Scientific Computation Comprehensive Examina-
tion
BY FALL 2016

Answer 5 questions of your choice explaining all steps that lead to a solution. Partial
credit will be awarded for presenting a viable solution strategy. No credit will be given to
computations presented without motivation.

I. Find a solution of the system

sin (z) 4 cos (y) +exp (xy) = 1.5,
{ arctan (:E—I—y)y—xyi)(] / (1)

to two significant digits of accuracy.
Solution. This is a nonlinear system of form F'(X)=0. Given an initial approximation
Xo= (9, y0)T close to the solution, Newton’s method

FI(X) (X1 — X)) =—F(X,),
Xn=< Tn ),F(X):< flz,y) ):( sin () + cos (y) +exp (zy) — 1.5 )

Un g(z,y) arctan (r +y) —ry

cos(x)+yexp(ry) —sin(y)+ zexp(zry
FX) = ()1 (zy) ()1 (zy) |
Tty Y [EREEEMER

converges to the solution quadratically, e, < CeZ, with e, = || X,, — X||, C ~ ||[F'|| /| F"|,
X system solution. Since X is unknown, use fact that R? is complete to state quadratic
convergence as e,41 < Ce2, ¢, = | Xns1 — X,||. The imposed accuracy of two significant
digits would be obtained upon a Newton iteration with initial error g9 2 0.1/+/C. Hence
the main task is to find an initial approximation of the desired accuracy, and estimate
C. Additionally, evaluation of the transcendental functions f, g requires construction of

readily hand-computable approximants. The simplest to evaluate initial approximation is
Xo=1(0,0)T, which leads to

(103 () vremon

implying €5 > 0.01, hence a better initial approximation is needed.

(Note: statement of the above algorithm, analysis, recognition of need for transcendental
function approximation, likely excessive computation from starting point (0,0) would result
in 8/10 score for this problem, remaining 2/10 for obtaining a better initial approrimant)

To find a good initial approximation, note that solution of system (1) corresponds to
intersection of curves («, ) defined implicitly by

f(z,y)=sin(z) +cos (y) +exp(zy) —1.5=0 _
9

o
B: g(x,y)=arctan (z+y) —zy=0



Use the implicit function theorem to find the slopes of the «, § curves as

dy) _ Of \ _ cos(x)+ yexp(xy)
(d > N ( )/<8y)_sin(y)—xexp(a:y) s, 9), (2)
@ _ g\ _ l—y—ylz+y)?*_
Note that ¢g(0,0) =0, hence the solution to (1) is a point on the curve defined by the initial
value problem (IVP)
Jy=t(r,y)
with slope at (z, y) =(0,0) given by y53(0) =¢(0,0) = —1. The corresponding (IVP) for the
« curve is
S y'=s(z,y)
a :
{ yle=0)=n

with 7 the solution of f(0,7)=cosn—0.5=0=n=7/3x1.047. The slope of the a curve
at (z,y)=(0,0) is y4(0)=s(0,7/3)=(1+7/3) / (V3 /2)=2.364. These linear approximants

pi(z) =2.364x + 1.047, g1 () = —=,

of the integral curves («, ) intersect at (xo, yo) = (—0.31,0.31). The qualitative behavior of
the curves is shown in Fig. 1.
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Use this as an initial approximation for Newton’s method
F'(Xo) (X1 — Xo) = —F(Xo)
and evaluate

F(Xo):< —S+C+E>g>(P)—1.5 ),F’(X):< C+i/0_e>;i>(P) —SJrlg;_Oz:p(p) )

through series expansions
P=-0.312=-0.0961
exp(P)~1+ P+ P?*/220.909

3
S =sin(0.31) 2 0.31 — 0.;1 ~(.305
3!
C =cos(0.31) 21— 0';1 ~(.952

to give

1.234 —0.587 r1+031 \ ([ 0.055

0.69 1.31 y1—0.31 )\ 0.0961 )
Solving gives (x1, y1) = (—0.318,0.387), hence £y~ 0.08, with C'~ O(1), and one more Newton
iterate (not computed due to time constraint) would give desired precision.

IT. Find the best approximation in the inf-norm on interval [-1,1] of cosh (z) :% (e"4e™)
by a quadratic polynomial.

Solution. Since cosh(z) is an even function, the problem can be stated as

i e(x)|,e(x) =a+ bx? — cosh(x).
%71§0g3§1| (x)],e(x) =a+bx* — cosh(x)

Extrema of €:]0,1] — R are either endpoint values €(0),£(1) (since [0, 1] is compact), or local
maxima,/minima e(¢), with ¢ solutions within (0,1) of

e'(x) =2bx — sinh(z) =0.
The possible extrema are therefore
yi(a)=e(0)=a—1,ys(a,b)=e(1) =a+b— cosh(1),
ys(a,b) =&(t) =a+bt*— cosh t, 2bt — sinh(t) =0.

From the Chebyshev alternating theorem (equioscillation theorem)

yi(a) = —ys(a,b) = ya(a,b),
and the best inf-norm approximant is b= cosh(1) — 1, and a from solution of system

2a=1—bt?>+ cosht

2bt = sinh(t)
b=cosh(1l)—1



ITI. For a function f(z),x € [0, 1], consider the composite midpoint rule for computing

1= [ ra)da=hy 1i-pn=alf.n)

where h = %,
(1) Suppose that f € C>|0, 1], prove that

I(f) = Q(f,n)=a1h*+ O(h?). (5)
Solution. Write

n ih
=Y [ ra)dz,

Taylor series expand in each subinterval,

[(f):zn:/ih {fi—1/2+f"—1 Z'lx—(i—l)h}rl " -lx—(z’—l)hrJr...}dx
~ Ji-vn -y 2 5/ i-1y2 5 :

compute the individual integrals of odd/even functions
ih 1. 2kt ih 1. 2k
/ {m—@—ﬁh} dxz&/‘ lx—@—ﬁh}dx:Om%“L
(i—1)h 2 (i=1)h 2

to obtain

(/)= A{hfic1p+OR)} = Q(f,n) +nO(h?) +nO(h?),

i=1
with n=0(1/h).
This verifies (5), which could also be written as the tighter bounds

I(f) = Q(f,n) =ah®*+ah* + ... = a1h® + O(h*) = arh® + o(h?).

(2) Consider f(z)= mia, with 0 < a <1, notice that there is a singularity at x=0. Could you
find S in the formula
I(f) = Q(f,n)=ch??

Solution. Previous estimate holds except for subinterval [0, k] on which the exact integral is

hdx:hHa

h
10:/0 flz)dz = o

Y

¢ 1+«



approximated by

— _ h _9galhl—«
Qo_h’fl/2_(h/2)a_2 h’ )

leading to error
hl—l—a

_9apl-a__ 11—«
a2 O(hi=2),

GQZIO—QOZ

hence f=1— .
(3) (“midpoint rule" with end-point corrections) Now consider f(z)= % g(x), describe how
to modify the midpoint rule and get higher order accuracy by adding a “local correction",

h
i.e., by changing the weight for the function value f (g) = g(\/%).
Bl

Solution. Again, initial estimates holds (assuming g € C*°[0, 1]) except for subinterval
[0, h]. Apply mean-value theorem

h
foz/o %)dx:zﬁg(o,

and the local approximant is

Qo=v2h wg(g)-

9(&) = g(g) + g’(g)g +O(R?),

Iy— Qo=2 \/ﬁ{g@) + g’@)g + O(hz)} —Vahwg(™

Since

the error becomes

2 2

and choosing w = /2 increases accuracy to O(h*?) from O(h'/?).

I'V. Construct the third order explicit Runge-Kutta formula that approximates solutions of
the ordinary differential equation y'(t) = f(¢, y) and uses evaluations of f at intermediate
steps t,t+h/2,t+3h/4.

Solution. The formula is of form

Ynt1= Yo+ h(wi1 K1 + w2 Ky + w3 K3),

K, = f(tnv yn)v

KQI f(tn+ h/2, yn‘i‘()égl hKl),

K3: f(tn+3h/4, yn+0631hK1 —|—0632hK2).



The unknown weights wq, wo, w3 and coefficients aq1, (a1, aigg are determined by matching
Taylor series expansion up to 3rd order.

Yn+1=Yn + yhh + synh?+ syn'h® + O(h)
Yn=1r
yé[: fi+ fyf
Yn' = fru+ fuf + Fu(fe+ fuf) + (fye+ fouf) f
:ftt+2ffty+ fyft"’ f§f+ fyyf2
K,=f
2
Ko=f+2 fitanh Ky fy+ % fut samh® Ky fuy + s(azih K0)2 f, + O(h?)
2 2
ng f + %ft—F (&31 Kl + 0432K2)hfy -+ %ftt—i- %(0431 Kl + Ckgng)fty +

2
%(0431 Kl + CY22](2>2fyy + O(hg)

with f = f(tn, Yn), ft = Ocf (tn, Yn), ... . Identification of coefficients of h?, p=0, 1, 2,3 and
various combinations of f, fi, fy, ... yields

p=0: y,: 1=
p=1 f: (eql) 1=wi+wr+ w3
p=2 f& (eq2) §=gwz+ Jws
[y (eqd) %:a21w2+(0431+0432)w3
p=3: fu: (eqd) %:%wﬁ—%wg
[ fey: (egd) %:%&21?02—1-%(04314—0&32)103
fefy: (eq0) %:%0432103
ffy21 (eq7) %:%10432%1]3
f? fyy: (eq8) %:%&31?02—1‘%(04314—0422)2103

There are 8 nonlinear equations for 6 unknowns wy, ws, ws, a1, (g1, aga. From (eq6,eq7),
a1 =1/2. Solving the linear subsystem (eql,2,4) gives
e 3 4
1— 9 , W2 — 97 3 0 .
Replacing in above gives
031+ Q3=

)

Q31+ Q3=

Qo] wo

2__
(ag1+ az0)® = 16’

showing a 1-parameter family of 3rd-order Runge-Kutta methods that use evaluations at t,
t+h/2,t4+3h/4. One efficient choice is ag1=0, az2=3/4.



V. Suppose the n x n non-singular matrix A is factored as A = L H where L is lower
triangular with ones on its diagonal and H is upper Hessenberg (i.e., all elements h; ;=0 if
j<i—1). Design an efficient algorithm to compute the LU decomposition of A from L and
H. Discuss the number of operations and memory usage of your algorithm. You may assume
pivoting is not necessary.

Solution. Rewrite the factorization as A = LG, ,...G5 ‘G 'G1Gs.. .G _1H with G; the
Gauss multiplier matrix that eliminates element h;; ; of the Hessenberg form

(*. \ [t

o 1 0 row? . hi+1,i -1 _
Gi= —qg 1 rowi+1 |97 hi.; G = g 1

1 1
The desired LU decomposition is A=TU, T=LG,*,..G7', U=G,...G,_H. No additional

memory is required (overwriting L, H) and the number of operations is 4 x (14+2+...+n —
1)=0(2n% (1 flop =1 x or 1 +).

Algorithm

fori=1ton—1
g=hiz1i/hii
for j=iton
hitr,j="niv1,5— ghi ;
lLii=Llii+gljin

VI. Using the singular value decomposition, one can determine the numerical rank of a
matrix by studying the singular values and can also approximate the original matrix by a
lower rank matrix to a prescribed accuracy requirement. Describe an algorithm based on
the modified Gram-Schmidt (MGS) scheme and proper pivoting technique (permutation
matrix), so that the modified QR algorithm is also rank revealing (i.e., the diagonal entries
of the R matrix play the same role as the singular values).

Solution. The modified Gram-Schmidt algorithm (below) without permutations for A=
(aj...a,) € R™*" fails if r;; =0 indicating a; € span{ay, ..., a;_1}.

Algorithm

fori=1:n
TiizHaiH; Gi=ai/Tii
for j=2:n
S O
Tij = Qi 45, Q5 = Q5 — T4



To obtain behavior similar to the SVD, the columns of A should be permuted such that
at each stage r;; is maximal.

Algorithm
fori=1:n
forl=i+1:n
if ||ai]| > ||a;||: swap(ay, a;)
=
if |r;;] <e: 'Numerical rank="i — 1; exit
qi=a;/Ti;
for j=2:n
TijZCLiTC]j; Aj=aj — Tijqi



