
Scientific Computation Comprehensive Examination

Answer the following questions explaining all steps that lead to a solution. Partial credit will
be awarded for presenting a viable solution strategy. No credit will be given to computations
presented without motivation. Your goal is to present skill in formulating precise mathemat-
ical statements, and demonstrate understanding of theoretical material

1. Determine the best approximant of f : [0; 1]!R+, f(x)=xa, a>0 by a constant c in
the Lp norm

Ep(c)= kf − ckp=
�Z

0

1

jf(x)− cjp dx
�
1/p

;

for p=1; 2;1. Determine Ep for each case.
Solution. p=1. From xa2 [0; 1] deduce c2 (0; 1), let �= c1/a2 (0; 1), note that f is
monotone, and decompose integration domain

E1(c)=

Z
0

�

(c−xa) dx+
Z
�

1

(xa− c) dx:

Evaluate integralsZ
0

�

(c−xa) dx= c�− �a+1

a+1
;

Z
�

1

(xa− c) dx= c(�− 1)+ 1− �a+1

a+1
:

Obtain L1 error

E1(c)= c(2c1/a− 1)+ 1− c(a+1)/a
a+1

:

Solve the stationarity condition @E1/@c=0

2a+1
a

c1/a− 1=0) c�=
�

a
2a+1

�a
;

and smallest L1 error is E1(c�).
p=2. The best L2 approximant is obtained when f − c is orthogonal to c,

(f − c; c)=
Z
0

1

(xa− c)cdx=0) c=

Z
0

1

xa dx=
1

a+1
:

The smallest L2 error is

E2
2=









xa− 1
a+1










2

2

=

Z
0

1
�
xa− 1

a+1

�
2

=
a2

(1+ a)2(2a+1)
)E2=

a
a+1

� 1

1+ 2a
p :

p!1. In the inf-norm

c= argminb;x2[0;1]jxa− bj; b2 [0; 1]:

Since xa− b is monotone, extrema are attained at interval endpoints, e0(b) = jbj= b,
e1= j1− bj=1− b, with c=1/2 in which case E1=1/2:
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2. Estimate the number of subintervals required to obtain I =
R
0

1exp (−x2) dx to k =

6 correct decimal places through (a) the composite trapezoidal rule, and (b) the
composite Simpson rule.
Solution. Assume a partition of [0; 1] with nodes xi = ih, with uniform step size
h= 1/m, i= 0; : : : ; m. Over subinterval [xi−1; xi] of length h, the trapezoid rule is
exact for linear functions, hence must have a truncation error

ei= ah3jf 00(�i)j:

The value of f 00(x) for f(x)=exp(−x2), x2 [0;1] is bounded, jf 00j<2, hence the overall
error bound e6mei=2a/m2. Since I=O(1), six correct decimal places are obtained
if e= 10−6)m= 1000/ 2a

p
. Simpson's rule is based upon quadratic interpolation

of the integrand, but exhibits cancellation of cubic error terms leading to subinterval
truncation error

ei= bh5jf (iv)(�i)j:

Using bound jf (iv)j6 12, the overall error is e6mei= 12b/m4= 10−6)m= 101.5/
(12b)1/4.

3. Recall that a subset S �T of a topological space T is dense if for any x2T , either
x2S or there exists some sequence fxngn2N such that x= limn!1xn. Apply the Schur
decomposition A=Q�TQ to show that any matrix A2Cm�m can be written as the
limit of diagonalizable matrices, i.e., the subset of diagonalizable matrices is dense.
Solution. The eigenvalues of T triangular are its diagonal elements t1; :: : ; tm, also the
eigenvalues of A since they are similar matrices through A=Q�TQ. The matrix T
is diagonalizable for distinct eigenvalues. Suppose ti is a repeated root with algebraic
multiplicity n. Define sequences si+j= ti+ j/k, for j=0; 1; : : : ; n− 1 and construct
the matrices

Sk=T −diag(0; : : : ; 0; ti; : : : ; ti+n−1; 0; : : : ; 0)+ diag(0; : : : ; 0; si; : : : ; si+n−1; 0; : : : ; 0)

The diagonal elements of Sk are distinct, hence Sk is diagonalizable, as is Ak =
Q�SkQ, and limk!1Ak=A, and the subset of diagonalizable matrices is dense.

4. Consider the initial value problem y 0(t)=−10000 (y(t)− cos (t))− sin (t); y(0)= 1:

a) Find the analytical solution and determine if this is stiff ODE system.
Solution. Let a=104. The homogeneous solution is y(t)= ce−at, and variation
of parameters, y(t)= c(t)e−at; leads to

c 0= [a cos(t)− sin(t)]eat) c(t)= cos(t) eat+C:

Solution is y(t) = cos(t) +Ce−at, and initial condition y(0) = 1+C = 1 gives
y(t)= cos(t). The ODE does not exhibit disparate time scales and is not stiff
in exact arithmetic.

b) Find the analytical solution for a pertubed initial value to y(0) = 1+ ", and
reconsider whether the system is stiff.
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Solution. The solution is y(t) = cos(t) + "e−at, exhibits disparate time scales
due to the rapid e−at decay, is now stiff, and also indicates case (a) to be stiff
in floating point arithmetic.

c) Determine time step constraints for applying: (i) forward Euler, and (ii) back-
ward Euler to this system.
Solution. With z=−ah, h>0 the step size, forward Euler is stable for jz+1j6
1,−161−ah61)h62/a=2�10−4. Backward Euler is stable for jz−1j>1,
1+ ah> 1, h> 0, i.e., any step size, unconditional stability.

5. Consider Newton's method to build fxngn2N, xn! r, r a root of f :R!R, f(r)=0.

a) Prove that if r is a multiple root, convergence becomes first order.
Solution. Let fn= f(xn); fn

0 = f 0(xn); fn
00= f 00(xn); en= xn− r; �n= xn+1− xn.

Newton's method (xn+1−xn)fn0+ fn=0= f(r), and the Taylor series of f are

f(r) = fn+ �n fn
0

fn+1 = fn+ �n fn
0 +

1
2
�n
2fn
00+O(�n3)

Subtract to obtain

fn+1− f(r)=
1
2
�n
2fn
00+O(�n3);

and Taylor-expand fn+1 around r, using notation f 0= f 0(r), f 00= f 00(r),

f 0 en+1+
1
2
f 00 en+1

2 +O(en+13 )=
1
2
�n
2fn
00+O(�n3):

Since �n= en+1− en, and en=O(�n), when fxngn2N is convergent (Cauchy
sequence in complete metric space), obtain

f 0 en+1+
1
2
f 00 en+1

2 =
1
2
fn
00 � [en+12 − 2en+1en+ en

2] +O(en3):

For f 2C2, fn00= f 00+O(en), hence

f 0 en+1=−f 00 en+1 en+
1
2
f 00 en

2 +O(en3)) [f 0+ f 00en]en+1=
1
2
f 00 en

2 +O(en3))

en+1=
1
2

f 00

f 0+ f 00 en
en
2 +O(en3): (1)

When f 00= f 00(r)=0 (local linear behavior), convergence is cubic. When f 0=/ 0;
f 00=/ 0, convergence is quadratic. When f 0=0; f 00=/ 0

en+1=
1
2
en+O(en2); (2)

i.e., convergence is linear.

b) Use Aitken extrapolation an=xn− (�xn)2/�2xn to recover second-order con-
vergence, with �xn= xn+1−xn. Write out this scheme as a pseudo code.
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Solution. Use above notation to write �n=�xn, an= xn− �n2/(�n+1− �n),

bn= an− r= en−
(en+1− en)2

en+2− 2en+1+ en
=

en en+2− en+12

en+2− 2en+1+ en
: (3)

Use the f 0(r)= 0 estimate (2) in (3)

bn=

1

2
en en+1− en+12

1

2
en+1

+O(en2)= en− 2en+1+O(en2)=O(en2)

to recover second-order convergence.

xn+1=xn− f(xn)/f 0(xn); �n= xn+1−xn; an=0
repeat
fn+1= f(xn+1); fn+10 = f 0(xn+1); an−1= an
xn+2=xn+1− fn+1/fn+1

0 ; �n+1=xn+2−xn+1; an=xn− �n2/(�n+1− �n)
xn+1=xn+2; xn=xn+1; fn+1= f(xn+1); fn+10 = f 0(xn+1); �n= �n+1

until jan− an−1j<�mach

c) Determine the order of the Aitken-extrapolated scheme if r is a simple root.
Solution. Let c= 1

2
f 00/f 0=� 1

2
f 00/(f 0+ f 00 en), and replace (1) into (3) to obtain

bn=�
cen en+1

2 − en+12

cen+1
2 − 2en+1+ en

=�
c 2en

3 −c2 en4
c2 en

4 − 2cen2 + en
=� c2en2;

hence second-order convergence (no increased order of convergence w.r.t.
Newton method).

6. a) Find the eigenvalues and eigenvectors of a circulant matrix (right-rotated rows)

C =

266666666664
c1 c2 : : : cn−1 cn
cn c1 : : : cn−2 cn−1
��� ��� �� � ��� ���
c3 c4 : : : c1 c2
c2 c3 : : : cn c1

3777777777752Rn�n:

Solution. Construction of C suggests use permutation matrices. Recall that I =
[ e1 e2 : : : en ] is the identity permutation, a circular permutation by one index
position is carried by P =[ e2 e3 : : : en e1 ], and permutation by k index positions
is carried out by P k=[ e1+k e2+k : : : en e1 : : : ek ]. Rewrite the circulant matrix

C = c1P
0+ cnP + cn−1P

2+ � � �+ c2P
n−1;

which can be re-expressed as

C = a0P 0+ a1P + � � �+ an−1P n−1= p(P );
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using a0= c1; a1= cn; a2= cn−1; : : : ; an−1= c2. Let (�i; yi) be the ith eigenvalue, eigen-
vector pair of P . Then

Cyi= p(�i) yi

so (�i= p(�i); yi) are the eigenvalue, vectors of C. The eigenvalues of P are solutions
of

det(�I −P )=�n− 1;

the roots of unity, �k= exp(2�ik/n).

b) Write an efficient algorithm to compute v =Cu, u 2Rn, with respect to both
storage and arithmetic operations.
Solution. Use C = c1P 0+ cnP + cn−1P 2+ � � � + c2P n−1, to implement the matrix-
vector product as repeated permutations

v= a0u+ a1Pu+ � � �+ an−1P n−1u

v= a0u
for k=1 to n− 1
u=permute(u)
v=v+ aku
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