
SciComp Practice Exam 5/19/14

Answer the following questions explaining all steps that lead to a solution. Results presented without moti-

vation will not receive any credit.

1. Construct a fourth-order accurate approximation formula of f ′(x0), based on values of f : R → R at
points xi = x0 + ih, i∈Z. Provide an estimate of the step size h that provides smallest relative error of the
approximation in double precision floating point computation. Assume f ∈C∞(R).

Solution. Introduce notation fi= f(xi), fi
′= f ′(xi), fi

(k)
= f (k)(xi) for k >1. Problem asks for a fourth-order

approximation A, i.e.

f0
′ =A(f−p,
 , fq) +O(h4), p, q ∈Z.

Assume A linear, and note that Taylor series expansion around x0 gives
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× (2) of above formulas to cancel O(h2) term and obtain

f0
′ =

−f2 + 8f1− 8f−1 + f−2

12h
− 4h4

5!
f0

(5)
+O(h4). (3)

In floating point computations, subtraction of like quantities in the expression −f2+8f1−8f−1 + f−2 leads
to catastrophic loss of significant digits in approximation of f0

′ as h → 0. The absolute condition number
(not relative in this case, since we’re interested in behavior as h∼ 0) of the problem

F : h→ −f2 +8f1− 8f−1 + f−2

12h

w.r.t. changes in the step size h is
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To O(δh) accuracy
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leading to condition number estimate
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The overall absolute error in floating point computation of f0
′ using (3) will contain the truncation error

4h4/5!f0
(5) (error due to use of an approximate analytical expression, i.e. ’like truncating a series’) and the

rounding error κabs ǫmach (error due to use of approximations of real numbers, i.e. ’like rounding a number’),
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with an optimal step size h determined by
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(Grading note: Formula (3) ∼30%, error analysis ∼70%)

2. Write an algorithm to evaluate f(x) = (1 − cos x)/x with minimal loss of precision in floating point
arithmetic.

Solution. f(x) numerator can lead to loss of precision when cosxF 1, and the denominator is 0 at x=0, but

lim
x→0

f(x) =0,

using 1− cos x =2 sin2 (x/2).

Algorithm 1

function f(x):
if abs(x) <ǫmach then
return x

else
x2 = 0.5x, y = sin (x2)
return y2/x2

3. Let p∈ (0,∞). What is the value of

x = p + p +
 + p +
√√

√

?

Solution. Define sequence xn+1 = p+ xn

√
, x0 = 0, and note that x = limn→∞xn, and x is fixed point of

g(x) = p +x
√

. Solve

x= p + x
√

to find

x=
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4. Show that ‖‖:Rm×m→R+ defined as

‖A‖=
∑

i=1

m
∑

j=1

m

|aij |,

is a matrix norm, and not subordinate to any vector norm.

Solution. Verify norm properties:

a) ‖A‖= 0⇒A= 0:
∑

i=1
m ∑

j=1
m |aij |=0 sum of positive quantities, hence aij =0, i.e. A =0

b) ‖αA‖= |α| ‖A‖: ‖αA‖=
∑

i=1
m ∑

j=1
m |αaij |= |α|∑

i=1
m ∑

j=1
m |aij |= |α| ‖A‖

c) ‖A +B‖> ‖A‖+ ‖B‖:∑
i=1
m ∑

j=1
m |aij + bij |>

∑

i=1
m ∑

j=1
m |aij |+

∑

i=1
m ∑

j=1
m |bij |= ‖A‖+ ‖B‖
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The matrix norm ‖ ‖ is subordinate to a vector norm ‖ ‖v if

‖A‖= sup
‖x‖v=1

‖Ax‖v.

By contradiction: assume ‖‖ is subordinate to ‖‖v, take A= I, and let u denote a unit norm vector (‖u‖v =1)

such that ‖I‖= sup‖x‖v=1 ‖Ix‖v =1, but ‖I ‖=
∑

i=1
m ∑

j=1
m |eij |= m, contradiction for m > 1.

5. For given A∈R
m×n, α∈R+, define F :Rn→R+ by

F (x)= ‖Ax− b‖2
2 + α‖x‖2

2.

Prove that solving

min
x

F (x),

is equivalent to solving

(ATA + αI)x =ATb. (4)

For x solution of (1) compute F (x +h) (h∈R+) in terms of F (x), α, h, A.

Solution. Write

F (x) = (xTAT − bT)(Ax−b)+ αxTx =xTATAx− bTAx− xT ATb + bTb+ αxTx,

and compute

∇F (x)= 2ATAx− 2ATb +2αx.

F (x) is convex, hence stationary points x satisfying ∇F (x) =0 are minima so

(ATA + αI)x =ATb⇔min
x

F (x).

Compute F (x +h) by Taylor series expansion

F (x+ h)= F (x)+ hT (ATA+ αI)h.

In the above, the linear term in h is null since x is chosen such that F (x), and there are no terms higher
than quadratic since F is quadratic in x.

6. Determine the end conditions for a cubic spline interpolation S(x) that minimize

∫

a

b

[S ′′(x)]2 dx.

Solution. Let a = x0, x1, 
 , xn = b denote the knots of the spline interpolation of function y ∈ C2([x0, xn]),
y(xi)≡ yi, i = 0,
n. Recall that a cubic spline is defined as

S(x)= Si(x)= ai(x− xi−1)
3 + bi(x−xi−1)

2 + ci(x−xi−1)+ yi−1 for x∈ [xi−1, xi],

already satisfying interpolation conditions S(xi−1)= yi−1, and requiring 3n conditions to determine (ai, bi, ci)
for i = 1,
 , n. Imposing Si(xi) = yi, i = 1,
 , n, and Si

′(xi) = Si+1
′ (xi), Si

′′(xi) = Si+1
′′ (xi) for i = 1,
 , n− 1,

gives 3n− 2 conditions, hence 2 end conditions are arbitrary.
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The functional

I(S)=

∫

a

b

[S ′′(x)]2 dx> 0,

is a measure of the overall curvature of the spline interpolation, which should be bounded by the curvature
of the interpolated function y(x) itself to reduce approximation error away from the interpolation nodes, i.e.
the inequality

I(S)6 I(y)

should hold. Establish this by introducing the error function E(x)= y(x)−S(x), and compute

I(y) =

∫

a

b

[y ′′(x)]2 dx =

∫

a

b

[E ′′(x)+ S ′′(x)]2 dx = I(S)+ I(E)+ 2

∫

a

b

S ′′(x)E ′′(x) dx.

Since I(E)> 0, proving that

J =

∫

a

b

S ′′(x)E ′′(x) dx= 0,

would establish I(S) 6 I(y) (note that this is a scalar product of the curvature, and the above imposes
orthogonality of the spline curvature to the error curvature). Separate the integral over knot subintervals
and integrate by parts (u= S ′′⇒ du =S ′′′dx, dv = E ′′dx⇒ v = E ′)

J =

∫

a

b

S ′′(x) E ′′(x) dx =
∑

i=1

n ∫

xi−1

xi

Si
′′(x)Ei

′′(x)dx=
∑

i=1

n
{

[S ′′(x)E ′(x)]x=xi−1

x=xi −
∫

xi−1

xi

E ′(x)Si
′′′(x) dx

}

Over interval [xi−1, xi], Si
′′′= 6ai, constant, hence

∫

xi−1

xi

E ′(x)Si
′′′(x) dx =6ai

∫

xi−1

xi

E ′(x) dx =6ai(E(xi)−E(xi−1))= 0,

since there is no error at nodes (interpolation condition), leading to

J =
∑

i=1

n

[S ′′(x)E ′(x)]x=xi−1

x=xi

J = S ′′(xn)E ′(xn)−S ′′(xn−1)E
′(xn−1) +

S ′′(xn−1)E
′(xn−1)−S ′′(xn−2)E

′(xn−2)+
 +

S ′′(x1)E
′(x1)−S ′′(x0)E

′(x0) =S ′′(xn)E ′(xn)−S ′′(x0)E
′(x0),

and J can be made null by choosing end conditions S ′′(x0)= 0, S ′′(xn)= 0.

I =
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