
arried out using

se
ond order 
orre
tions that eliminate the �rst order di�usive error proportional

to hr

2

q. The moving mesh result exhibits the same type of error as that 
omputed

on a �xed mesh, a slight displa
ement of the solution with respe
t to its exa
t

position. As shown in [7℄, the moving mesh formulation is not formally se
ond

order sin
e the system of equations be
omes non-autonomous (J ~q)

t

+F (�; �; t; ~q)

�

+

G(�; �; t; ~q)

�

= 0, even if the original equations in physi
al spa
e was autonomous

q

t

+ f(q)

x

+ g(q)

y

= 0. We therefore expe
t an order of 
onvergen
e intermediate

between 1 and 2. This indeed is observed, as shown in Fig. 5.

A se
ond test is 
arried out for purely rotational motions of the mesh given by

X(�; �; t) = � 
os �(t) + � sin �(t); Y (�; �; t) = �� sin �(t) + � 
os �(t);

X

�

= Y

�

= 
os �(t); X

�

= sin �(t); Y

�

= � sin �(t);

11
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FIG. 5 Convergen
e plots of the �xed grid (x) and dilatational moving grid (o)


omputations for the adve
tion problem at t = 1, after 250 steps have been exe-


uted.

X

t

= Y �

0

(t); Y

t

= �X �

0

(t); �(t) = �

0

sin!t:

The e�e
t of grid shearing is investigated thorugh the mapping

X(�; �; t) = (� + a

1

� sin!

1

t) ; Y (�; �; t) = (� + a

2

� sin!

2

t)

7. APPLICATIONS

7.1.

7.2. A
ousti
s

7.3. Fluid dynami
s

7.3.1. Euler equation eigensystem in 
omputational spa
e

The Riemann problems in 
omputational spa
e require the solutions to the

eigenproblems

�F

�~q

r

F

= �

F

r

F

;

�G

�~q

r

G

= �

G

r

G

(18)

The 2D Euler equations des
ribing invis
id, 
ompressible 
ow are

q

t

+

~

r �

~

F = 0;

~

F = f

~

i+ g

~

j ;

q =

�

� �u �v �E

�

T

; (19)

f =

�

�u �u

2

+ p �uv

uH

�

�

T

; g =

�

�v �uv �v

2

+ p

vH

�

�

T

p = (
 � 1)(E � (u

2

+ v

2

)=2)�

12



Let

~

k = k

x

~

i + k

y

~

j; k = (k

2

x

+ k

2

y

)

1=2

represent an arbitrary dire
tion. The right

eigenve
tor matrix resulting from the eigenproblem

�

�

~

F=�q �

~

k

�

r = �r is

R(k

x

; k

y

) =

0

B

B

�

1 0 1 1

u� ak

x

=k �k

y

u u+ ak

x

=k

v � ak

y

=k k

x

v v + ak

y

=k

H � a

~

k �

~

V k

x

v � k

y

u (u

2

+ v

2

)=2 H + a

~

k �

~

V

1

C

C

A

(20)

with

~

V = u

~

i+ v

~

j, H = a

2

=(
 � 1) + (u

2

+ v

2

)=2 and a the lo
al sound velo
ity.

The 
orresponding eigenvalues are

� = (

~

k �

~

V � ak;

~

k �

~

V ;

~

k �

~

V ;

~

k �

~

V + ak): (21)

We see that R(Y

�

;�X

�

) is the right eigenve
tor matrix for �F=�~q and the eigen-

values are �

F

i

= �

i

+X

�

Y

t

�X

t

Y

�

; i = 1; : : : ; 4: Similarily R(�Y

�

; X

�

) is the right

eigenve
tor matrix for �G=�~q and the eigenvalues are �

G

i

= �

i

+ X

t

Y

�

� X

�

Y

t

;

i = 1; : : : ; 4:

7.3.2. Plane moving piston problem

We 
onsider �rst the problem of a 
urved piston moving in a 
ylinder. The


enter of the piston is at

x

p

(t) = b+ l � r(1� 
os!t)�

p

l

2

� (r sin!t)

2

(22)

and the piston shape is assumed to be a 
ir
ular ar
 of radius R; so the points

(X

p

; Y

p

) on the piston surfa
e are given by

X

p

(�; t) = x

p

(t) +R(
os � � 1); Y

p

(�) = R sin � : (23)

The � 
oordinate lines interse
t the piston at angles � satisfying R sin � = (��1=2)d:

The range of � is given by the limiting 
ases R sin �

min

= �d=2; R sin �

max

= d=2;

The 
oordinate transformation between the 
omputational spa
e D = [0; 1℄� [0; 1℄

and physi
al spa
e is

x = X(�; �; t) = �X

p

(�(�); t); y = Y (�; �; t) = d(� � 1=2) (24)

and we have the derivatives

X

�

= X

p

(t); X

�

=

�� (� � 1=2) d

2

p

R

2

� (� � 1=2)

2

d

2

; X

t

= � _x

p

(t) (25)

Y

�

= 0; Y

�

= d; Y

t

= 0

Axisymmetri
 moving piston problem

Consider now an axisymmetri
 piston

7.3.3. Three dimensional moving piston problem

A fully 3D piston is 
omputed next

13



7.4. Coupled Elasti
ity and A
ousti
s

7.5. Coupled Elasti
ity and Fluid Dynami
s

We now

7.5.1. Plane stress eigensystem

The equations des
ribing a state of plane stress are

q

t

+

~

r �

~

F = 0;

~

F = f

~

i+ g

~

j ;

q =

�

"

11

"

12

"

13

U V

�

T

;

f =

�

U V 0 a

2

("

11

+ �"

22

) b

2

"

12

�

T

g =

�

0 U V b

2

"

12

a

2

(�"

11

+ "

22

)

�

T

a = 


2

=(1� �

2

); b = 


2

=(2(1 + �)); 


2

= E=�

with " the strain tensor and (U; V ) the displa
ement velo
ities

"

11

= u

x

; "

12

= u

y

+ v

x

; "

22

= v

y

U = u

t

; V = v

t

(26)

The right eigenve
tor matrix resulting from the eigenproblem

�

�

~

F=�q �

~

k

�

r = �r

is

R(k

x

; k

y

) =

0

B

B

B

B

B

B

B

B

B

�

k

2

y

� �k

2

x

�

k

2

x




a

k

2

x




a

k

x

k

y




b

�

k

x

k

y




b

�2k

x

k

y

(1 + �) �2

k

x

k

y




a

2

k

x

k

y




a

(k

2

y

� k

2

x

)


b

�

(k

2

y

� k

2

x

)


b

k

2

x

� �k

2

y

�

k

2

y




a

k

2

y




a

�

k

x

k

y




b

k

x

k

y




b

0 
k

x

k 
k

x

k �
k

y

�
k

y

0 
k

y

k 
k

y

k 
k

x

k 
k

x

k

1

C

C

C

C

C

C

C

C

C

A

The 
orresponding eigenvalues are

� =

 

0;�


k

p

2(1 + �)

;


k

p

2(1 + �)

;�


k

p

1� �

2

;


k

p

1� �

2

!

: (27)

8. CONCLUSIONS

APPENDIX A: CURVILINEAR COORDINATE CONSERVATION FORM
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With F;G from (5,6) we have

F

�

= Y

�

~

f

�

� (X

t

Y

�

)~q

�

�X

�

~g

�

+X

�

Y

t

~q

�

+ Y

��

~

f � (X

t

Y

�

)

�

~q �X

��

~g + (X

�

Y

t

)

�

~q (28)

G

�

= X

�

~g

�

� (X

�

Y

t

)~q

�

� Y

�

~

f

�

+ (X

t

Y

�

)~q

�

(29)

+X

��

~g � (X

�

Y

t

)

�

~q � Y

��

~

f + (X

t

Y

�

)

�

~q

Repla
ing these in the 
onservation equation (4) we have

J ~q

t

+ (Y

�

~

f

�

� Y

�

~

f

�

) + (X

�

~g

�

�X

�

~g

�

) + (30)

(J

t

� (X

t

Y

�

)

�

+ (X

�

Y

t

)

�

� (X

�

Y

t

)

�

+ (X

t

Y

�

)

�

) ~q = J

~

 

Using (2) one 
an verify that the 
oeÆ
ient of ~q in (30) is null, so equation (30)

be
omes

J ~q

t

+ Y

�

~

f

�

� Y

�

~

f

�

+X

�

~g

�

�X

�

~g

�

+ (X

�

Y

t

�X

t

Y

�

)~q

�

+ (X

t

Y

�

�X

�

Y

t

)~q

�

= J

~

 

(31)

From ~q(�; �; t) = q(X(�; �; t); Y (�; �; t); t) we have

~q

t

= q

x

X

t

+ q

y

Y

t

+ q

t

;

~q

�

= q

x

X

�

+ q

y

Y

�

;

~q

�

= q

x

X

�

+ q

y

Y

�

; (32)

and one 
an verify that

J ~q

t

+ (X

�

Y

t

�X

t

Y

�

)~q

�

+ (X

t

Y

�

�X

�

Y

t

)~q

�

= Jq

t

; (33)

so that (31) be
omes

q

t

+

Y

�

~

f

�

� Y

�

~

f

�

J

+

X

�

~g

�

�X

�

~g

�

J

=

~

 : (34)

By the impli
it fun
tion theorem

~

f

x

=

Y

�

~

f

�

� Y

�

~

f

�

J

; ~g

y

=

X

�

~g

�

�X

�

~g

�

J

; (35)

so we obtain the initial 
onservation equation (3) noting that

~

f = f; ~g = g;

~

 =  

at 
orresponding points in the 
omputational and physi
al domains.

The proof for the 3D 
ase follows the same pro
edure.
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