SciComp Practice Exam 5/12/14

Answer the following questions explaining all steps that lead to a solution. Results presented without motivation will not receive any credit.

1. Approximate $I=\int_{0}^{1} \log (x) \sin \left(x^{2} / 100\right) \mathrm{d} x$ to a relative error $\varepsilon=10^{-4}$.

Solution. Construct a Gauss quadrature formula for integrals of form

$$
I=\int_{0}^{1} \log (x) f(x) \mathrm{d} x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)+e_{n}
$$

For $f(x)=\sin \left(x^{2} / 100\right)$ and $x \in[0,1]$, Taylor-series expansion gives $f(x) \cong(x / 10)^{2}+\mathcal{O}\left((x / 10)^{6}\right)$ so Gauss quadrature with $n=2$, exact for quadratics will have $\left|e_{n}\right|<10^{-6}$. The evaluation nodes x_{1}, x_{2} are roots of $p_{2}(x)$ from the orthogonal polynomial set $\left\{p_{0}(x), p_{1}(x), p_{2}(x)\right\}$, obtained by applying the Gram-Schmidt algorithm to $\left\{1, x, x^{2}\right\}$ with scalar product

$$
(u, v)=-\int_{0}^{1} \log (x) u(x) v(x) \mathrm{d} x
$$

and associated norm $\|u\|=(u, u)^{1 / 2}$. Compute:

$$
-\int_{0}^{1} \log (x) x^{k} \mathrm{~d} x=\frac{1}{(k+1)^{2}}
$$

arising in application of Gram-Schmidt

$$
\begin{gathered}
p_{0}(x)=1 /(1,1)^{1 / 2}=1 \\
q_{1}(x)=x-\left(x, p_{0}\right) p_{0}(x)=x-1 / 4 \\
p_{1}(x)=q_{1}(x) /\|q\|=144(x-1 / 4) / 7 \\
q_{2}(x)=x^{2}-\left(x^{2}, p_{0}\right) p_{0}(x)-\left(x^{2}, p_{1}\right) p_{1}(x)
\end{gathered}
$$

The polynomial $p_{2}(x)=q_{2}(x) /\left\|q_{2}\right\|$ has same roots x_{1}, x_{2} as $q_{2}(x)$. The weights w_{1}, w_{2} are determined by imposing exact quadrature results for integrands $1, x$

$$
\begin{gathered}
\int_{0}^{1} \log (x) \mathrm{d} x=-1=w_{1}+w_{2} \\
\int_{0}^{1} \log (x) x \mathrm{~d} x=-\frac{1}{4}=w_{1} x_{1}+w_{2} x_{2} .
\end{gathered}
$$

2. Assume the real-valued sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ exhibits first-order convergence to $a \in \mathbb{R}$.
a) What is the limit of the sequence

$$
y_{n}=\frac{x_{n} x_{n+2}-x_{n+1}^{2}}{x_{n+2}-2 x_{n+1}+x_{n}} ?
$$

b) At what rate does $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ converge?

Solution. Change origin to make $a=0$ and simplify calculations. First-order convergence $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ implies

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}=C \in(0,1)
$$

Assume $x_{n}>0$, such that $x_{n+2} \cong C x_{n+1} \cong C^{2} x_{n}$, for large enough n

$$
y_{n} \rightarrow \frac{\left(C^{2}-C^{2}\right) x_{n}^{2}}{\left(C^{2}-2 C+1\right) x_{n}}=0
$$

so y_{n} sequence has the same limit. Consider now second-order terms $x_{n+2} \cong C x_{n+1}+D x_{n+1}^{2}$

$$
y_{n}=\frac{x_{n}\left[C\left(C x_{n}+D x_{n}^{2}\right)+D\left(C x_{n}+D x_{n}^{2}\right)^{2}\right]-\left(C x_{n}+D x_{n}^{2}\right)^{2}}{C\left(C x_{n}+D x_{n}^{2}\right)+D\left(C x_{n}+D x_{n}^{2}\right)_{n+1}^{2}-2\left(C x_{n}+D x_{n}^{2}\right)+x_{n}}=\frac{C D}{C-1} x_{n}^{2}+\mathcal{O}\left(x_{n}^{3}\right)
$$

showing that y_{n} exhibits second-order convergence.
3. Find the best approximation of \sqrt{x} by a first-degree polynomial on the interval $[0,1]$.

Solution. Introduce the error $e(x ; a, b)=a x+b-\sqrt{x}$, and consider the p-norms for functions $f:[0,1] \rightarrow \mathbb{R}$

$$
\|f\|_{p}=\left(\int_{0}^{1}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}
$$

Interpret "best approximation" to mean minimal 2-norm

$$
\min _{a, b \in \mathbb{R}}\|e\|_{2}
$$

(Note: choice of a specific norm when nothing is specified in the problem is fine. It is not acceptable however to choose a set of discrete points x_{0}, \ldots, x_{n} since the problem specifically requests a best approximation over the interval $[0,1]$.)

Compute

$$
g(a, b)=\|e\|_{2}^{2}=\left(\int_{0}^{1}(a x+b-\sqrt{x})^{2} \mathrm{~d} x\right)=\frac{a^{2}}{3}+a\left(b-\frac{4}{5}\right)-\frac{4 b}{3}+b^{2}+\frac{1}{2}
$$

and seek minima by solving

$$
\frac{\partial g}{\partial a}=\frac{2 a}{3}+b-\frac{4}{5}=0, \frac{\partial g}{\partial b}=a+2 b-\frac{4}{3}=0
$$

with solution $a=4 / 5, b=4 / 15$.
4. Approximate $x(1 / 2)$ to relative error $\varepsilon=10^{-3}$ with $x(t)$ solution of the two-point boundary value problem

$$
\begin{aligned}
& x^{\prime \prime}+2 x^{\prime}+10 x=0 \\
& x(0)=1, x(1)=2
\end{aligned}
$$

Solution. The characteristic equation of the ODE is $r^{2}+2 r+10=0$, with roots $r_{1,2}=-1 \pm 3 i$, so the solution has form

$$
x(t)=e^{-t}(a \cos 3 t+b \sin 3 t) .
$$

Boundary conditions give

$$
1=a, 2=e^{-1}(\cos 3+b \sin 3) \Rightarrow b=(2 e-\cos 3) / \sin 3
$$

so

$$
x\left(\frac{1}{2}\right)=e^{-1 / 2}\left(\cos \frac{3}{2}+\frac{2 e-\cos 3}{\sin 3} \sin \frac{3}{2}\right)
$$

Euler's number is $e=2.71828$. Construct a numerical approximation of $e^{-1 / 2}$ by applying Newton's method to

$$
\begin{gathered}
f(z)=1 / z^{2}-e=0, f^{\prime}(z)=-2 / z^{3} \\
z_{n+1}=z_{n}-\frac{f\left(z_{n}\right)}{f^{\prime}\left(z_{n}\right)}=z_{n}+\frac{z_{n}^{3}}{2}\left(\frac{1}{z_{n}^{2}}-e\right)=\left(3-e z_{n}^{2}\right) \frac{z_{n}}{2} .
\end{gathered}
$$

Start from $z_{0}=1 / 1.6=0.625 \quad\left(\right.$ since $\left.1.6^{2}=2.56\right)$, giving $z_{1}=0.60568, z_{2}=0.6065 \cong e^{-1 / 2}$. Next,

$$
\begin{gathered}
\sin \frac{3}{2}=\sin \left(\frac{\pi}{2}-0.0708\right)=\cos (0.0708) \cong 1-\frac{0.0708^{2}}{2} \cong 0.9975 \\
\cos \frac{3}{2}=\cos \left(\frac{\pi}{2}-0.0708\right)=\sin (0.0708) \cong 0.0708 \\
\sin 3=2 \sin \frac{3}{2} \cos \frac{3}{2} \cong 0.141 \\
\cos 3=\cos ^{2} \frac{3}{2}-\sin ^{2} \frac{3}{2} \cong-0.99
\end{gathered}
$$

Using these numerical approximations

$$
x\left(\frac{1}{2}\right)=0.6065\left[0.0708+\frac{2 \times 2.71828+0.99}{0.141} 0.9975\right] \cong 27.62
$$

5. Consider the Cholesky factorization $A=L L^{T}$ of $A \in \mathbb{R}^{m \times m}$, symmetric positive definite. Given L write the pseudocode to compute A with minimal use of computational resources (memory, floating point operations). Specify the algorithm complexity.

Solution. Start from matrix multiplication formula

$$
a_{i, j}=\sum_{k=1}^{m} l_{i, k} l_{j, k}
$$

and use $l_{i, k}=0$ for $k>i, l_{j, k}=0$ for $k>j$ to obtain

$$
a_{i, j}=\sum_{k=1}^{\min (i, j)} l_{i, k} l_{j, k}
$$

It is possible to return A by overwriting L, hence no additional memory is required

Algorithm

```
for }i=1\mathrm{ to }
    for }j=i\mathrm{ downto 1
        n=min (i,j)
        s=0
        for }k=1\mathrm{ to }
            s=s+li,k}\mp@subsup{l}{j,k}{
        li,j=s
return L
```

Memory: $1+2+\ldots+m=m(m+1) / 2=\mathcal{O}\left(m^{2} / 2\right)$ locations
Floating point ops (count along principal minors): $\frac{1}{2} \sum_{k=1}^{m}(2 k-1) k=\mathcal{O}\left(m^{3} / 6\right)$.
6. Determine the condition number of the algorithm

$$
x \rightarrow \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

Solution. Assume $f: \mathbb{R} \rightarrow \mathbb{R}, f \in C^{3}(\mathbb{R})$. The (relative) condition number is defined as

$$
\kappa=\frac{|\delta F|}{|\delta x|} \frac{|x|}{|F(x)|}
$$

with

$$
F(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

Compute

$$
\delta F=F(x+\delta x)-F(x)=\frac{f(x+\delta x+h)-2 f(x+\delta x)+f(x+\delta x-h)}{h^{2}}-\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

Taylor series expand and keep $\mathcal{O}(\delta x)$ terms

$$
\delta F=\frac{f^{\prime}(x+h)-2 f^{\prime}(x)+f^{\prime}(x-h)}{h^{2}} \delta x
$$

to obtain condition number

$$
\kappa=\left|\frac{f^{\prime}(x+h)-2 f^{\prime}(x)+f^{\prime}(x-h)}{f(x+h)-2 f(x)+f(x-h)}\right||x| .
$$

For small $h, \kappa=\left|x f^{\prime \prime \prime}(x) / f^{\prime \prime}(x)\right|$.

