
MATH920 Lesson 04: Hyperelastic continua, plastic behavior

Lesson overview

� Hyperelastic materials

� Plastic behavior



Hyperelastic material

� Compare (�vi)t=�ij;j, vi=ui;t with

L=K¡E ;K= 1
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� Materials for which the strain energy can be expressed in terms of the defor-
mation gradient F= @x

@X
= I +

@u

@X
, are said to be hyperelastic. Examples:

¡ Linear elastic (Hookean) E = 1
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Cijkl=��ij�kl+ �(�ik �jl+ �il �jk)

¡ Isotropic shear solid (gel) E = �I2+
1
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Green-Lagrange strain tensorE= 1
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(FTF¡I), I2=EijEji, I3=EijEjkEki



Hyperelastic conservative PDE system

� From de�nition of deformation gradient F= @x
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obtain
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� Combined with vt=
1

�
r��(F), a conservative formulation is obtained
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where all material constants within �(F) are assumed to be scaled by the
density, and the material is considered incompressible

� The linearized version of the conservative system is

qt+A �rq=0;A=
@f

@q



Hyperelastic system eigenstructure

� Respecting the principle of causality requires that the eigenproblemAR=R�
admits an invertible eigenbasis R, and the PDE system is hyperbolic



Plastic deformation

� Multiplicative decomposition of deformation gradient into elastic/plastic
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