
Scienti�c Computation Comprehensive Examina-
tion

by Fall 2016

Answer 5 questions of your choice explaining all steps that lead to a solution. Partial
credit will be awarded for presenting a viable solution strategy. No credit will be given to
computations presented without motivation.
I. Find a solution of the system

�
sin (x)+ cos (y)+ exp (x y)= 1.5;
arctan (x+ y)¡x y=0

(1)

to two signi�cant digits of accuracy.
Solution. This is a nonlinear system of form F (X) = 0. Given an initial approximation

X0=(x0; y0)
T close to the solution, Newton's method

F 0(Xn)(Xn+1¡Xn)=¡F (Xn);

Xn=

�
xn
yn

�
; F (X)=

�
f(x; y)
g(x; y)

�
=

�
sin (x)+ cos (y)+ exp (x y)¡ 1.5

arctan (x+ y)¡x y

�
;

F 0(X)=

 
cos (x)+ y exp (x y) ¡sin(y)+x exp(xy)

1

1+ (x+ y)2
¡ y

1

1+ (x+ y)2
¡x

!
;

converges to the solution quadratically, en+1 6Cen
2, with en= kXn¡Xk, C � kF 0k/kF 00k,

X system solution. Since X is unknown, use fact that R2 is complete to state quadratic
convergence as "n+1 6 C"n

2, "n = kXn+1 ¡ Xnk. The imposed accuracy of two signi�cant
digits would be obtained upon a Newton iteration with initial error "0 =� 0.1/ C

p
. Hence

the main task is to �nd an initial approximation of the desired accuracy, and estimate
C. Additionally, evaluation of the transcendental functions f ; g requires construction of
readily hand-computable approximants. The simplest to evaluate initial approximation is
X0=(0; 0)T , which leads to�

1 0
1 1

�
X1=¡

�
0.5
0

�
)X1=

�
¡0.5
0.5

�
) "1= 2

p
; C�O(1);

implying "2> 0.01, hence a better initial approximation is needed.
(Note: statement of the above algorithm, analysis, recognition of need for transcendental

function approximation, likely excessive computation from starting point (0,0) would result
in 8/10 score for this problem, remaining 2/10 for obtaining a better initial approximant)

To �nd a good initial approximation, note that solution of system (1) corresponds to
intersection of curves (�; �) de�ned implicitly by

�: f(x; y)= sin (x)+ cos (y)+ exp (x y)¡ 1.5=0
�: g(x; y)= arctan (x+ y)¡x y=0

:

1



Use the implicit function theorem to �nd the slopes of the �; � curves as�
dy
dx

�
�

=¡
�
@f
@x

�
/

�
@f
@y

�
=

cos(x)+ y exp(xy)
sin(y)¡x exp(xy) = s(x; y); (2)

�
dy
dx

�
�

=¡
�
@g
@x

�
/

�
@g
@y

�
=¡1¡ y¡ y(x+ y)2

1¡ x¡x(x+ y)2
= t(x; y): (3)

Note that g(0; 0)=0, hence the solution to (1) is a point on the curve de�ned by the initial
value problem (IVP)

�:

�
y 0= t(x; y)
y(x=0)=0

; (4)

with slope at (x; y) = (0; 0) given by y�
0 (0) = t(0; 0) =¡1. The corresponding (IVP) for the

� curve is

�:

�
y 0= s(x; y)
y(x=0)= �

;

with � the solution of f(0; �)= cos �¡ 0.5=0) �= �/3=� 1.047. The slope of the � curve
at (x; y)=(0;0) is y�0 (0)=s(0;�/3)=(1+�/3)/

¡
3

p
/2
�
=�2.364. These linear approximants

p1(x)= 2.364x+ 1.047; q1(x)=¡x;

of the integral curves (�; �) intersect at (x0; y0)= (¡0.31; 0.31). The qualitative behavior of
the curves is shown in Fig. 1.
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Use this as an initial approximation for Newton's method

F 0(X0)(X1¡X0)=¡F (X0)

and evaluate

F (X0)=

�
¡S+C + exp(P )¡ 1.5

¡P

�
; F 0(X)=

�
C + y0 exp (P ) ¡S+ x0 exp(P )

1¡ y0 1¡x0

�
through series expansions

P =¡0.312=¡0.0961
exp(P )=� 1+P +P 2/2=� 0.909

S= sin(0.31)=� 0.31¡ 0.313

3! =� 0.305

C = cos(0.31)=� 1¡
0.312

2! =� 0.952
to give �

1.234 ¡0.587
0.69 1.31

��
x1+ 0.31
y1¡ 0.31

�
=

�
0.055
0.0961

�
:

Solving gives (x1; y1)=(¡0.318;0.387), hence "0=�0.08, with C�O(1), and one more Newton
iterate (not computed due to time constraint) would give desired precision.

II. Find the best approximation in the inf-norm on interval [-1,1] of cosh (x) = 1

2
(ex+ e¡x)

by a quadratic polynomial.

Solution. Since cosh(x) is an even function, the problem can be stated as

min
a;b

max
06x61

j"(x)j; "(x)= a+ bx2¡ cosh(x):

Extrema of ": [0;1]!R are either endpoint values "(0),"(1) (since [0;1] is compact), or local
maxima/minima "(t), with t solutions within (0,1) of

"0(x)= 2bx¡ sinh(x)= 0:

The possible extrema are therefore

y1(a)= "(0)= a¡ 1; y2(a; b)= "(1)= a+ b¡ cosh(1);

y3(a; b)= "(t)= a+ bt2¡ cosh t; 2bt¡ sinh(t)= 0:

From the Chebyshev alternating theorem (equioscillation theorem)

y1(a)=¡y3(a; b)= y2(a; b);

and the best inf-norm approximant is b= cosh(1)¡ 1, and a from solution of system8<: 2a=1¡ bt2+ cosh t
2bt= sinh(t)
b= cosh(1)¡ 1

:



III. For a function f(x); x2 [0; 1], consider the composite midpoint rule for computing

I(f)=

Z
0

1

f(x) d x�h
X
i=1

n

f ((i¡ 1
2
)h)=Q(f ; n)

where h= 1

n
,

(1) Suppose that f 2C1[0; 1], prove that

I(f)¡Q(f ; n)= a1h2+O(h3): (5)

Solution. Write

I(f)=
X
i=1

n Z
(i¡1)h

ih

f(x) d x;

Taylor series expand in each subinterval,

I(f)=
X
i=1

n Z
(i¡1)h

ih
�
fi¡1/2+ fi¡1/2

0 �
�
x¡ (i¡ 1

2
)h

�
+
1
2
f 0
i¡1/2
0 �

�
x¡ (i¡ 1

2
) h

�
2

+ :::

�
d x;

compute the individual integrals of odd/even functionsZ
(i¡1)h

ih
�
x¡ (i¡ 1

2
)h

�
2k+1

dx=0;

Z
(i¡1)h

ih
�
x¡ (i¡ 1

2
)h

�
2k

dx=O(h2k+1);

to obtain

I(f)=
X
i=1

n

fhfi¡1/2+O(h3)g=�Q(f ; n)+nO(h3)+nO(h5);

with n=O(1/h).
This veri�es (5), which could also be written as the tighter bounds

I(f)¡Q(f ; n)= a1h2+ a2h4+ :::= a1h2+O(h4)= a1h2+ o(h3):

(2) Consider f(x)= 1

x�
, with 0<�<1, notice that there is a singularity at x=0. Could you

�nd � in the formula

I(f)¡Q(f ; n)= c h� ?

Solution. Previous estimate holds except for subinterval [0; h] on which the exact integral is

I0=

Z
0

h

f(x) dx=

Z
0

h dx
x�

=
h1+�

1+�
;



approximated by

Q0= hf1/2=
h

(h/2)�
=2�h1¡�;

leading to error

e0= I0¡Q0=
h1+�

1+�
¡ 2�h1¡�=O(h1¡�);

hence �=1¡�.
(3) (�midpoint rule" with end-point corrections) Now consider f(x)= 1

x
p g(x), describe how

to modify the midpoint rule and get higher order accuracy by adding a �local correction",

i.e., by changing the weight for the function value f(h
2
)=

g(
h

2
)

h

2

q .

Solution. Again, initial estimates holds (assuming g 2 C1[0; 1]) except for subinterval
[0; h]. Apply mean-value theorem

I0=

Z
0

h g(x)

x
p dx=2 h

p
g(�);

and the local approximant is

Q0= 2h
p

wg(
h
2
):

Since

g(�)= g

�
h
2

�
+ g 0

�
h
2

�
h
2
+O(h2);

the error becomes

I0¡Q0=2 h
p �

g

�
h
2

�
+ g 0

�
h
2

�
h
2
+O(h2)

�
¡ 2h
p

wg(
h
2
)

I0¡Q0= g

�
h
2

��
2 h
p

¡ 2h
p

w
�
+O(h5/2);

and choosing w= 2
p

increases accuracy to O(h5/2) from O(h1/2).
IV. Construct the third order explicit Runge-Kutta formula that approximates solutions of
the ordinary di�erential equation y 0(t) = f(t; y) and uses evaluations of f at intermediate
steps t; t+h/2; t+3h/4.

Solution. The formula is of form

yn+1= yn+h(w1K1+w2K2+w3K3);
K1= f(tn; yn);
K2= f(tn+h/2; yn+�21hK1);
K3= f(tn+3h/4; yn+�31hK1+�32hK2):



The unknown weights w1; w2; w3 and coe�cients �11; �21; �22 are determined by matching
Taylor series expansion up to 3rd order.

yn+1= yn+ yn
0h+

1

2
yn
00h2+

1

6
yn
000h3+O(h4)

yn
0 = f
yn
00= ft+ fyf
yn
000= ftt+ ftyf + fy(ft+ fyf)+ (fyt+ fyyf)f

=ftt+2ffty+ fy ft+ fy
2f + fyyf

2

K1= f

K2= f +
h

2
ft+�21hK1 fy+

h2

8
ftt+

1

2
�21h2K1fty+

1

2
(�21hK1)2fyy+O(h3)

K3= f +
3h

4
ft+(�31K1+�32K2)hfy+

9h2

32 ftt+
3h2

4
(�31K1+�32K2)fty+

h2

2
(�31K1+�22K2)2fyy+O(h3)

with f � f(tn; yn); ft= @tf(tn; yn); ::: . Identi�cation of coe�cients of hp; p= 0; 1; 2; 3 and
various combinations of f ; ft; fy; ::: yields

p=0: yn: 1= 1
p=1: f : (eq1) 1=w1+w2+w3
p=2: ft: (eq2) 1

2
=

1

2
w2+

3

4
w3

ffy: (eq3) 1

2
=�21w2+(�31+�32)w3

p=3: ftt: (eq4) 1

6
=

1

8
w2+

9

32w3

ffty: (eq5) 1

3
=

1

2
�21w2+

3

4
(�31+�32)w3

ft fy: (eq6) 1

6
=

1

2
�32w3

ffy
2: (eq7) 1

6
=�21�32w3

f 2 fyy: (eq8) 1

6
=

1

2
�21
2 w2+

1

2
(�31+�22)2w3

There are 8 nonlinear equations for 6 unknowns w1; w2; w3; �21; �31; �32. From (eq6,eq7),
�21=1/2. Solving the linear subsystem (eq1,2,4) gives

w1=
2
9
; w2=

3
9
; w3=

4
9
:

Replacing in above gives

�31+�32=
3
4
;

�31+�32=
3
4
;

(�31+�32)2=
9
16
;

showing a 1-parameter family of 3rd-order Runge-Kutta methods that use evaluations at t;
t+ h/2; t+3h/4. One e�cient choice is �31=0, �32=3/4.



V. Suppose the n � n non-singular matrix A is factored as A = L H where L is lower
triangular with ones on its diagonal and H is upper Hessenberg (i.e., all elements hi; j=0 if
j < i¡ 1). Design an e�cient algorithm to compute the LU decomposition of A from L and
H. Discuss the number of operations and memory usage of your algorithm. You may assume
pivoting is not necessary.

Solution. Rewrite the factorization as A = LGn¡1
¡1 :::G2

¡1G1
¡1G1G2:::Gn¡1H with Gi the

Gauss multiplier matrix that eliminates element hj+1;j of the Hessenberg form

Gi=

0BBBBBB@
1
���

1 0 row i
¡gi 1 row i+1

���
1

1CCCCCCA; gi=
hi+1;i
hi;i

; Gi
¡1=

0BBBBBB@
1
���

1 0
gi 1

���
1

1CCCCCCA:

The desired LU decomposition is A=TU , T =LGn¡1
¡1 :::G1

¡1, U =G1:::Gn¡1H. No additional
memory is required (overwriting L;H) and the number of operations is 4� (1+2+ :::+n¡
1)=O(2n2) (1 �op = 1 � or 1 +).

Algorithm

for i=1 to n¡ 1
g=hi+1;i/hi;i
for j= i to n

hi+1;j=hi+1;j¡ ghi; j
lj;i= lj;i+ glj;i+1

VI. Using the singular value decomposition, one can determine the numerical rank of a
matrix by studying the singular values and can also approximate the original matrix by a
lower rank matrix to a prescribed accuracy requirement. Describe an algorithm based on
the modi�ed Gram-Schmidt (MGS) scheme and proper pivoting technique (permutation
matrix), so that the modi�ed QR algorithm is also rank revealing (i.e., the diagonal entries
of the R matrix play the same role as the singular values).

Solution. The modi�ed Gram-Schmidt algorithm (below) without permutations for A=
(a1:::an)2Rm�n fails if rii=0 indicating ai2 spanfa1; :::; ai¡1g.

Algorithm

for i=1:n
rii=



ai

; qi= ai/rii
for j=2:n
rij= ai

T qj; aj= aj¡ rijqi



To obtain behavior similar to the SVD, the columns of A should be permuted such that
at each stage rii is maximal.

Algorithm

for i=1:n
for l= i+1:n
if kalk> kaik: swap(al; ai)

rii=


ai



if jriij6 �: 'Numerical rank=',i¡ 1; exit
qi= ai/rii
for j=2:n
rij= ai

T qj; aj= aj¡ rijqi


