Scientific Computation Comprehensive Examination

Answer the following questions explaining all steps that lead to a solution. Partial credit will
be awarded for presenting a viable solution strategy. No credit will be given to computations
presented without motivation. Your goal is to present skill in formulating precise mathemat-
1cal statements, and demonstrate understanding of theoretical material

1. Determine the best approximant of f:[0,1] — Ry, f(z)=2% a >0 by a constant ¢ in

the L, norm
1 1/p
Ep(0)=||f—ch=(/O |f(I)—c|pd:v) ,

for p=1,2,00. Determine F, for each case.
Solution. p=1. From 2% € [0, 1] deduce c € (0, 1), let £ =c/*€ (0, 1), note that f is
monotone, and decompose integration domain

El(c):/j(c—xa) dx—l—/;(x“—c) dz.

Evaluate integrals

1— £a+1

a+1’ a+1

3 £a+1 1
/(c—x“)dx:cg— /(13“—0)d:l:=0(§—1)+
0 3
Obtain L; error
1— C(a-l—l)/a
_o(opt/a_ )Lt
Ei(c)=c(2¢ 1)+ P
Solve the stationarity condition OF; /dc=0

2a+1cl/
a

_1:0:C*I<2a—|—1>’

and smallest L error is Ey(c.).
p=2. The best L, approximant is obtained when f — c is orthogonal to c,

1
a+1"

1 1
(f—c,c):/ (:Ea—c)cdx:0:>c:/ rtdxr =
0 0
The smallest Lo error is

a 1
a+1

E3=||z

2 1 2 2
/ a 1 a a 1
> Jo a+1 (1+a)*(2a+1) a+1l /1+2a
p— o0. In the inf-norm
c=argmin, 0,17/ — b|, b€ [0, 1].

Since 2% — b is monotone, extrema are attained at interval endpoints, ey(b) =|b| =b,
ep=|1—b]=1—0b, with c=1/2 in which case E,,=1/2.



2. Estimate the number of subintervals required to obtain I = fol exp (—2%) dx to k=
6 correct decimal places through (a) the composite trapezoidal rule, and (b) the
composite Simpson rule.

Solution. Assume a partition of [0, 1] with nodes z; =ih, with uniform step size
h=1/m, i=0,...,m. Over subinterval [z;_1,z;] of length h, the trapezoid rule is
exact for linear functions, hence must have a truncation error

ei=ah’ f"(&)]-

The value of f”(z) for f(z)=exp(—z?), r€[0,1] is bounded, | f”| <2, hence the overall
error bound e <me; =2a/m? Since I =O(1), six correct decimal places are obtained
if e=10"%=m =1000/+/2a. Simpson’s rule is based upon quadratic interpolation
of the integrand, but exhibits cancellation of cubic error terms leading to subinterval
truncation error

e;=00% f(&)].

Using bound | f0¥)| <12, the overall error is e <me;=12b/m*=10"%=m =105/
(120)%/4,

3. Recall that a subset S C T of a topological space T is dense if for any x € T, either
x €S or there exists some sequence {x, },en such that z=lim,,_,,, x,. Apply the Schur
decomposition A= Q*TQ to show that any matrix A € C™*™ can be written as the
limit of diagonalizable matrices, i.e., the subset of diagonalizable matrices is dense.
Solution. The eigenvalues of T triangular are its diagonal elements t4,...,t,,, also the
eigenvalues of A since they are similar matrices through A =Q*T'Q. The matrix T
is diagonalizable for distinct eigenvalues. Suppose ¢; is a repeated root with algebraic
multiplicity n. Define sequences s;4;=t;+ j/k, for j=0,1,...,n —1 and construct
the matrices

Sk:T—diag(O,...,O,ti,...,ti+n_1,0,...,O)+diag(0,...,O,Si,...,5i+n_1,0,...,0)

The diagonal elements of S} are distinct, hence Sy is diagonalizable, as is A=
Q*S;Q, and limy_ . Ar = A, and the subset of diagonalizable matrices is dense.

4. Consider the initial value problem y’(t) = —10000 (y(t) — cos (t)) —sin (¢), y(0) = 1.

a) Find the analytical solution and determine if this is stiff ODE system.
Solution. Let a=10% The homogeneous solution is y(t) =ce~%, and variation
of parameters, y(t) =c(t)e™*, leads to

¢’ =lacos(t) —sin(t)]e™ = c(t) = cos(t) e* + C.

Solution is y(t) = cos(t) + Ce™*, and initial condition y(0)=1+ C =1 gives
y(t) =cos(t). The ODE does not exhibit disparate time scales and is not stiff
in exact arithmetic.

b) Find the analytical solution for a pertubed initial value to y(0) =1+¢, and
reconsider whether the system is stiff.



5. Consider Newton’s method to build {z,}nen, ,— 7, 7 aroot of f:R—R, f(r)

a)

Solution. The solution is y(t) = cos(t) +ce~*, exhibits disparate time scales

due to the rapid e~ decay, is now stiff, and also indicates case (a) to be stiff
in floating point arithmetic.

Determine time step constraints for applying: (i) forward Euler, and (ii) back-
ward Euler to this system.

Solution. With z=—ah, h> 0 the step size, forward Euler is stable for |z + 1| <
1,-1<1-ah<1=h<2/a=2x 10~ Backward Euler is stable for [z — 1| > 1,
14+ah>1, h>0, i.e., any step size, unconditional stability.

0.

Prove that if r is a multiple root, convergence becomes first order.

Solution. Let fn = f(xn)a f?é = f/(xn)a 7/1/ = f//(xn)a En==Tp—T, 5n =Tp+1— Tp.
Newton’s method (2,41 —x,) fr+ fo=0= f(r), and the Taylor series of f are

f(T) = fn+5nf7/z
Subtract to obtain
fasr = F(r) = 50212+ O(E2),
and Taylor-expand f, 1 around r, using notation f'= f'(r), f"= f"(r),

flens1+ %f” 6%+1 + O(€§L+1) = %53 n 0(53)'

Since 0, = €,1+1 — e, and e, = O(d,), when {z,},en is convergent (Cauchy
sequence in complete metric space), obtain

Flenert g [ =g Fi [ = 2enrent &)+ O(e)
For feC? f/=f"+O(e,), hence
Froner= = enment 116+ O = [+ Feler=2f7et + O =
1 f//
€n+1:§m€%+o(ei)- (1)
When f”= f"(r)=0 (local linear behavior), convergence is cubic. When f’#0,
f"#0, convergence is quadratic. When f'=0, f”+£0
1
6n+1:§6n+0(6721)a (2)

i.e., convergence is linear.

Use Aitken extrapolation a,, = x, — (Az,)?/ A%z, to recover second-order con-
vergence, with Ax,, =x,,1 — x,. Write out this scheme as a pseudo code.



Solution. Use above notation to write &, = A, a, =2, — 02/ (6ns1— 0n),

bp=an,—1=¢€,—

(en-l-l — €n>2

€En€n+2 — egz-i—l (3)

€n42 — 26n—l—l +en €n4+2— 26n—l—l +éen

Use the f’(r) =0 estimate (2) in (3)

1 2
56n €ntl — En41

by =21

56n+1

to recover second-order convergence.

+O(ep) =en—2en41+ Olen) = O(e},)

Tpt1=Tp — f($n>/f,($n>, Op==Tpy1—Tp; @y =10

repeat

for1= [(@ng1); fog1=F'(@n41); an_1=an

Tn+2=Tn+1 — fn+1/frlz+1; Ont1="Tpt2 — Tpt1; Qn =Ty — 5%/(5n+1 - 5n)

Tpt1=Tnt2) Tn==Tni1; fns1= f($n+1); fé+1 = f’($n+1); 0p=0nt1
until |a, — an—1| < €mach

c¢) Determine the order of the Aitken-extrapolated scheme if r is a simple root.
Solution. Let c:%f”/f’%’é "/(f'+ f"en), and replace (1) into (3) to obtain

2 2
b~ CEn€nt+1— En+1
n:

~

c?e

3 2 4
n —C" €En ~ .22

ce2 1 —2e,1te,  c2er—2ce2+e,

> c%e;,

hence second-order convergence (no increased order of convergence w.r.t.

Newton method).

6. a) Find the eigenvalues and eigenvectors of a circulant matrix (right-rotated rows)

C1
Cn

C3
Co

Co
C1

Cy
C3

Cp—1 Cn
Cp—2 Cp—1
C1 (&)
Cn C1

E Ran'

Solution. Construction of C suggests use permutation matrices. Recall that I =
[e; ey ... e,] is the identity permutation, a circular permutation by one index
e, e |, and permutation by & index positions

position is carried by P=[ ey ez

is carried out by P*=[ e, eais

€n €

e, |. Rewrite the circulant matrix

C=cP’+c,P+c, P>+ - 4 coP" !,

which can be re-expressed as

C:a0P0+a1P+"'+an—1Pn_1:p(P>7



using agp=ci,a; = Cp, g ="Cn_1,...,0n_1=Co. Let (i, y;) be the i*h eigenvalue, eigen-
vector pair of P. Then

Cyi=p(1) Yi

so (Ai=p(wi), y;) are the eigenvalue, vectors of C. The eigenvalues of P are solutions
of

det(A\] — P)=\"—1,

the roots of unity, A, =exp(2mik /n).

b) Write an efficient algorithm to compute v = Cu, u € R", with respect to both
storage and arithmetic operations.

Solution. Use C = c1 P+ ¢,P +c,,_1P?>+ --- + coP" !, to implement the matrix-
vector product as repeated permutations

v=au+a;Pu+---+a,_1P" 'u

v =agu

fork=1ton—1
u = permute(u)
V=vV+apu



