Definition. (X, U) is a topological space if U is a collection of open subsets of X and: i. $X \in U$, $\emptyset \in U$;

ii. $U_1, U_2 \in \mathcal{U} \Rightarrow U_1 \cap U_2 \in \mathcal{U}$;

iii. $U_i \in \mathcal{U}$, $i \in I$, $\bigcup_{i \in I} U_i \in \mathcal{U}$.

Definition. \mathcal{B} , a collection of subsets of \mathbb{X} , is a basis for a topology on point set \mathbb{X} if: *i*. $\forall x \in \mathbb{X}$, $\exists B \in \mathcal{B}$ such that $x \in B$;

ii. $x \in B_1 \cap B_2$, $B_1, B_2 \in \mathcal{B} \Rightarrow \exists B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$

The topology \mathcal{U} generated by \mathcal{B} is $\{U: U \subseteq \mathbb{X} \text{ and } x \in U \Rightarrow \exists B \in \mathcal{B} \text{ such that } x \in B \subseteq U\}$. The topology is constructed explicitly by all unions of finite intersections $\bigcap_{i=1}^{n} B_i$.

Example 1. $\mathbb{X} = \mathbb{R}$, $\mathcal{B} = \{(a, b), a < b, a, b \in \mathbb{R}\}$, standard real line topology.

Definition. A complex is a decomposition of a topological space into topologically simple pieces.

Definition. $u_0, ..., u_k \in \mathbb{R}^d$, $x = \sum_{i=0}^k \lambda_i u_i$ is an affine combination if $\sum_{i=0}^k \lambda_i = 1$

Definition. The affine hull of $u_0, ..., u_k \in \mathbb{R}^d$ is the set of all affine combinations.

Definition. $u_0, ..., u_k \in \mathbb{R}^d$ are affinely independent if $\sum_{i=0}^k \lambda_i u_i = \sum_{i=0}^k \mu_i u_i \Leftrightarrow \lambda_i = \mu_i$.

Definition. The affine hull of affinely independent $u_0, ..., u_k \in \mathbb{R}^d$ is a k-plane.

Proposition. $u_0, ..., u_k \in \mathbb{R}^d$ are affinely independent iff vectors $u_i - u_0$, i = 1, ..., k are linearly independent.

Definition. $u_0, ..., u_k \in \mathbb{R}^d$, $x = \sum_{i=0}^k \lambda_i u_i$ is a convex combination if $\sum_{i=0}^k \lambda_i = 1$ and $\lambda_i \ge 0$.

Definition. The convex hull of $u_0, ..., u_k \in \mathbb{R}^d$ is the set of all convex combinations.

Definition. The convex hull of affinely independent $u_0, ..., u_k \in \mathbb{R}^d$ is a k-simplex.

Notation. $\sigma = \operatorname{conv}\{u_0, ..., u_k\}$ is the convex hull of $u_0, ..., u_k \in \mathbb{R}^d$.

dim $\sigma = k$ if $u_0, ..., u_k$ are affinely independent.

Definition. $\tau = \operatorname{conv}\{u_{i_0}, ..., u_{i_j}\}$ is a face of $\sigma = \operatorname{conv}\{u_0, ..., u_k\}$ if $j \ge 0$, $0 \le i_0, ..., i_j \le k$, *i.e.*, the convex hull of a non-empty subset of points, denoted as $\tau \le \sigma$. If j < k, it is a proper face, denoted as $\tau < \sigma$.

Definition. The boundary of a convex hull σ is the union of all proper faces, denoted as $\operatorname{bd} \sigma$. The complement of the boundary of a convex hull is the interior of the convex hull, $\operatorname{int} \sigma = \sigma - \operatorname{bd} \sigma$.

 $x = \sum_{i=0}^{k} \lambda_i u_i \in \operatorname{int} \sigma$ if all $\lambda_i > 0$. $\forall x \in \sigma$ belongs to interior of exactly one face.

Definition. A simplicial complex is a finite collection of simplices $K = \{\sigma_i\}$ such that:

i. $\sigma \in K$ and $\tau \leq \sigma \Rightarrow \tau \in K$, and

ii. $\sigma, \sigma_0 \in K \Rightarrow$ either $\sigma \cap \sigma_0 = \emptyset$ or a face of both $\sigma \cap \sigma_0 \leqslant \sigma$ and $\sigma \cap \sigma_0 \leqslant \sigma_0$.

Dimension of a simplicial complex dim $K = \max_i \dim \sigma_i$

Definition. The underlying space of a simplicial complex, $|K| = \{\sigma_i\}$ is $\bigcup_i \sigma_i$.

Definition. A triangulation of topological space (X, U) is a simplicial complex K together with a homeomorphism between X and |K|.

Definition. A subcomplex of K is a simplicial complex $L \subseteq K$.

Definition. The *j*-skeleton $K^{(j)}$ of K is the subcomplex consisting of all simplices of dimension at most j.

The 0-skeleton, $K^{(0)}$ is the vertex set.