
OpenDX
Paths to Visualization

O
penD

X
 P

aths to V
isualization

Visualization Visualization andand Imagery Solutions, I Imagery Solutions, Incnc.Visualization and Imagery Solutions, Inc.™

VIS
Inc.

The lessons, with step-by-

step solutions, help you

understand how

OpenDX can be used to

visualize your data. They

lead you through uses of

OpenDX tools and

example data sets,

illustrating the various

visual possibilities

supported by OpenDX.

Paths to Visualization is the first book to provide training materials
for OpenDX, the open source version of the former IBM product
Visualization Data Explorer™. The material presented here has been
tested and refined in years of actual training sessions, and is currently
used by VIS, Inc. for their OpenDX beginners course. The material is
organized and presented as a sequence of lessons, designed to
facilitate self-paced instruction for students working independently or
in the context of a formal class. Each lesson is built around a
visualization goal, an appropriate data model, clearly identified
opportunities for individual experimentation and refinement, an
example step-by-step solution, and discussion of relevant concepts.
The visualization concepts covered apply in general, but are
specifically illustrated with the facilities and operation of OpenDX.
The set of lessons is designed to systematically take the serious
student from the level of OpenDX novice to that of the advanced
beginner, with each new lesson building upon concepts, examples, or
visual programs developed in preceding lessons. The materials assume
that the student is working hands-on with the OpenDX Visual
Programming Environment, with access to real example data sets. It
also provides hand-on experience with a variety of data sets, helping
the student to understand how to import differently structured data
and how to exploit the underlying OpenDX data model to achieve
desired visual effects.

WHAT YOU NEED TO USE THIS BOOK:

• OpenDX software version 4.1.0 or later -- the software can be
downloaded free from <http://www.opendx.org/>

• Sample data files available from VIS, Inc., which can be
downloaded free from <http://www.vizsolutions.com/>

David Thompson • Jeff Braun • Ray Ford

OpenDX

Paths to Visualization

Second Edition

OpenDX

Paths to Visualization

Second Edition

Materials used for learning OpenDX–the open source derivative of
IBM's Visualization Data Explorer.

Visualization and Imagery Solutions, Inc.
5515 Skyway Drive
Missoula, MT 59804

David L. Thompson Jeff A. Braun Ray Ford

Publisher: Visualization and Imagery Solutions, Inc.
Product Manager: David Thompson
Copyeditor: Ray Ford
Cover Designer: David Thompson

©2004 Visualization and Imagery Solutions, Inc.

All rights reserved. The book may not be translated or copied in whole or in part without the written
permission of the publisher (Visualization and Imagery Solutions, Inc. 5515 Skyway Drive,
Missoula, MT 59804, USA) except for brief excerpts in connection with reviews or scholarly
analysis. Use of the work in connection with any forms of information storage and retrieval,
electronic adaptation computer software or by similar or dissimilar methodology now known or
hereafter developed other than those granted.

VIS Inc. is a trademark of Visualization and Imagery Solutions, Inc. IBM and Visualization Data
Explorer are trademarks of International Business Machines Corporation. All other product names
are trademarks or registered trademarks of their respective owners.

Background

VIS Inc. is a company founded by three veteran “power users” of IBM’s Visualization Data
Explorer (DX) to provide third party support to DX users as the software makes the transition from
a commercially developed and supported product into “open-source”. The VIS Inc. principals have
combined expertise of over 40 years in software development, and over 15 years of DX expertise.
They have never been IBM employees nor official DX developers, but they have been aggressive DX
users since 1992. Their primary interest in DX has always been to produce high-quality visual
products. Given this goal, over the years they have developed secondary interests in building tools that
enhance their own productivity and creating training materials that assist other users and developers
in becoming productive with DX. Their primary interest now is to keep the DX system alive and
viable as a visualization system option through active development and support, in a manner
compatible with the open-source software model.

As long time users of DX, the VIS Inc. principals have formed close working relationships with the
original DX developers and project managers at IBM, as well as with users all over the world. The
principals have also made significant contributions to both the training of DX users worldwide and
the body of DX-related software that is openly available. With the withdrawal of IBM’s active support
for DX as a commercial product, VIS Inc. was formed to help provide third party expertise needed to
assure that DX remains a viable open-source alternative for commercial and government users. That
is, VIS Inc. hopes to provide value-added service and support for the DX users who wish such
assistance, in a manner analogous to that popularized by third party value-added service providers for
Linux such as RedHat Inc., Caldera Inc. and O'Reilly and Associates.

The most critical element of third party, value-added support for an open source system is expertise
with that system. VIS Inc. brings together a group of some of the most experienced DX users and
developers outside of the core DX development group. In their combination of over 15 years
experience with DX, the VIS Inc. principals have made the following contributions.

* A pplica tions Dev elopmen t . They have used DX as the primary visualization tool in a range of
multi-disciplinary research projects, particularly in applications involving natural resource
applications. For a l i s t of re lated publications and visual artifacts, see
http://www.cs.umt.edu/Dxcontrib.

* I n struction and T rainin g . They have used DX since 1992 as the primary software in
interdisciplinary, graduate level university courses on data visualization. They have also offered non-
credit, specialized training courses at their own local training site and at customers' sites around the
country. The VIS Inc. principals include two of the four internationally certified DX trainers used by
the IBM Visualization Data Explorer Group to staff IBM's training sessions.

* D X-w ar e . They have developed a number of special purpose and general interest DX enhancements,
useful in a wide variety of visual applications. These have been freely distributed from several public
DX web sites. These include colormaps, macros, modules and data importers.

* “GIS-2-D X” . Under contract from IBM, they developed and have supported a widely used software
package that allows data sets in standard, external formats to be easily imported into DX, i.e., the
“gis2dx” package freely distributed by IBM since 1993.

* V isualiza tio n Consultin g . They have worked as consultants to a variety of industry partners on the
use of DX in a broad range of example applications, including remotely sensed data analysis,
geological/geophysical data depiction, interface with data from geographical information systems
(GIS), hydrological and ground water flow, landscape and ecological modeling and analysis, and
wildfire modeling.

Even a few years ago, IBM's decision to withdraw its support would have meant the death of DX as a
software system, forcing users to seek other (we think, less satisfactory) alternatives. But that situation
has changed with the demonstration, through examples such as Linux, Apache, and others, that open-
source software systems can and will remain viable if the software base is sound, if there is a critical
mass of committed users, and if there are third party entities willing to commit to a high quality of
service and support. We think that OpenDX and its current user base clearly satisfy the first two
criteria, and we have committed VIS Inc. to satisfying the third by providing a wide range of support,
training, development, and advanced consulting on the use of OpenDX.

Contact us to let us know how we can help satisfy your concerns and/or future needs for OpenDX.

With special thanks to Keith Sams, Eric Nakata, and the rest

of the IBM Visualization Data Explorer Team

Table of Contents

How to Use This Material ..15

Information about the Material ...15
Styles used in this material ...15
Lessons/Chapters...16

The Complete Visualization Environment ..18
The Origin and Conceptual Basis of OpenDX.. 18
OpenDX Executive and OpenDX Visual Program Editor.. 20
OpenDX Help System and Samples .. 20
OpenDX Data Prompter ... 20
OpenDX Development API and DXLink .. 20
OpenDX Builder... 21

Visualization Process with OpenDX..21
Step 1–Collect Data...21

Scattered ..21
Regular Grid..22
Deformed Regular Grid ..22
Irregular Grid...22

Matching the Data Forms to the Visual Phenomena... 23
Data Dependency .. 23
Data Dependency in OpenDX .. 25
Data Form Helps to Shape the Data “Vision” .. 26

Step 2–Formulate a Vision..27
Gather ideas from several fields of study .. 27

Step 3–Importing Data..29
Importing Data into OpenDX... 29

Step 4–Design the Visual Analysis ...30
Use the Import Data Prompter “Visualize Data...” .. 31
Create a Visual Program Using the Visual Program Editor (VPE)... 31
Use the OpenDX Sample Programs as a Starting Point ... 31

Step 5–Address the visual artifact’s output requirements ..32
Summary ..32

First Hands-on Demonstration..34

Using OpenDX ...34
Step 1 - Gather, Collect, or Create the data...34

General information about the data. ...34

Step 2 - Formulate a Vision..35
Step 3 - Importing your data ..35
Step 4.1 - Design the Visual Analysis for Vision 1 ...39

Step 5.1 - Address the output requirements for Vision 1... 43
Step 4.2 - Design the Visual Analysis for Vision 2... 44

Control Panels: Changing Parameter Values More Easily .. 47
Setting limits on an interactor .. 50

View Control, Colormaps and Data-Driven Interactors ... 50

Step 5.2 - Determine and understand the desired output's requirements for Vision 2. 53
Step 4.3 - Design the Visual Analysis for Vision 3... 55

Captions, RubberSheet, and Shading .. 55

Step 5.3 - Determine and understand the desired output's requirements for Vision 3 57
First Hands-on: Review... 58

Second Hands-on Demonstration ..60

Using OpenDX ... 60
Step 1 - Gather, Collect, or Create the Data ... 60

General information about the data:... 60

Step 2 - Formulate a Vision ... 61
Step 3 - Import the Data.. 62
Step 4.1 - Design the Visual Analysis for Vision 1... 62

FileSelector Interactors and the Slab module .. 62
Using the Sequencer to create an animation .. 67
Data driven Sequencer... 69
ColorBars.. 71

Step 4.2 - Design the Visual Analysis for Vision 2... 74
Pages and Annotation.. 76
Glyphs... 79

Step 5.2 - Determine and understand the desired output's requirements for Vision 2 81
Second Hands-on Review ... 82

First Independent Exercises..84

Rationale... 84
Exercise 1. Extending the Sealevel Example .. 84
Exercise 2. Extending the Cloudwater Example.. 84
Step - by step instructions for Exercises .. 85

Instructions for Exercise 1 ... 85
Instructions for Exercise 2 ... 87

Conclusion ... 90

Mystery Data ..91

Rationale... 91
Exercise 1. Mystery 2-D .. 91
Exercise 2. Mystery 3-D .. 92

Step - by step instructions for Exercises...92
Instructions for Exercise 1... 92
Instructions for Exercise 2... 95

Introduction to the Data Model ..97
Conclusion..103

OpenDX Data Model .. 104

Introduction..104
Attributes..105
Array Objects ...106
Field Objects ...106
Group Objects..107
Data Model Support ..107
How Modules Work ...108
Interoperability in OpenDX provided by the Data Model ..108
Summary ..111

Manipulating Data... 112

Rationale ...112
Exercise 1. Flag Waving ...112
Exercise 2. Invalid Data ..116
Conclusion..123

More on Data Import ... 125

Rationale ...125
Data Organization ...125
Row versus Column Major Order ..128
Including Explicit Positions in a Data File ..129
General Header Files..129
Templates ...130
Deriving Grid Information ..130
The Native File Format ...131
Summary ..134

Network Flow Control.. 135

Rationale ...135
Exercise ...135
Step by Step Instructions ...137
Review...144

Display versus Image ... 144
Control Panels... 145

Series, Categorical, and Scattered Data..146

Rationale... 146
Exercise 1. Series Data ... 146
Exercise 2. Categorical Data .. 146
Exercise 3. Scattered Data ... 147
Step-by-step instructions for Exercises ... 147

Instructions for Exercise 1 ...147
Instructions for Exercise 2 ...150
Instructions for Exercise 3 ...153

Review of Chapter 11 .. 158

Looping and Probing..160

Rationale... 160
Exercise 1. Looping and Macros ... 160
Exercise 2. Probes, Picks, and Text Glyphs.. 160
Step-by-step instructions for Exercises ... 161

Instructions for Exercise 1 ...161
Instructions for Exercise 2 ...166

Review .. 168

Tips, Tricks and Memory Usage...170

Introduction ... 170
VPE Tips ... 170

Module Overlap.. 170
Layout Graph.. 171
Finding a Module ... 171

Image Rendering Features ... 172
Objects Sharing the Same Physical Space .. 172
Empty or Inappropriate Display .. 172
Line Aliasing .. 172

Memory Usage... 173
OpenDX Object Cache... 174
Default Memory Size and Paging Space... 174
Reducing Memory Requirements .. 175
Cache Control: Executive .. 176
Display and Image Cache Control... 176
Per Process Limits .. 177

Conclusion ... 177

Camera Animation and Arranging Images ...178

Rationale ...178
Exercise 1. Camera Animation ..178
Exercise 2. Arranging Images...179
Step-by-step instructions for Exercises ..179

Instructions for Exercise 1... 179
Instructions for Exercise 2... 183

Review...188

Constructing a Native DX File... 189

Introduction..189
Description of the Data Files ...189
Instructions for Exercise...190
Conclusion..200

Conclusion... 201

Index ... 203

H o w t o U s e T h i s M a t e r i a l - C h a p t e r 1

15

How to Use This Material

Information about the Material

This material is written to be used as a “hard-copy companion” for new users of OpenDX, learning
OpenDX in one of several modes: as part of an organized training class, supervised and supported by
OpenDX training staff; working semi-independently but with remote (via phone or email) contact
with training and support staff; or working truly independently with the only support being access to
on-line documentation, examples, mailing lists, etc. To support all these modes, the material is
designed to be self-contained, based on a sequence of examples that lead the student from basic to
more complex concepts, through the incremental development of first basic, then more complex
visualizations.

The material is logically organized as a sequence of lessons, with each new lesson building upon
concepts, examples, and/or visual programs developed in preceding lessons. The lessons are designed
to facilitate self-paced instruction for students, whether working independently or in the context of a
class, by providing within each lesson a basic visual model and clearly identified opportunity for
individual experimentation and refinement.

Styles used in this material

The instructional material uses specialized formatting to direct the user’s actions. The following
applies:

• DX Modules are shown in a bold typeface such as: Isosurface module.
• DX Menu items are shown with underlines such as: File menu.
• DX Input parameters are shown in italics such as: filename parameter.
• Clickable buttons in OpenDX are shown with a dotted underline such as: OK button.

1

H o w t o U s e T h i s M a t e r i a l - C h a p t e r 1

16

Lessons/Chapters

This material is organized into lessons/chapters that are cumulative; thus the training materials
should be completed in order. A brief description of the chapters is given below, which includes the
approximate time that should be required to complete the exercises in the chapter.

Chapter 2 T he Complete V isualiza tion En vir onmen t - The process to visualize data with the
OpenDX software system is similar to the process used with other visualization
systems. The visualization process includes both software independent and software
dependent steps that make visualization possible. Approximately 45 minutes to
complete.

Chapter 3 F irst Hands-on Demonstra tion - A strong beginning can build a foundation that makes
software easier to use. This chapter introduces the student to the user interface by
having the student create sample visualizations. Working through examples that
encapsulate uses of the software helps users build a foundation for understanding and
extending the system in other applications. Approximately 2 hours 30 minutes to
complete.

Chapter 4 Sec ond Hands-on Demonstra tion - OpenDX was designed to facilitate working with
three-dimensional data sets. As programs (networks) get large, the programmer can use
the power of the visual program environment to organize and document programs and
their components. Approximately 2 hours to complete.

Chapter 5 F irst I ndependen t Ex er cises - The student should now begin to feel comfortable enough
to take on a small task without the step-by-step instructions. Approximately 45 minutes
to complete.

Chapter 6 M y stery Da ta - Information embedded inside a data file can be used to build import
facilities for these data sets. In this chapter, the student is challenged to import a set of
data files for which complete information is not available in advance, and without step-
by-step tutorial instructions. After importing the data, the student should follow the
program presented at the end of the chapter to learn more about how the data set is
organized within OpenDX. Approximately 45 minutes to complete.

Chapter 7 OpenD X Da ta M odel - Understanding how OpenDX organizes and processes data
gives users insight how to construct their own visual programs. This chapter gives a
brief introduction to the structure of the data model, using a small example to illustrate
the interoperability of modules in OpenDX. This material can be used as a reference
during later discussions of the data model. Approximately 15 minutes to complete.

Chapter 8 Manipula tin g Da ta - Scientific data usually is available in a format determined by the
scientific investigation and not by visualization needs. Thus, it is crucial to be able to

H o w t o U s e T h i s M a t e r i a l - C h a p t e r 1

17

manipulate the data inside the visualization environment. Approximately 1 hour to
complete.

Chapter 9 M or e on Da ta I mport - Knowing a data set's structure and being able to describe that
structure allows the researcher to import a wide range of data formats. OpenDX allows
the visualization user to describe data formats in two different but general manners. The
approximate time to read through this chapter is 20 minutes.

Chapter 10 N etw or k Flo w Con tr ol - OpenDX allows users to construct visualizations in a visual
programming environment that combines elements of data flow with conditional flow
control. OpenDX's flow control modules allow a program to branch, loop, route, and
switch. Approximately 1 hour 30 minutes to complete.

Chapter 11 Series, Ca tegorical, and Sca tter ed Da ta - OpenDX can accommodate multiple types of
data and supports a range of different techniques for working with different data types.
This chapter gives three examples to illustrate a few of these techniques. Approximately
1 hour to complete.

Chapter 12 Loopin g and P r obin g - The programming interface of OpenDX includes extensions
that provide both conditional execution tools and looping tools. It is important to
understand both of these control constructs since they provide extended functionality.
OpenDX allows the user to interact with and investigate the data set within the Image
window using the special Probe and Pick tools. Approximately 45 minutes to complete.

Chapter 13 T ips, T ric ks, and M emory U sage - This chapter provides tips for working with large
visual programs, rendering images and minimizing memory usage. It also discusses
topics such as anti-aliasing, locating modules, Executive memory caching, and some
system optimization techniques. The approximate time to read this chapter is 20
minutes.

Chapter 14 Camera Anima tion and A rran gin g I mages – OpenDX makes it is easy to combine
multiple rendered images together into a single conglomerate using prewritten modules
such as Arrange. However, it may be more effective to produce an animation to show
different view angles. Approximately1 hour to complete.

Chapter 15 Constructin g a N a ti v e D X F ile - Using an example of data collected from the Internet,
this chapter shows why some data cannot be imported into OpenDX using the
standard importing techniques. It then walks the user through the process of
understanding the native file format and how it can be used to handle much more
sophisticated data organization. Approximately 1 hour to complete.

Chapter 16 Conc lusion

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

18

The Complete Visualization Environment

The Origin and Conceptual Basis of OpenDX
OpenDX originated as a software product known as IBM Visualization System’s “Visualization
Data Explorer”, or Data Explorer, or simply DX. This software was designed, marketed, and
supported by IBM Visualization Systems as a product supported on all commercially available Unix
workstations. It provides general-purpose, yet specialized, software to support the production of data
visualization and analysis. That is, DX is a specialized software system designed only to support
visualization, not other types of programming or analysis. However, within the visualization niche
DX is general purpose. It supports a broad range of facilities useful in the widest possible range of
visualization applications, and is not tailored or customized to the more specific needs of any one
limited application domain.

The OpenDX visualization environment is conceptually based on an underlying abstract data model,
supported by three powerful visual programming support components. The first programming
component is a graphical program editor that allows a user to create a visual program using a point and
click interface to select program components, designate the order of their application, and define any
parameter values they require. Second is a core set of supplied data transformations, each defined and
encapsulated as a OpenDX module that takes specified inputs, has other user-defined parameters,
implements a specific data action, and outputs specific results. The third programming component
implements user control over the computation of the visual program, based on a data-flow driven
client-server execution model. In a simple single-processor execution mode, this facility allows the user to
follow program execution by tracing the data flow. In a more computationally-intensive application,
this approach allows the visualization to be divided into subcomponents that can be parceled out for
execution on multiple workstations or to the multiple processing elements of a modern
supercomputer. The client-server execution model allows the user to easily distribute elements of the
computation to multiple compute elements. This obviously helps to reduce overall processing time.
More importantly, it can dramatically expand the size of data sets that can be effectively processed.

In visual programming terms, the OpenDX environment is designed to allow users to visualize both
observed and simulated data, with minimal programming activity. Developers can use the supplied
facilities to quickly create visual programs that provide imagery, along with interactive controls that allow

2

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

19

users to directly manipulate the image display. For more advanced users, OpenDX also supplements
the basic visual programming interface with other, more advanced features: an encapsulation facility
that allows program components to be grouped together for use as a macro in other programs; a high
level program scripting language; and a full application programming interface which provides
support for error handling, user defined data transformations, and an interface to externally written
code.

All the visual program development components are based on a very general, application-independent
core data model supported by OpenDX. In essence, this data model is an N-dimensional abstract
data space from which the OpenDX user takes 2-D and 3-D visual “snapshots” to create viewable
images. This is in sharp contrast to more constrained data models that support only a 2-D or 3-D
base model, onto which users must fit their data. The OpenDX data model is also purposely defined
in a manner independent from particular encodings and data file formats. This distinction between
the logical data model and the intricacies of particular file formats allows OpenDX to be flexible and
adaptable, supporting data import from most applications and formats. Native OpenDX import
facilities support various ways to read scientific data sets, allowing the data to be described by their
dimensionality, value-type (e.g., real, complex, scalar, vector), location in space, and relationship to
other data points. The data model allows details associated with the implementation of data formats
and data storage to be hidden from the user. Unlike most of the facilities oriented toward specific
graphics capabilities, such as OpenGL program libraries, the OpenDX data model is fully supported
as a file based format for import and export. For formats other than the native OpenDX format,
native import routines, data description utilities, and data conversion facilities are also included.

A result of OpenDX's data model is that most operations, encapsulated as OpenDX modules, appear
to be generic transformations that work with a variety of different data types. The operations are
interoperable and appear typeless to the user. Furthermore, operations on the data model scale well to
the use of multiprocessor architectures to handle very large data sets. On symmetric multiprocessor
systems, intramodule parallelism is supported through a simple fork-join shared-memory paradigm.
On a collection of networked workstations, parallelism is supported by using the workstations as
distributed servers (with a master-slave relationship) to minimize intra-workstation communication
and distributed process management. Thus, the OpenDX data model is a key element in OpenDX’s
ability to scale to the processing of large data sets, to work with a variety of kinds of data, and to work
effectively in a range of different processing environments. These benefits all accrue because of the
base, general purpose model established in the initial system design. More than anything else, this is
what sets OpenDX apart from less general visualization systems, typically designed to support only a
particular type of 2-D or 3-D application.

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

20

OpenDX Executive and OpenDX Visual Program Editor
The OpenDX Visual Program Editor (User Interface) and Executive are the heart of OpenDX.
Typically, an application is built using the point-and-click user interface to construct a visual program.
Modules, which may be thought of as subprograms or encapsulated data transformations, are placed
on a “programming canvas” and linked together to create the visual program. The OpenDX
Executive is a separate process that manages the data flow, determines execution order, and performs
the data processing defined by the collection of modules. The Executive is also accessible directly
(without the user interface) through the use of advanced programming facilities such as the scripting
language. The scripting language supports a more-traditional programming style, in the form of a
linear, textual expression of the code. Expressing a program as a script allows additional freedom for
the Executive to run programs as batch processes, independent of the visual programming display.
However, both the visual programming interface and the scripting language access the same
functional modules.

OpenDX Help System and Samples
The Help system and Visualization Samples provide extensive information about OpenDX. There is
an on-line tutorial that leads the user step by step through a variety of different example problems.
Extensive on-line, context-sensitive help is available. For example, the user can simply click on a
module to obtain a “manual page” for the module. The entire set of documentation is also available in
html and pdf format for browsing. Finally, there is a large set of sample visual programs and sample
data sets, which range from very simple to very complex.

OpenDX Data Prompter
The OpenDX Data Prompter provides a point and click interface which allows the user to easily
import a variety of different data formats, including many application-specific, private formats. The
Data Prompter also includes a set of general-purpose default visual programs which can be used to
depict a data set once it has been imported successfully. This facility combining simple import and
display facilities allows a developer to get most data sets imported and have some sort of visualization
up running quickly.

OpenDX Development API and DXLink
OpenDX includes a set of libraries corresponding to an application programming interface which
allows developers to extend the functionality of OpenDX by adding their own modules. Developers
can call OpenDX modules from their own modules or from a separate stand-alone program using the
DX CallModule interface. Developers can also control the OpenDX executive from a separate
program using the DXLink Developer's toolkit.

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

21

OpenDX Builder
Developers can create new OpenDX modules that perform application specific tasks with the aide of
the OpenDX Module Builder. The OpenDX Builder uses a graphical user interface to create the
necessary module files from user-supplied information. The module builder creates a “template” C-
code file, corresponding to the basic framework of a “C” program in which the developer then adds the
application specific code.

Visualization Process with OpenDX

Visualizing with OpenDX is a five-step process.

1. Gather, collect, or create the data to be visualized.

2. Investigate the best way to visualize the data. Collect examples. Formulate a visual model
representing a “vision” of the data presentation.

3. Prepare the data for the OpenDX data model and work through the details of data import.

4. Design the visual analysis and visual transformations required to achieve the vision, using the
tools in OpenDX's visual programming environment.

5. Determine and understand the output requirements, from the viewpoint of someone viewing
the output and/or responsible for producing permanent visual artifacts.

Each of these steps is explained in more detail below.

Step 1–Collect Data

The visualization process normally starts with gathering, collecting, or creating data, which can come
from various sources and in a variety of forms. The data may be collected from samples taken in the
field, generated from a computer simulation, or both. To describe a data set, it is necessary to
understand the basic data forms. The interrelationships between data set elements usually determine
the form of the data. Examples of different forms follow.

Scattered
In a scattered data set, each component has (at least) a location and a data value, but the locations have
no particular connection to each other. Intuitively, a scattered data set is merely a collection of data
values attached to points scattered in the same coordinate space. In 2-D space, the location is typically
expressed as an <x,y> pair, relative to the 2-D coordinate system. One or more data values can be
attached to each point location, representing values measured or estimated at that location. However,
other than being collected as points in the same coordinate system, the scattered data are not
connected in any fashion. An example of a scattered data set is shown in Figure 2.1

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

22

Regular Grid
A regular grid consists of a set of intersection points generated by a set of lines, planes, etc. that are
generated in some regular fashion. Such a grid can be defined by an origin point, deltas that define the
linear distance in each dimension between grid lines, and counts that define how many grid lines are
defined in each dimension. The grid itself connects the intersection points, so that these points are
connected in a regular fashion. In one-dimension, a regular grid has point i connected to point i+1, i+1
connected to i+2, etc. (Figure 2.2). Higher dimensional grids are assumed to use a mesh that is defined
in a similar fashion (Figure 2.3).

Deformed Regular Grid
A deformed regular grid consists of points which are still connected in a regular fashion but in which
the set of points is generated according to some scheme, which is not the simple linear relationship
defined by constant data values. Figure 2.4 shows an example of a two-dimensional deformed regular
grid.

Irregular Grid
An irregular grid consists of a set of points and an explicitly defined set of connections between points.
There is no regularity assumed in the points or the connections, so this is similar to scattered points to
which explicitly defined connections are added, (Figure 2.5).

Figure 2.1
Example of Scattered Data

Figure 2.2
Example of linear regular grid

Figure 2.3
Example of a two-dimensional
regular grid

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

23

Matching the Data Forms to the Visual Phenomena
For some visual phenomena it is relatively easy to determine which data forms could be used to
represent the phenomena. For example, consider the following.

• A regular grid is not an effective way to represent a river, unless the grid size is very small (so that
the points could better approximate curves) and the designer doesn't mind having most of the
points on the grid represent “not river”.

• Scattered data is not appropriate for the typical medical image-scan data set, which is based on a
large set of measurements taken at very regular and predictable intervals.

Data Dependency
The issue in data dependency is that of the exact linkage between the location and associated value.
That is, is the data value associated with a particular location or a particular space defined by a set of
points, i.e. location-centered (Figure 2.6) or cell-centered (Figure 2.7)? In OpenDX, cell-centered
values are referenced by a set of connections, though each cell can still be uniquely identified by a
“center-point” or the coordinates of some key point. However, there is an important distinction
between using a single point convention to refer to a particular space and its values, and assuming that
the values are actually associated with or measured at the point location itself. In OpenDX terms,
location-centered values are said to be position-dependent, whereas space-centered values are said to be
connections-dependent.

Figure 2.4
Example of a two-dimensional
deformed grid

Figure 2.5
Example of a two-dimensional
irregular grid

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

24

Data Value

Data Value

Generally, the decision about which data dependency to use is made when the data set is collected or
when the computer simulation is devised. A common way to collect a data set is to use some kind of a
grid. For example, a forester may set up a square grid, then count the numbers of tree species inside
each grid square or cell. Since the forester collects one set of data per cell, the data are, in OpenDX
terms, connections-dependent data. Visually, such data values are assumed to be constant within the
grid cell. In this square grid, each grid cell is defined by connecting four corners or vertices on the grid.
The positions of the corners are recorded so that the spatial locations of the cells are known. In
OpenDX, the paths connecting the vertices are called connections. In this example, the data are
dependent on connections and the connections are dependent on positions.

To continue this example, assume that the forester is interested in how the change in elevation over the
terrain affects the types and numbers of trees that grow in the study area. Assume that the slope is
recorded at each grid point (vertex). A slope data value is valid only at the position at which it is
recorded, therefore the slope data set is position-dependent. It is perfectly acceptable to have both
position and connection dependent data defined on the same grid. If the forester wants to overlay a
continuous set of slope values for the entire grid, slope values can be estimated at non-measured points
by interpolating from the known values.

Figure 2.6
Example Position Dependent
Data on a Regular Grid

Figure 2.7
Example Cell (Connections)
Dependent Data on a Regular
Grid

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

25

Data Dependency in OpenDX
Data dependency determines how OpenDX treats the data, particularly in relationship to how it
assigns data values to locations whose values are not explicitly defined in the data. For position-
dependent data, OpenDX interpolates data values between specified positions. For connections-
dependent data, OpenDX assumes a constant data value within the space.

The example in Figure 2.8 assigns 50 position-dependent data values to the grid points. The result,
with data value represented as color, is the image shown in Figure 2.10 illustrating how OpenDX
interpolates values between the grid points. In contrast, the example in Figure 2.9 assigns a single value
(an average of the corner point values from the Figure 2.8 data set) as a connection-dependent value to
the space named by its four corner points. With connection-dependent data, OpenDX assumes the
value is constant for all points in the cell, yielding the image in Figure 2.11.

Figure 2.8
An example grid with position
dependent data.

Figure 2.9
An example grid with
connection dependent data

Figure 2.10
Example position dependent
grid colored by data value.

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

26

A similar one-dimensional example is depicted in Figure 2.12 and Figure 2.13. In both cases, the
location “X” names a 1-D location, whereas the “Y” denotes the data value. Figure 2.12 shows a
position-dependent data association, where interpolation between point values produces a line plot.
Figure 2.13 shows a connections-dependent data association where the “Y” value is associated to the
connection between “X” and “X+1”. The result is a columnar plot. In both cases, the data value “Y” is
used to add additional interpretation, in the form of color on the line and in the columns, respectively.

Data Form Helps to Shape the Data “Vision”
The data form and dimensionality help determine what type of visualization is appropriate. If the
data form is N-dimensional, a visualization can only show N or fewer dimensions directly. However,
the dimensionality can be extended by interpreting data values as values in an extra dimension. As an
example of how interpretation can add dimensionality, a one-dimensional, position-dependent data
form produces a line when the data values at the points are used to represent values in a second
dimension and interpolation is used to provide values between those actually included in the data set.
Similarly, a two-dimensional data form can produce a flat colored surface, if the data values are used to
represent color or a surface in three dimensions if the data values are used to represent points in the
third dimension. By creatively interpreting the data values in the context of the data form, both the
data depiction and the data dimensionality can be enhanced.

Figure 2.11
Example connection dependent
grid colored by data value.

Figure 2.12
Example of one-dimensional
data dependent on positions
(plotted)

Figure 2.13
Example of one-dimensional
data dependent on connections
(plotted)

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

27

OpenDX provides a set of “automatic” visualization programs that are used to provide a default
visualization for a wide variety of different types of data sets. Many of these defaults for 1-D and 2-D
data sets use interpretations that increase the dimensionality as described above. The default
visualizations are available in conjunction with OpenDX's point-and-click data import tool.

Step 2–Formulate a Vision

What is the final visualization going to show? How can the visualization be adjusted to show what
the researcher wants? These are typical questions that researchers producing visualizations of their
data ask. To answer these questions, researchers should:
• gather ideas from published papers;
• look at visualizations that have been done in related fields of study; and
• study the samples provided with the OpenDX visual programming environment.

Gather ideas from several fields of study
OpenDX can be used in a large variety of disciplines. Its facilities are not limited to particular
applications, and the same visual effects can often be used effectively across widely different data sets
and applications. Thus, looking at a wide set of example applications, such as those in Figure 2.14
through Figure 2.21, may help a user identify an effect that can be effective in a very different
application.

Figure 2.14
Example of Modflow and Arc
line coverage; data courtesy
USGS.

Figure 2.15
Example Petroleum Modeling;
Porosity of an Oil Field

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

28

Figure 2.16
Demographic Example
©Chris Pelkie, Conceptual
Reality Presentations, Inc.

Figure 2.17
Environment Modeling

 Figure 2.18
Molecular Graphics
Richard Gillilan & Ben
Sandler (©Cornell Theory
Center)

Figure 2.19
Eulerian hydrocode calculation
of a shaped charge jet
©Edwin W. Piburn, Orlando
Technology, Inc.

Figure 2.20
Medical Imaging;
©RAHD Oncology Products

Figure 2.21
Weather Modeling
©Lloyd Treinish

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

29

Step 3–Importing Data

The most difficult aspect of using any visualization package is getting data into the system. A
visualization package that supports only specific applications can make this easier by supporting
specific “standard” file formats. Or, a general purpose visualization system such as OpenDX can
attempt to minimize the import chore by providing special user-programmable import facilities that
are easily adjusted to different data formats. In either case, the data set must be well understood, in
terms of the form and dimensionality discussed earlier.

Once the user clearly understands the data form, there are several options available in OpenDX for
data import. The researcher can:

• use the General Array Importer to create an appropriate data description (the Data Prompter);
• use the OpenDX ImportSpreadsheet Module;
• use the ReadImage Module to read TIFF, MIFF, GIF, and RGB formats;
• use the OpenDX Import module to read data with a specific structure;
• read directly a OpenDX native format;
• read directly using General Array Importer files;
• read directly NetCDF files;
• read directly CDF files;
• read directly HDF files; and
• read directly CM (colormap) files.

There are several other pre-built data importers available, typically implemented as “filters” that
convert data sets in one format into the native OpenDX format. They include the following.

• The system gis2dx, which supports data sets in “standard” formats, including DXF, USGS
DEM, USGS DLG, ESRI's regular Arc/Info data sets, ESRI’s Arc/shapefiles, Oracle data
sets, ERDAS LAN and GIS formats, and USGS MODFLOW data sets.

• Multiple specialized format importers have been written by faculty and students at the Cornell
Theory Center such as FLUENT, PHOENICS, PLOT3D, SAS, and MODPATH .
These can be found at CTC’s web address: http://www.tc.cornell.edu/DX.

Beyond these filters, the OpenDX data model is carefully documented, so that most data sets can be
massaged, one way or another, into a readable native form.

Importing Data into OpenDX
The interface to OpenDX, Figure 2.22, immediately presents an option to import data. As shown in
Figure 2.23, the options for different types of data import are quite extensive.

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

30

Many times data are more complicated and must be described with the full data prompter, Figure
2.24.

Step 4–Design the Visual Analysis

There are a couple ways to get started creating a visualization once the data set is imported.

Figure 2.22
OpenDX Startup Interface

Figure 2.23
Import Data Dialog

Figure 2.24
Full Data Prompter

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

31

Use the Import Data Prompter “Visualize Data...”
The first visualization option is to use the simple default visual analysis built into OpenDX. After
importing the data, simply invoke the “Visualize Data” option to tell OpenDX to apply its default
visual analysis. It may not produce the image wanted, but this can be a quick and effective way to view
the data for initial verification. In some cases this may fail if the default-processing template is unable
to accommodate a particular data set.

Create a Visual Program Using the Visual Program Editor (VPE)
The second option is to select the “New Visual Program” option in the Main OpenDX Menu, then
use the Visual Program Editor (VPE) to create a new visual program. The VPE’s graphical user
interface, shown in Figure 2.25, allows the user to rapidly create and modify a visual program that is
built from standard OpenDX processing facilities and modules.

Use the OpenDX Sample Programs as a Starting Point
The OpenDX distribution includes an extensive set of examples of OpenDX programs. Included in
the “samples” directory. The user can study these examples, then formulate visualization goals and
understand how to achieve these goals.

Figure 2.25
Visual Program Interface

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

32

Step 5–Address the visual artifact’s output requirements

The desired form of the final output, or visual artifact, has a dramatic impact on the way in which the
output is derived and exported for storage. Output options include:

• a visual program that allows other users to interactively generate images;
• a single image displayed on an RGB (computer) monitor;
• an animation displayed on an RGB monitor;
• an animation to be converted to NTSC/PAL video signal (i.e., for display on a standard

television);
• an image printed on paper; or
• a 3-dimensional object to be displayed and manipulated via VRML.

These different output options have dramatically different image production and display
requirements.
• Images on an RGB monitor are limited to the size and resolution of the monitor.
• NTSC Video is limited to 720x486 or 640x480 pixels, and requires 30 frames per second.
• Images to be printed should be higher resolution than that of the image displayed on the

computer monitor.

Summary

The process to visualize data with OpenDX is performed using the five visualization steps presented
in this chapter. Some of these steps are common to all visualization systems and independent of
OpenDX, while other steps are highly dependent on the OpenDX software. This training manual
concentrates on those visualization steps specific to OpenDX, so that the user will become proficient
in producing the desired visual artifacts. These steps and their relationships to OpenDX are
summarized below:

1) Collect da ta . This initial step is independent from the OpenDX software system. OpenDX uses a
general purpose data model capable of describing multidimensional data sets, from simple 1-D data to
4-D (3-D time varying) data to N-dimensional data. It may be helpful to collect data in a format
known to be compatible with OpenDX in order to simplify the data importing process. However,
OpenDX should be general and powerful enough to handle virtually any data set.

2) F orm V ision . Identifying the visualization goal is independent from the OpenDX system. Ideas for
the vision can come from various sources like professional journals, Web sites, scientific television
programs, and other software packages. OpenDX includes numerous visualization samples from

T h e C o m p l e t e V i s u a l i z a t i o n E n v i r o n m e n t - C h a p t e r 2

33

different disciplines that offer additional visualization ideas, with the added benefit of providing the
programs that show how the visualizations are created.

3) I mport Da ta . Importing data into OpenDX and the OpenDX data model are highly system
dependent. Several examples in the following chapters will cover all the standard OpenDX data
import methods.

4) Def ine V isual Anal y sis . Constructing the visual analysis is the most system dependent step. A large
portion of this training manual shows how to use many of the OpenDX supplied modules.

5) P r epar e Output . Depending on the desired final product, the output can be dependent or
independent of the OpenDX system. An interactive, visualization program that allows end users to
investigate additional data sets is dependent on OpenDX. However, the visual programmer can
incorporate graphical user interface tools supplied with OpenDX to make the final visualization
program appear to run independent of OpenDX. Otherwise, OpenDX supports several standard
image formats that are software independent. The training materials show how to use OpenDX to
export final visual artifacts into all the image formats supported by OpenDX.

In practice, the order of the five steps may vary depending on the problem. Also, the process may
involve several iterations, and the vision may change as the visual analysis is refined. After the data are
collected, the scientist may decide to import them into OpenDX before identifying a visualization
goal. This allows the scientist to confirm that the data can be described and imported into OpenDX
before defining specific goals. The scientist can then use a simple visual analysis to preview the data, to
gain additional insight into the data and possibly suggest ideas for a visualization goal. An alternative
ordering also occurs when the scientist starts with a visualization goal, but no specific data. The
scientist must determine how to create or collect the data necessary to satisfy the visualization goal.

The visual analysis part of the visualization process usually involves many trial-and-error data
representations and image adjustments. During these iterations, new images are compared to previous
images allowing the scientist to determine which image reveals more information about the data. A
new visualization goal may result from these comparisons. The iterative process of visual analysis
should involve other scientists or team members whenever possible. Other individuals provide
additional insight into the data, identify problems with the visualizations, and offer suggestions on
how to improve the visualization. These suggestions often mean changing the visualization goal. The
first hands-on exercise in the next chapter demonstrates the iterative visualization process where steps
4 and 5 are repeated several times.

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

34

First Hands-on Demonstration

Using OpenDX

The objective of this chapter is to acquaint you with the user interface, demonstrate how OpenDX
creates visualizations, and illustrate some of the most commonly used modules. For this, and all of
the hands-on exercises, you are led through the five-step visualization creation process described in
the introduction.

Step 1 - Gather, Collect, or Create the data

The data set you use in this lesson is a two-dimensional grid of the earth's elevation, or as it is
commonly known, a digital elevation model (DEM). The particular location of the DEM is in the
southeastern portion of the United States. The data values in the DEM are numbers that represent
the elevation at each grid point, where positive numbers indicate elevations above sea level and negative
numbers indicate locations below sea level.

General information about the data.
• The DEM data format is a standard designated and documented by the United States Geologic

Survey (USGS). Elevation data values are located on a regular grid, so that the positions and
connections in the data set are both regular. For this particular DEM, the grid origin is (0,0) and
the grid increments for the X and Y axes are Delta-x=1, Delta-y=-1. This means that the data
set does not have to contain complete lists of grid points and connections–it needs to describe
only the elevation values.

• The DEM data file contains elevation values encoded in binary of type “short”.
• DEMs store elevation values in column-wise order. (Column-wise versus row-wise will be

covered in Chapter 9).
• Finally, the last bit of information about this particular DEM is that the grid size is 301 x 121.

3

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

35

Step 2 - Formulate a Vision

At this point, assume that your vision for depicting the DEM is somewhat uncertain. Generally,
assume that the goal is to produce of some sort of map, but whether you want a “flat” (2-D) map
(Figure 3.1) or a more realistic looking “landscape” (3-D) map (Figure 3.3) needs to be determined.
Thus, the plan is to consider a variety of different visual techniques to display the elevations and then
select the one that you like best. You will definitely want to use color to highlight the elevation changes
in the data set. The initial visualization will simply color the elevation values. The next will add further
details to the map by using contour lines (Figure 3.2), just as USGS topographic maps use contour
lines to show lines of equal elevations. The final option will transform the elevation data into a three-
dimensional surface, as you might see in a scale-model of a landscape. Examples of the three types of
renderings are developed below as illustrated in Figure 3.1 to Figure 3.3.

Step 3 - Importing your data

Now that you have the data and a set of specific visualization goals, you must (somehow) import the
data into OpenDX. The objective of this step is to introduce you to one import option: using the
General Array Importing facility of the Data Prompter. Once you get the data imported, you can
quickly and easily verify the import result using OpenDX's Visualize Data functionality.

Figure 3.1
2-D (flat) rendering using color
to represent elevation.

Figure 3.2
2-D rendering using color to
represent elevation, adding
contour lines to show locations
with equal elevations.

Figure 3.3
3-D (landscape) rendering
using elevation as the value in
the third dimension, also using
color (representing elevation)
and contour lines (showing
locations with equal elevations)
on the 3-D surface.

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

36

Because the data set is organized in a regular and describable manner, you can use OpenDX’s Data
Prompter and its General Array Importer. After you start the Data Prompter, you simply begin
describing the data to OpenDX through its point and click user interface.

� Start OpenDX. Type “dx” at the command line or double click on the “dx icon”. The
OpenDX startup window appears as shown in Figure 3.4.

� Start the Data Prompter by choosing Import Data from the initial OpenDX window.
The Data Prompter, which looks like Figure 3.5, should appear.

� Click Select Data File ... under the File menu bar option. Select the data file
“sealevel.bin”. This file should be included with this material.

� Select the Grid or Scatter ed file button.
� Select the first Grid type button (representing regular positions, regular connections).
� Click the Describe Data button.
� Begin filling out what you know about this data.

� The grid size is 301x121, so select the first Grid size text box and type “301”; select
the second size box and type “121”.

� The data are encoded in binary format, so pull down the Data format menu and
select “Binary (IEEE)”.

� The data are stored in column-wise order, so select the Column button to match this
order.

Figure 3.4
Start OpenDX

Figure 3.5
Describing DEMs

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

37

� The type of the first field, “field0” is “short”. Note that field0 is already highlighted,
so simply change the “Type” so that it reads “short”, then click the Modify button.

� Save this description produced by the prompter by selecting Sav e As in the File
menu. Name the saved description as “sealevel”.

Figure 3.6 Sealevel description

� Use your mouse to move the Describe Data dialog box out of the way, without
closing it. Now, click on the Visualize Data button in the initial dialog. Be careful to
click on the window's border, not in the initial window's panel. If you happen to
click in the panel in the wrong place, parameters may get changed and you will have
to start over.

Wait for OpenDX to produce an image. Note that a new set of windows is created, then the Execute
menu item turns green until the image appears. Look at the image that results – does it look “correct”
to you? Isn’t it upside-down from the image shown earlier? What do you think went wrong in your
initial data set description? If the elevations are being placed in the wrong (relative) locations, is there
some way to adjust the increments on the grid description to fix the problem?

� Go back to the “sealevel” description window. Change the second <origin,delta> pair
from <0,1> to <0,-1>. This change says that the Y values go from larger to smaller,
rather than smaller to larger as you originally thought. Now, select Sav e from the File
menu to save the modified description.

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

38

Figure 3.7 Modified description

� Try Visualize Data again, and you should see OpenDX produce the image in Figure
3.8.

E v alua tion. The default image produced by OpenDX is a nice 2-D map with color, contours, and
shading, as you might find on a topographic map. This is very similar to one of your possible “visions”,
but you should try to use the visual programming environment to write your own program, to see if
you can achieve a more ambitious goal.

Figure 3.8
Corrected Auto Visualized
Image

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

39

Step 4.1 - Design the Visual Analysis for Vision 1

Next, you will begin the creation of your first visualization, which involves using the visual program
editor (VPE) interface to build a visual program from standard OpenDX modules.

� Start the OpenDX Visual Program Editor by choosing New Visual Program from the
initial OpenDX window.

OpenDX will open a large, multipart window managed by the VPE (Figure 3.9). A menu bar
running across the top of the screen contains pull-down menus that provide familiar collections of
services, such as File, Edit, etc. A large blank area called the canvas is where you build the visual
program. The two regions on the left are palettes, which define a hierarchy of available visualization
components, or modules. The top palette defines categories of modules, such as Annotation,
Realization, or Rendering. The bottom palette lists the modules in the chosen category. The label
between the menu bar and the canvas is a page tab, which is used to organize larger visual programs
that grow too large to fit easily on one screen.

Figure 3.9
The Visual Program Editor

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

40

� Start by importing the data file “sealevel.general”, which you saved in the
Data Prompter Import step in the previous section. To do this, click on the Import
and Export category in the top palette, then click on the Import tool in the bottom
palette. You should notice that the cursor becomes a corner cursor showing where
the upper-left corner of the module will be placed. Move the cursor onto the canvas,
position it near the top, then click–this inserts an Import module into your visual
program.

Note that there are several tabs on the top of the Import module icon. Each tab represents a possible
input parameter to Import. The first input tab of Import is cyan colored (the tab circled in red in the
Figure 3.10)–this tab color indicates that the corresponding parameter is required. The color of all
other parameters indicates that they are either optional or are assigned a default value.

� Open the configuration dialog box (CDB) for Import by double clicking on its icon.
As shown in Figure 3.11, the three inputs name, variable and format correspond to
the three top tabs on the Import icon.

Figure 3.10
A module with required and
optional/default parameters

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

41

Figure 3.11 Configuration Dialog Box

� Type the name “sealevel.general” in the name parameter box. Next, close the
configuration dialog box by clicking OK to record your inputs.

The Import module is now displayed with its first tab folded down to indicate that a value for this
parameter has now been defined. The tabs that remain up have yet to be defined. Each required
parameter must have its value specified prior to execution; an optional parameter will use a default
value if no value is specified.

� From the Transformation category choose AutoColor and place it below Import.
� From the Rendering category choose Image and place it below AutoColor.
� Now, use the mouse/left-button to connect the output tab (on the bottom) of

Import to the left input tab (on the top) of AutoColor. You make this connection by
positioning the cursor on the output tab, pressing the left-button down, moving the
cursor to a position on the input tab, then letting the button up. Connect AutoColor
and Image as shown in Figure 3.12.

By connecting these tabs you direct OpenDX to route the output of one module for use as the input
of another. When all modules have inputs appropriately defined, you have a complete visual program.
To help you make appropriate connections, you can click on an input or output tab to display the
name of that module’s parameter.

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

42

� Your visual program is complete, so execute it using the Ex ecute Once choice in the
Ex ecute menu. Each module changes color (to green) while it is executing; the
Ex e cute option and the page tab also change color while the program on this page is
executing. Eventually execution will complete and an image will appear.

Figure 3.12
First Visual Program

Figure 3.13
First Vision Image

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

43

Sometimes execution results in an execution error, and no image is produced. If this happens, an error
message will appear in a message window. For example, in this program Import will return an error if
it is unable to locate an input file with the name you specified. If this happens, you need to correct the
file name and re-execute the program.

E v alua tion. Look at the image. It should match your most basic vision, that of a 2-D map with color
used to represent the elevation values. Assume that this is sufficient for now, and move on to consider
the final output form you want for this image.

Step 5.1 - Address the output requirements for Vision 1
Let’s assume that you want to save this image as a GIF that can be used in a Web page, i.e., as
part of an HTML document. Since the image will be displayed on a computer screen, you
need to produce the output image to match the resolution required for basic computer
display, which is generally 72 or 75 pixels per inch (ppi). Note that images to be printed or
used for other purposes may require a significantly finer resolution (a larger ppi).

� To save your image, click on Sav e Imag e ... in the File menu on the Image window.
The dialog box shown in Figure 3.14 should appear.

� To set the output parameters for a monitor display image; change the name of the
Output file name to “sealevel.gif”; change the Format to “GIF”; and click on the Sav e
Curr ent checkbox (Figure 3.15).

Figure 3.14
Save Image File Dialog

Figure 3.15
Save Image File Dialog Filled
Out

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

44

Note: The GIF format may not be available in your version of OpenDX if the ImageMagick package
was not added during compilation. If not, choose another format to save the image.

� To actually save the image using the specified parameters, click the Apply button.

Once the Apply button is clicked, the image is saved and the Save Current check box becomes
unchecked.

� Click the Close button to close the dialog box.

The file “sealevel.gif” should now appear in the appropriate directory. You can view the image using
any image-viewing package, such as “xv” on UNIX or “PaintShopPro” on Windows, or since it is a
GIF image, you can even view the image with an Internet browser.

Step 4.2 - Design the Visual Analysis for Vision 2

Now, revise the visualization and develop a more complex visual program that satisfies more
ambitious goals, such as a 2-D map with contour lines. In terms of visual analysis, assume that
contour lines are derived from a base elevation map by applying the module Isosurface to the base
map.

� Return to your program, and modify it by adding an Isosurface module, selected
from the Realization category. You want to include both color and contours, so add
a Collect module from the Structuring category to combine the two into one.
Connect inputs and outputs to produce a program like the one in Figure 3.16. Before
connecting the Collect and Image modules, you need to remove the link between
the AutoColor and Image modules. Grab the connection at Image, drag it off onto
an unused part of the canvas, and drop it there–the connection should disappear.

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

45

� Ex ecute the new version of the program.

Look at the resulting image carefully–any contour lines are going to be hard to see, because they are
colored yellow by default.

� Change the color of the contour lines by adding a Color module (from
Transformation) between Isosurface and Collect. You can change the connections
between the modules by clicking on the desired Collect input tab and moving the
link across the canvas to the first input of the Color module.

� Open Color (double click on its icon) and set its color parameter to “black”. As
shown in Figure 3.17, the “...” button to the far right of the color parameter gives a
short list of colors, but many others are available. Re-execute the program and look
at the new image produced.

Figure 3.16
Current Visual Program

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

46

The output image should now look like the one in Figure 3.18. Does it match your vision? Probably
not, because it shows only a single contour line, instead of a set of regular contours. Use the mouse to
look at the names of the optional parameters on Isosurface. Note that you didn't set the isovalue
parameter, so OpenDX used a default value. What value do you think was used?

Figure 3.17
The Color configuration dialog
box

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

47

Open the Isosurface module to see what the default is and you should see that it is the “data mean”. If
you want more information about the Isosurface parameters, select the Description button at the
bottom of the dialog. Note that there are more input parameters listed than shown in the
configuration dialog box. If you return to the configuration dialog box and choose the “Expand”
button, OpenDX will show all parameters (some are “hidden” by default).

If you want more information about Isosurface you can use the on-line help system. In the “Help”
menu, choose “Context-Sensitive Help” and the cursor will turn into a question mark. Now, click on
the Isosurface tool in the VPE, and a description will appear.

� Open Isosurface and change the value parameter to 0. Execute again, and the
image appears with a single contour line at elevation value “0”. This contour line
should look like the coastline of southeastern North America.

� Change the value parameter to include two values, 0 and 100, by simply typing in
the two numbers separated by a space. What do you expect to see in the image?
Ex ecute the program to see if you get what you expect.

Control Panels: Changing Parameter Values More Easily
Changing parameter values by typing into configuration dialog boxes is inconvenient, particularly if
the visualization designer wants to create a visualization that allows the end user (with no knowledge
of OpenDX) to modify parameters. OpenDX provides a facility called an interactor that provides a
much easier way to interactively change the parameter values of any module. Each interactor is
manipulated in a special OpenDX window called a control panel. Interactors are particularly convenient
when parameter values are to be interactively controlled by a visualization end-user that is different
from the visualization programmer.

Figure 3.18
Current Image with Contour
Line

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

48

� Before adding a control panel you need to un-set the value parameter of
Isosurface. You do this by opening the module and clicking on the blue square to
the left of value parameter (Figure 3.19). When you close the module you’ll see that
the second input tab of Isosurface is now up to indicate an undefined parameter.

� You need to set a scalar contour value, so select the Scalar module from the
Interactor category. Place Scalar above Isosurface, and connect Scalar’s output to
Isosurface’s value input (second input tab). Note that the VPE performs type
verification when you attempt to make such connections. For example, when you
drag Scalar’s output near Isosurface all valid connections to Isosurface (those for
which scalar input values are acceptable) are highlighted green. Figure 3.20 shows
how your program should now appear.

Figure 3.19
Input Set Checkbox

Figure 3.20
Current Visual Program

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

49

� Now, double-click on Scalar–a control panel for the specification of a scalar value
will pop up (Figure 3.21).

The Scalar module placed on the VPE is called an interactor standin. The dialog box within the control
panel window that allows the user to actually set the parameter value is called the interactor. Note that
the VPE automatically names the interactor as “Isosurface value”, based on the module and
parameter to which the scalar input is to be sent.

Figure 3.21
Scalar Control Panel

Figure 3.22
Interactor and Stand-in

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

50

Setting limits on an interactor
In many cases you need to constrain the user to input parameter values that fall only within a specified
range. You do this by setting limits on the corresponding interactor.

� Select the interactor in the control panel by clicking on the interactor’s name. Its
borders will highlight when it is selected.

� Choose Set Attributes from the Edit menu of the control panel to display the options
to set minimum, maximum, and increment values. Set the maximum to 500,
minimum to -500, and global increment to 50. (Note: After you type each number,
you must press the “Enter” key for the number to be accepted.) Click on OK to record
these settings.

� Modify the execution protocol so that any change in a parameter specification results
in re-execution. Simply choose Ex ecute on Chang e from any Ex ecute menu.

� Now use the arrow buttons in the “Isosurface value interactor” to modify this
parameter, and see the image result change. After each click on an increment arrow,
wait for execution to complete before clicking again. Press down and hold the arrow
to increment through a range of values; release when you reach the desired value
and the system will execute only with that final value.

� You can always set the value manually, rather than using the increment arrows.
Simply click in the value space, type the desired value, and press the Enter key. Do
this to set the parameter value back to 0.

View Control, Colormaps and Data-Driven Interactors
There are several types of interactors that have more complex roles than the simple parameter input
interactor discussed above. Many modules have parameters expressed as special interactors to
facilitate user manipulation and experimentation with different parameter values. The most
important of these are used frequently to set key parameters on Image and other modules closely
related to image display.

Image provides a wide range of interactive image display options that become available when you
activate the Image’s View Control. For example, you can use the control option to “zoom in” on a part of
the image displayed in the Image window. You do this by positioning the cursor in the center of the
region to be enlarged, holding the left button down, and dragging away from the center. When you
release the mouse button, you define the size and extent of the enlargement. If you simply click on a
point, Image simply zooms in on a very small region. Zoom out by performing the same actions, but
using the right mouse button. After applying these or other view control options, you can always reset
the display by selecting Reset from the View Control dialog.

� In the Options menu of the Image window, choose View Control . In the View Control
window set the Mode selector to “Pan/Zoom.”

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

51

Figure 3.23
Image View Control

� Use the zoom in technique to enlarge the display of the Florida peninsula. Use the
zoom out to return the region to its original size.

Color specification is another type of interaction for which specialized interactive tools are very useful.
There are several different color models used in computer coloring that can form the logical basis for
interactive coloring.

� Return to the VPE and delete AutoColor (highlight the AutoColor module by
clicking once on its name then press the “Delete” key). Replace this with a Color
module (from Transformation) and a Colormap module (from Special).

� Connect the modules as shown in Figure 3.24 and execute once. You will see a lot of
black areas in the resulting image–what do you think happened?

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

52

� Open Colormap and look at its default parameters–they encompass only data
values between 0 and 100. You can reset the limits by hand if you know the range of
your data, but it's easier and more general to make the Colormap data-driven. You
do this by connecting the output of Import to the first (data) parameter of
Colormap, as shown in Figure 3.25.

Figure 3.24
Current Visual Program

Figure 3.25
Current Visual Program

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

53

� Execute again and you should see an image much like what you got using
AutoColor.

� Now, experiment with Colormap parameters using its specialized interactors. You
can set control points in hue, saturation, and value space by double-clicking in the
appropriate region. Control points can be dragged using the mouse. You can also set
control points at precise locations using Ad d Control Points from the Edit menu.

Other interactors besides those in Colormap can also be data-driven. For example, you earlier set the
limits on Scalar by hand, but you could have simply used the output of Import to establish limits on
Scalar.

� Data-drive the Scalar by connecting the output of Import to the input of Scalar,
and execute once.

� Now look at the limits of the Scalar interactor in the control panel.

Only one tab on the Scalar interactor is shown by default. Other parameters are hidden. For example,
you could explicitly specify the minimum, maximum, or parameter increment instead of letting the
interactor figure it out. Note that to open the configuration dialog box for a Scalar, Colormap,
Sequencer, or Image you need to select the module and choose Conf igura tion in the Edit menu.

� Save your program by clicking on Sav e Program in the File menu of the VPE. Name it
“sealevel.net”.

E v alua tion. The current version satisfies the second vision, that of a colored 2-D map with contour
lines. However, you still have yet to achieve the most ambitious vision, that of a 3-D depiction of the
landscape.

Step 5.2 - Determine and understand the desired output's requirements for
Vision 2.

Assume that you want to save this image as a full-screen image in TIFF format for viewing on a
computer screen using high-resolution software. Monitors can typically display a range of resolutions
from 800 x 600 up to 1600 x 1200. The amount of VRAM and the computer’s video card are the
limiting factor for what resolution is displayable. A typical workstation monitor has a resolution of up
to 1280 x 1024 pixels. To save your image in appropriate form for this full screen display requirement,
do the following.

� Save the image by selecting Sav e Imag e ... from the File menu on the Image window.
� In the “Save Image” dialog box, change the name of the output file to “sealevel-

full.tiff”. Change the Format to “TIFF”. Click on the Allow R endering checkbox.
Change Image Size to 1280x1024. Select the Sav e Curr ent checkbox. Finally, select the
Apply button (Figure 3.26).

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

54

When you select “Apply”, you should notice that the normal cursor turns into a time-cursor, which
indicates that OpenDX is currently rendering your image with the new image parameters. Wait for
the rendering to finish–you will see the “Save Current” checkbox become unchecked.

� Select the Close button to close the dialog box.

The image should now be stored in your directory as “sealevel-full.tiff”. You can view this image using
any viewing package that supports TIFF format, such as “xv”, “PaintShopPro”, or “Adobe
PhotoShop”.

There are important format differences between the GIF image produced earlier and the TIFF image
just produced. The GIF format is oriented toward lower resolution display, and attempts to limit file
size. Thus, it is limited to 256 colors and uses an LZW compression to compress the data within the
output file. TIFF format is oriented toward applications where higher resolution takes higher
precedence over small file size, such as electronic representation of color imagery to be included in high
resolution printed publications. TIFF supports full 24 bit (16 million) color representation.

Special N ote : The ratio between an image’s width and height is called its aspect ratio. Any time an
image of a certain size is displayed or printed as an image of a different size, the image must be adjusted
accordingly. A display image that has the same aspect ratio as the source image will generally provide
the most faithful representation of the source image; similarly, changing the aspect ratio between
source and display generally degrades the quality of the displayed image. A full-screen 1280x1024
display probably does not have exactly the same aspect ratio as the image you were displaying in
OpenDX's Image window, so in rendering the output OpenDX will do the best it can to provide you
with an image that matches the specified dimensions. In most cases, you can obtain a better result by
specifying only one dimension, and letting the OpenDX rendering process select the other dimension
to preserve the source image’s aspect ratio. For example, you can specify a width of 1280 pixels for
“Image Size” but leave the height unspecified; when you render this image, OpenDX performs the
calculation to determine the most appropriate height.

Figure 3.26
Save Image Dialog Box

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

55

Step 4.3 - Design the Visual Analysis for Vision 3

The goal in the most ambitious vision is to produce a 3-D, landscape-like, depiction of the data set.
Thus, you need to apply a visual analysis that produces a 3-D object from a 2-D data form. The idea
is to have the first two dimensions defined by the <X,Y> location, and the third dimension defined by
the elevation value. In addition, to make the result look truly professional, you might also want to add
captions or annotations, and to use “color shading” instead of just plain coloring.

Captions, RubberSheet, and Shading
� You can add a caption to your image by using a Caption module (from

Annotation). The text in the caption will represent one additional layer of
information to be combined in the final image, so place Caption near Collect on
the canvas.

� By default, Collect has only two input tabs for which both are in use. You will need
to add another input tab to allow Collect to include the output from Caption. Do
that by selecting Collect, then choosing Input/Output T abs -> Ad d Input T ab from
the Edit menu of the VPE. Once you’ve created the new tab, connect Caption to
Collect to give the program shown in Figure 3.27.

Figure 3.27
Current Visual Program

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

56

� You define the actual caption by opening Caption and typing in a value for the
string parameter. Other parameters allow you to change the orientation, size,
placement, font, etc. of the text. Set string to “Southeastern US” and experiment with
other parameter values (clicking the Apply button and executing the program to see
the result) until you are satisfied with the appearance of your caption.

The critical step in achieving your final visualization goal is to transform the 2-D data set with
positions-dependent data into a data set with a 3-D form, where a surface is formed based on logical
connections between the points in the third dimension. This process is generally called rubbersheeting.
The formation of an appropriate surface involves a fairly intricate algorithm, but in OpenDX the
process is encapsulated in a single, simple to use Rubbersheet module.

� You can form the desired surface from your 2-D data set using the RubberSheet
module (from Realization). Place this module on the canvas between Color and
Collect.

� Disconnect the Color with the Colormap from Collect. Connect Color to
RubberSheet and RubberSheet to Collect as shown in Figure 3.28, then execute.

Your new image should be a three dimensional colored surface. Experiment with additional types of
image view control. These are especially useful with 3-D image renderings. For example, you can
rotate the image using both left mouse button and right mouse button. It may help if the Rotation
globe is visible.

Figure 3.28
Current Visual Program

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

57

� From the Options menu of the Image window, choose View Control , then select
Rotate mode. To try out various rotation options, try turning on/off the Display
Rotation Globe in the Options menu of the Image window.

� When you are satisfied with the appearance of the display, save your program.

E v alua tion. Your third version of the visual program achieves the third, most ambitious vision for the
depiction of the DEM data.

Step 5.3 - Determine and understand the desired output's requirements for
Vision 3

Assume that for this image, you want to save the result as a high-resolution postscript file to send to a
color laser printer. The image should fill as much of the page as possible without cropping.

� Select Sav e Imag e ... in the File menu on the Image window to open the dialog box.
Set the parameters there as follows. Change the Output file name to “sealevel.ps”.
Change the output Format to “Color PostScript”. Select the Allow R endering
checkbox. Change Image Size to “2250x” and press the “Enter” key, see Figure 3.30.
Select the Sav e Cur r ent checkbox. Finally, select Apply to render and save the result
image.

Figure 3.29
One view of the final 3-D
image

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

58

When you select “Apply”, you’ll see the cursor change form to indicate that OpenDX is rendering the
image; you may also note that higher resolution output requires a larger and more complex output
image, which requires longer rendering time. Wait until the rendering is finished and the “Save
Current” checkbox becomes unchecked.

� Click the Close button to close the dialog box. The image should now be stored in
your directory as “sealevel.ps”. You can print this image out to a color laser printer.

As you may have noticed, the Output PPI changed when the large number was entered for the image
size. OpenDX will automatically try to create an image that can fit on one page, which may increase
the number of pixels per inch. However, it may not always be beneficial to increase the number of
pixels being rendered. If the data set is small and the rendered image has no gradient changes,
increasing pixel resolution is a waste of time.

First Hands-on: Review

The following is what you should have garnered thus far.

1. You used a particular instance of the OpenDX data model. This instance has a form in two
dimensions with regular points and connections, i.e., a regular 2-D grid. The data set is associated
with this form in a positions-dependent manner, i.e., corresponding to elevations measured (or
estimated) at particular locations in the grid.

2. You were introduced to and gained experience using OpenDX’s Visual Program Editor, and should
have mastered the visual programming techniques required to select and place modules on the
programming canvas, connect/disconnect module inputs and outputs, open modules to specify their
parameter values explicitly or select other module-specific facilities, select various menu options, and
interact with control panels and interactors.

3. You used a simple, standard data import mechanism to import a simple, regular data set. You also used
OpenDX’s default visualizer to get a quick, standard view of the data set.

Figure 3.30
Save Image Dialog

F i r s t H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 3

59

4. You watched OpenDX depict its execution flow as it executes, and selected various execution modes.
You saw OpenDX pass data downward from module to module, and noticed that the flow is one-way
only–data never flows upwards (except in the special cases of Get and Set which will be discussed
later.)

5. You learned to open a module to access its configuration dialog box, as a way to set parameters. This is
a way to set parameters that change infrequently, but is cumbersome for parameters that change
frequently–for those, you’ve learned to use interactors. The dialog box also provides access to special
interactive controls on modules such as Sequencer, Image, ColorMap, and other interactor stand-ins,
but these modules have to be opened in a special way. You learned a little about some of the controls
provided by these special interactors, particularly those on the Image window.

6. You learned that most parameters in most modules have reasonable default values. You also learned
how to use simple Interactors and control panels to allow simple inputs to be changed interactively.

7. You learned various ways to save images, with the various save parameters dependent on how you plan
to use the output image.

8. Finally, you learned a little about the options provided on the most commonly used OpenDX
modules. Most importantly, you learned that in many cases you can use these modules without
understanding exactly how they perform their task, what all their possible inputs are, etc. Hopefully,
you realize you can evolve your visual programs incrementally, expanding your use of new modules
and new options as you expand your vision to more ambitious goals.

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

60

Second Hands-on Demonstration

Using OpenDX

The objective of this exercise is to further acquaint you with the VPE user interface, explore how
OpenDX handles multiple data sets, present several additional commonly used modules, and
introduce OpenDX’s animation capabilities. As before, in presenting the hands-on exercises, you are
lead through the five-step visualization process described in the introduction.

Step 1 - Gather, Collect, or Create the Data

This lesson is based on analysis of complex atmospheric data produced by a computer simulation of a
severe thunderstorm. There are three data sets that use the same 3-D grid to position the data. Each
data set contains different types of data values, namely air temperature, cloudwater amount, and wind
velocity vectors for each grid point. These data sets were provided courtesy of NCSA at the
University of Illinois, Urbana-Champaign.

General information about the data:
For each of the three data sets, data values were created for points spaced at regular intervals over a 3-
D space. Therefore, it is natural to use a data model in which the data values are associated with the
points in a regular grid, with regular positions and connections, and with the grid origin at (0, 0, 0). By
looking at the spatial scale of the simulation used to produce the data sets, you see that the appropriate
grid size has increments for the X, Y and Z axes such that Delta-x = 4166.67, Delta-y = 2214.29,
Delta-z = 4153.85. The grid size in terms of the number of data points is 25 x 8 x 14. Finally, note that
in a regular data set such as this, the data set typically does not contain an explicit list of the grid point
positions and connections - the positions and connections are generated from a description of the
regular structure, using the origin, number of data values, and deltas.

The data associated with each point includes the following:

• temperature data, stored as floating point numbers that represent estimates of temperature in
degrees Celsius;

4

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

61

• cloudwater data, stored as floating-point numbers, representing estimates of cloud densities; and
• wind velocity, a vector representing direction and velocity in meters/second, stored as a triple of

floating point numbers.

Step 2 - Formulate a Vision

Given these data sets, a meteorologist may know what type of visualization to produce for his/her
own specialized interests, but may not know how to present this information to the public. Most
members of the public, even those with scientific backgrounds, probably won't know exactly what
they'd like to see even if asked. The best approach is often to create some "representative" displays,
show them to the target audience, and use the feedback to design more complicated and meaningful
images. Thus, the initial vision is to create some representative 3-D image examples to be evaluated by
experts and the public. This also allows demonstration and evaluation of various capabilities of
OpenDX.

Vision 1 - Show "vertical slices" of temperature through the isosurface of the cloud. Animate this on
the screen by moving the slice through the cloud, as shown in Figure 4.1.

Figure 4.1 Temperature slabs moved through the cloud field.

Vision 2 - Show a similar sequence of slices of horizontal wind values through the cloud. Show wind
as wind vectors with respect to an isosurface of the cloud field, i.e. wind vectors at the points that have
the same cloud density value. This is illustrated in Figure 4.2.

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

62

Figure 4.2 Wind data displayed with the cloud field.

Step 3 - Import the Data

To simplify the exercise, the data have been created and converted to the native Data Explorer format;
thus, you can begin creating your visual program in step 4 by simply using the Import module to read
the data sets.

Step 4.1 - Design the Visual Analysis for Vision 1

Creating appropriate visual analysis for this application involves using several modules already
introduced, along with various new features, The new features include new modules, OpenDX's
simple animation techniques, and more complex user interaction features in the VPE interface.

FileSelector Interactors and the Slab module
Start a new program in the OpenDX Visual Program Editor by choosing New in the “File menu” of
the VPE. [If you are not currently running the VPE, start it directly from the command line by
typing “dx -edit”.]

� Connect an Import (from Import and Export) to an Isosurface (from
Realization) to an Image (from Rendering.)

As discussed in Lesson One, interactors allow the end user to change parameters much easier than
opening configuration dialog boxes. In this visual program, use the FileSelector interactor to allow the
user to choose the specific file to import. The FileSelector has two outputs: the complete path name
to the file, and the file name.

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

63

� Place a FileSelector interactor (from Interactors) onto the canvas. Connect the first
output of the FileSelector to the first input of the Import. Add a data-driven
Scalar interactor (from Interactors) and connect its output to the second input of
Isosurface, to control the Isosurface value. The network should now look like
Figure 4.3.

� Double-click on the FileSelector to open its control panel. In the control panel,
click on the “…”, then navigate and select the data file named “cloudwater.dx” from
the samples/data directory of the OpenDX system. Now, execute the visual program,
which should produce the image as shown in Figure 4.4.

The image in Figure 4.4 is a rudimentary depiction of the data set. It is useful for confirming that you
have selected the right data file and described it correctly, i.e. resulting in something that looks like a
"cloud." However, this is obviously not a depiction of the data that provides much insight into the
relationships embedded in the data set. Thus, some refinement is obviously needed.

Figure 4.3
Current VPE snapshot.

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

64

� Now add a second Import and a second FileSelector to the network. You could
drag new modules from the appropriate menu, or select those two tools that are
already present on the canvas and then Drag-and-Drop copy them. To select the two
models, either hold down the shift key and click on each module or surround both
modules with a rubberband by clicking on the canvas, then drag around the two
modules with the left mouse button depressed. After both modules are selected,
complete the drag-and-drop copying by using the middle mouse button (both
buttons on a PC) to drag copies of the selected tools to a new location.

� Place the new FileSelector and the existing Scalar interactor to the existing control
panel. Open the existing control panel by selecting Control Panel in the Open Control
Panel by Name item in the Windows menu. One by one, add the FileSelector and
Scalar to the control panel by dragging (using the middle mouse button or both
buttons on two button mice) the module from the canvas into the control panel.

The new Import and FileSelector modules allow the program to import a second data set. Next you
want to add to the visualization by taking a 2-D slice of the newly imported (3-D) data set.

� Give the two FileSelector interactors names that tell what they do. For example, the
first is used for the cloudwater data to create an isosurface, so call it “Isosurface
Data”; the second is used to import the temperature data which will be sliced, so call
it “Slab Data”. Specify these names by clicking on the interactor's existing name; a
white border will appear around the interactor once it is selected. Click Set Label...
in the Edit menu of the control panel, then type in the new name. Repeat this for
both FileSelectors to set both names.

� Change the new FileSelector interactor so that it imports the file “temperature.dx”,
from the same directory as “cloudwater.dx”. The control panel should look similar to
Figure 4.5.

Figure 4.4
Default image for cloudwater
isosurface.

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

65

It is now assumed that you can import all the data, and can use that data to depict simple clouds based
on temperature or cloudwater. Next, find a way to slice through the cloud at specified points. The Slab
module creates a multidimensional object consisting of a selected subset of input data. By using this
module, you can slice the three-dimensional data set to form a two-dimensional object, i.e., you can
depict data relationships in the 3-D object on a 2-D plane representing the slice.

� Add a Slab module (from Import and Export) below the Import that is linked to
the "temperature.dx" data set. Connect the output of Import to the first parameter
of Slab. Add an AutoColor module and connect as shown in Figure 4.6. Finally, add
a Collect and connect outputs of Isosurface and AutoColor to combine both
outputs into a single image.

Figure 4.5
Current Control Panel

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

66

� To control where and how the Slab intersects the 3-D data set, you need to set its
parameters. Open its configuration dialog box and set the dimension parameter to
0, which means that the slice will be taken in the first dimension. Set the position
parameter to 5, meaning to take the slice in the fifth position in that dimension. The
CDB is shown in Figure 4.7.

� Using the appropriate interactor in the control panel, set the isovalue to 0.1. Now,
execute the visual program.

Figure 4.6
Current Visual Program

Figure 4.7
Slab CDB

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

67

You will probably see only the isosurface, with no slab visible. This is because you are looking at a slab
of thickness 0, on edge. Note that a slab in general can be used to capture a 3-D subset of the 3-D data
set. However, a plane is by definition a slab of thickness 0. Thus, the plane of interest has been formed,
but it isn't visible because of the viewpoint. This is referred to as a slab because OpenDX has another
slightly different module called Slice (you can use the "help" facility to read about slice.)

� Rotate the object slightly to see the slab. If you don’t remember how to perform
rotation, please refer back to Chapter 3.

Using the Sequencer to create an animation
� Add a Sequencer (from Special) and connect its output to the Slab’s position

parameter, resulting in the program shown in Figure 4.8. Remember, to hook this up
you will need to unset the parameter first.

Consider the impact of wiring the Sequencer to the third input of Slab, which defines its position
parameter. The Sequencer outputs a sequence of integers one by one, over a range of numbers easily
specified by the user. As the value from the Sequencer increases, the slab’s position in the 3-D data set
changes. Also, the Sequencer is system controlled so that each new value it produces represents a
"pulse" that pushes through the visual program to produce a new image. Thus, the sequence of values

Figure 4.8
Current Visual Program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

68

from the Sequencer produces a sequence of similar images, which differ only in the position of the
slab. This sequence of images provides an animation of the data set.

� Double-click on the Sequencer (or choose Sequencer from any Ex ecute menu). The
Sequencer is designed with controls similar to those on a VCR or compact disc
player, as illustrated in Figure 4.9.

The P la y F orw ar d button starts the presentation of the animation by incrementing the data values
one by one. The P la y Bac k w ar d button plays the animation by running the sequencer in reverse, i.e.,
decrementing the data values. The S top button stops the animation and resets the sequencer so that it
will restart with its initial value. The P ause button is similar to the stop button in that it stops the
animation; however, it leaves the sequence value set to the last one used. The Loop toggle button
causes the sequencer to play from start to end, restart, then play from start to end, indefinitely until the
P ause or S top button is pressed. The P alindr ome toggle button causes the sequence to play from
beginning to end, then from end to beginning. The Loop and P alindr ome buttons can be pressed
simultaneously to indicate “continuous palindrome” sequencing. The S tepper button changes the
P la y from continuous into step-by-step control, in which each P la y involves display of only one
sequence step. In step-by-step mode, S tepper allows the user to switch to continuous mode. F rame
Con tr ol opens a dialog box that allows the user to set limits that define values such as the minimum
and maximum output values.

� Press the Play button.

A sequence of images should be displayed, but eventually, the system displays a message window
noting “ERROR: Slab: Bad parameter: position must be an integer between 0 and 24.” What has
happened? The description of the data says that the grid size of the x-dimension equals 25 but the
upper limit defined on the default Sequencer is 100. Thus, you must modify the Sequencer so that it
outputs integers only between 0 and 24.

Figure 4.9
Sequencer Interactor

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

69

� Open the frame control dialog of the Sequencer (the top right button), set Min to
"0" and Max to "24". Note that Max is 24 (not 25) because OpenDX starts counting at
position 0.

As with our earlier examples, once you get a basic image displayed it is helpful to add some sort of
annotation to provide context to the image.

� In the Image window, click on AutoAx es... under the Options menu. A dialog box will
appear; click on the AutoAx es Enabled button. Close the dialog box and execute
once.

Notice with the AutoAxes that you see the dimensions of the data set and can tell the slabs spatial
position. There are many options that can be changed with the AutoAxes dialog box and the
AutoAxes can be added via a module as well.

� Play with the various loop , palindrome , single ste p buttons on the Sequencer.

Note that after the sequence has been completed and displayed once, the next attempt to display the
same images seems to execute much more quickly. This is because the OpenDX executive caches the
rendered images. That is, the first display requires that the image be computed and displayed, whereas
a subsequent display of the same image fetches the pre-rendered image from the cache. This saves
rendering time, but because of the size of each rendered image a display of long sequences is VERY
memory intensive.

Data driven Sequencer
� Now make the Sequencer data-driven. Place an Inquire (from Structuring) and a

Compute (from Transformation) between Import and the Sequencer. Wire the
network as shown in Figure 4.10.

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

70

� Set the inquiry parameter of Inquire to “connection gridcounts” (Figure 4.11). This
automatically determines the number of positions, which corresponds to the
number of possible slab points in each dimension of the data set. Note that you have
to type in “connection gridcounts” as it is not one of the items available in the drop
down menu.

With this parameter setting, Inquire returns a three-vector describing the grid size, i.e. [25 8 14]. You
want only the number for the first dimension, i.e. the first element of the 3-vector. To use this to set a
maximum value you need to subtract 1, since the slabs are counted starting at 0.

Figure 4.10
Current Visual Program

Figure 4.11
Inquire CDB

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

71

Note that its parameters allow Inquire to be used to automatically determine a wide variety of
characteristics of a data set. Recall that at any time the full manual page for a module can also be
displayed easily. Just select Con te xt-Sensiti v e H elp from the H elp menu, which causes the cursor to
become a question mark, then click on the module about which help is needed.

� The Compute module is used to evaluate expressions. In this case you want to select
the first element of a vector "a", written as "a.0" (vector elements are numbered
starting at zero) then subtract 1. So, enter “a.0 - 1” as the expression parameter of
Compute (Figure 4.12).

� Select the Sequencer tool in the VPE and choose Configuration from the Edit menu.
Set the min parameter of the Sequencer to 0.

ColorBars
Visualizations need to have annotation describing what the information represents. For the current
visualization it would be beneficial to know what the colors are representing on the slab.

� Drop a ColorBar module (from Annotation) between AutoColor and Collect, and
wire it as shown in Figure 4.13. Note that the wire is connected to the ColorBar
from the second output of AutoColor, not the first. Look at the manual page for
AutoColor to determine why this connection is appropriate.

Figure 4.12
Compute CDB

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

72

� Execute once. You may wish to turn off the AutoAxes at this point. Select Auto Ax es…
from the Options menu of the Image window. Click off the AutoAx es enabled button,
then click the OK button. Click the Play button.

Note that the limits on the color bar keep changing (Figure 4.14). This is because AutoColor changes
the color scale for each new slab. What would be more useful would be a single color scale used for all
slices, i.e., show the range of values for the whole data set, not just those on a particular slab.

Figure 4.13
Current Visual Program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

73

Figure 4.14 Image Sequence

� Tell AutoColor to use the entire range of the data to form the color bar by
connecting the imported temperature field to the min parameter of AutoColor
(Figure 4.15). This instructs AutoColor to find the minimum and maximum of the
entire data set, then use that as its range for coloring.

Just like data values can be colored by modules such as Color and AutoColor, OpenDX can also
change the opacity (transparency) of a color at each data value point. The default opacity for a surface

Figure 4.15
Current Visual Program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

74

object, such as an isosurface, is 1.0, meaning completely opaque. In contrast, a value of 0.0 indicates a
completely transparent object. For a volume rendered object, the opacity defaults to 0.5, implying half-
transparent, half-opaque.

� Change the opacity of the isosurface by inserting a Color module between
Isosurface and Collect, and setting the opacity to 0.3. This allows the slab to be
visible through the isosurface.

� Save the network representing the current visual program, by selecting Sav e Program
As… from the File menu, and naming the program "cloudwater.net". Save the
program in your home directory for future analysis.

The visual program developed thus far satisfies our first vision for depiction of the data, i.e. an
animation displayed on the screen that depicts basic values and relationships in the data sets. This
depiction is sufficiently well developed to present to a target audience to get meaningful feedback on
what other features or animations might be useful.

Step 4.2 - Design the Visual Analysis for Vision 2

The purpose of the next exercise is to attain a more complex vision for data depiction: creating an
animation of a horizontal wind velocity slab, and saving the result to an external file for off-line display.

Figure 4.16
cloudwater.net visual program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

75

To attain this vision, we introduce aspects of OpenDX's data interoperability and more user interface
techniques, such as pages and annotation.

� Modify the existing visual program to apply the Slab Data FileSelector to the file
"wind.dx" instead of "temperature.dx", i.e., open the Control Panel and change the
name. Note that you can overtype the name "temperature.dx" with the name
"wind.dx", but make sure to press the “Enter” key when finished to make this change
effective. Execute the program.

When the modified program is executed, all of the modules continue to work correctly, even though
you have changed the data set being analyzed from a single scalar temperature value per position, to a
vector describing wind. The result is that the colors and structure now represent magnitude of wind
velocity instead of relative temperature.

Suppose the user is interested not in the simple magnitude of wind velocity, but rather in the value of
vertical wind velocity. To change the analysis to produce this result, the visual program will need to use
the Compute module used earlier. The three vector that makes up the wind is ordered [x-axis
horizontal, y-axis vertical, z-axis horizontal], so the expression to select the x-axis horizontal wind
velocity is "a.0". The expression to select the vertical wind is "a.1".

� Place a Compute between the Import and the Slab. Make sure you connect the
output of Compute to the min parameter of AutoColor, Figure 4.17. Define the
expression in the new Compute as "a.1", to select the vertical wind component, and
run the Sequencer. Next, change the expression in the Compute to "a.0", to select
the x-axis horizontal wind component, and run the Sequencer.

If you look at the results of the visual analysis, note that the various data depictions begin to reveal
characteristics of the data that are not obvious from just looking at a collection of numbers. For
example, if you compare the versions that show horizontal versus vertical wind, you see that the
highest vertical winds are strongly concentrated in the center of the storm, in contrast to the
horizontal winds, which are more constant throughout the data set. Thus, selecting the right
depiction is potentially valuable in finding and illustrating relationships that are otherwise hard to
deduce without the proper display.

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

76

Pages and Annotation
By now, you have added so many modules to your program that the canvas is crowded and making the
visual program somewhat hard to understand. It is time to look at features that can be used to
organize visual programs as they get larger and larger.

� Currently there are three different objects feeding into the Collect before Image.
Place a Transmitter (from Special) onto the canvas under the Color module.
Remove the connection that runs from the Color to the Collect, and instead
connect Color to the transmitter. Open the CDB for the Transmitter and change the
Notation parameter to “Cloud”. Click Apply to record the change (Figure 4.18).

Figure 4.17
Current Visual Program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

77

� Close the Transmitter dialog box. Place a Receiver (from Special) above the
Collect. Note how the Receiver automatically names itself the same as the previous
selected Transmitter. Wire the Receiver into the Collect and execute.

The network should work the same as it did before the insertion of the Transmitter/Receiver pair.
Using pairs such as these allows the visual programmer to reduce the amount of wires in a network,
and to lay out the network in a simpler manner. A named Transmitter always sends its data to a
Receiver with the same name. The names of Transmitters and Receivers are restricted to letters,
numbers, or the character “_” and must begin with a letter. Receivers are renamed by the notation
field just like Transmitters; however, they must have a corresponding Transmitter.

� Use two more Transmitter/Receiver pairs to disconnect the Collect from the rest
of the program. Name the pairs “slab_data” and “colorbar”, as shown in Figure 4.19.

Figure 4.18
Current Visual Program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

78

Note that although this actually increases the number of modules on the canvas, it does reduce "line
clutter". More importantly, it allows the use of an OpenDX feature called a Page that allows
collections of modules to be encapsulated more cleanly. Pages always communicate with other pages
using transmitters and receivers.

� Make a new page for the collection of modules including the Receivers, Collect,
and Image modules. Select one of the Receivers, then in the Edit menu choose
Select/Deselect T ools -> Select Connected to highlight all modules connected to that
module. From the Edit menu choose Pag es -> Cr eate with selected tools and a new
page tab labeled “Untitled_1” appears, while the selected modules disappear.

� Make a separate page for the set of tools that create the cloud.
� Give the pages reasonable names. You can do this using the Edit menu Pag e-

>Configur e Pag e option, or double clicking on the page name in a tab.

� Add notes anywhere on the program’s canvas by choosing Ad d Annotation from the
Edit menu of the VPE. The network should now look similar to Figure 4.20.

� Save the program.

Figure 4.19
Current Visual Program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

79

Glyphs
A glyph is an explicit object that visually represents a data value. Example glyphs include arrows that
show the direction of vector data, a sphere that depicts the sizes of scalar values, or even something as
complex as an airplane that represents a vector moving through a vector field. The key is that the
glyph be scaled in size, positioned in direction, or in some other way be adjustable in form to depict
one value from a range of possible values. To illustrate, an obvious use of glyphs is as arrows that show
wind direction. You will use this with your example data set, focusing specifically on wind direction at
the surface of the cloud. In terms of the analysis, the wind data must first be mapped onto the cloud
water density isosurface, then arrows can be used as glyphs to represent the magnitude and direction
of the wind data.

� Place a Cloud receiver in the upper left-hand corner of the canvas on the slab_clrbar
page. The easiest way to do this is to first locate the Cloud transmitter on the cloud
page, select the transmitter, go to the slab_clrbar page, and drop a Receiver (from
Special) on the canvas. By selecting the appropriate transmitter first, the receiver is
always properly named for you.

� Place a Map module (from Transformation) below the Cloud receiver. Wire Cloud
into the first input of Map. Wire the Import into the second Map input.

� Place an AutoGlyph module on the canvas and wire Map’s output into the first
input of this module.

Figure 4.20
Current Visual Program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

80

� Place a Color module on the canvas, wire AutoGlyph’s output into the first input of
this Color module and change the opacity parameter to 1.0.

� Create a new transmitter to send these glyphs to the image page where they will be
collected with other parts of the image. Name this Transmitter “glyphs”, as shown in
Figure 4.21.

Note that you need to explicitly set the Opacity to 1.0. In this case it does not automatically default to
this value, because the cloud has its opacity set to 0.3 from earlier in the network. When the new data
are mapped onto the surface, the colors remain the same.

� On the Image page, add another tab to Collect and wire the glyphs receiver to it.
Execute. Zoom in to see more detail (Figure 4.22). Save the network.

Figure 4.21
Current Visual program

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

81

Step 5.2 - Determine and understand the desired output's requirements for
Vision 2

Suppose you want to save an animation file from the visual program in Figure 4.22 with resolution at
320 x 240 pixels. This requires you to determine a file name, set the resolution, and select an output
format for the image.

� To save the visual program output, click on Sav e Imag e ... in the File menu on the
Image window. The save image dialog box will appear.

� Change the name of the Output file name: to “cloudwater.miff”, change the Format
to “MIFF”, click on the Allow R endering checkbox, change the Image Size to 320 x
240, click on the Continuous Saving checkbox, and click the Apply button (Figure
4.23). Pull up the Sequencer from the Ex ecute menu and push the Stop button once
(this will reset the Sequencer to have it start from frame 0.) Make sure the
Palindrome button and Loop buttons are off; push the Play button; and wait for the
sequence to finish.

Figure 4.22
Final Image

Figure 4.23
Save Image dialog box

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

82

� Click the Continuous Saving button to turn it off and click the Close button to close
the dialog box. The animation should now be stored in your directory as
"cloudwater.miff". If ImageMagick* is installed, you can use it to view the animation
and convert the sequence of images to a single MPEG "movie".

*ImageMagick is a public domain package for display and interactive manipulation of images. It is
available at < http://www.imagemagick.org/>.

Second Hands-on Review

Within this lesson, you have done the following.

1. You used the FileSelector interactor to import data sets from different files.

2. You learned how to copy one or a collection of tools by using the drag-and-drop method.

3. You used the Compute module to compute simple expressions, including those that extract one of the
elements of a vector or of the connection gridcounts. What else can Compute do? It has a large
number of different functions, such as those that
• cast between types (e.g. int(a), float(a));
• do trigonometry and logs (e.g. sin(a), log(a), log10(a));
• compute other mathematical functions (e.g. a+b, a*b, a^^b, exp(a), pow(a, b), sqrt(a));
• perform vector functions (e.g. a dot b, a cross b, mag(a));
• create random numbers (random(a, seed));
• do vector construction and decomposition (e.g. [a, b], a.0);
• compare using conditional functions (e.g. a ? b : c {interpreted as “if a then b, else c”});
• compare strings (e.g. strcmp(a, b), strlen(a)); and more.
Check the Compute manual page in the User's Reference for more details.

4. You created animations as sequences of images using the Sequencer to drive multiple image
production and to supply different parameter values. In the example, the Sequencer output sets the
“position” parameter of Slab, but it can be used in a variety of different ways. The sequencer just
outputs an integer which can be used as
• a variable to change- time (e.g. different series members);
• viewpoint (e.g. different camera angles for a fly around effect);
• variable (e.g. different isosurface values);
• geometry (e.g. different slice planes); and more.

5. You learned to combine the Sequencer value with a Compute module to help you manipulate the
integer output values into whatever form you want. For example if you need 10 values that vary from 0
to 1, you can use the expression "a/9.0" to set the range of the Sequencer between 0 and 9. If you need
10 logarithmic steps between 0 and 2, you can set the expression of the Compute to log(a+ 0.00001)
and run the Sequencer between 0 and 90 in steps of 10.

S e c o n d H a n d s - o n D e m o n s t r a t i o n - C h a p t e r 4

83

6. You used Inquire to automatically determine how many grid counts (for possible “slab” points) are in
a data set. The Inquire module can also be used to determine a variety of other information about an
object, and can be helpful in determining relevant information necessary to set data-driven interactors
or for conditional execution. The following are a few examples of information available.
• How many members are in a group?
• How many members are in a series?
• How many items are in the 'data' component?
• What are the dimensions of the 'positions' component (the grid extents)?
• Is the 'data' component scalar? vector?
• Is the 'data' component of type float? byte?

7. You used Slab to select a 2-D subset of a volume along a dimension.

8. You used Colorbar to display the colormap. Remember how you set the minimum parameter of
AutoColor to make it use the same colormap for all the slabs. This allows you to use a consistent
colormap for a number of images. On the other hand, sometimes a different colormap for each image
provides higher contrast and gives a more “dramatic” effect or shows more information.

9. You saw that modules work fine when the data change from scalar to vector; for example, AutoColor
operates on the magnitude of either scalar or vector data.

10. You used transmitters, receivers, and pages to organize the visual program. This is particularly
important as networks get big, or if you are sharing networks with other people.

F i r s t I n d e p e n d e n t E x e r c i s e s - C h a p t e r 5

84

First Independent Exercises

Rationale

Now you have learned enough about OpenDX to change and extend visual programs on your own.
For this chapter, you should first try to complete the two exercises without using the detailed step-by-
step instructions. Then, you can work through the example solutions in detail, comparing your
solutions with the provided alternatives. Topics covered in these exercises include: reloading a visual
program, modifying captions, adding interactors, saving images, modifying compute expressions,
coloring glyphs, and adding axes to an image.

Exercise 1. Extending the Sealevel Example

When presenting a visual analysis exaggerated scales can often help highlight data relationships. To
illustrate, exaggerate the topological relief in the sealevel visualization. Note that after modifying the
scale, the default positioning of captions is not ideal for the new depiction, so move the caption.

Open the visual program you saved in Chapter 3 ("sealevel.net"). Move the caption to the top left
corner by modifying the position parameter. Use the online help if necessary. Change the size of the
caption from 15 pixels to 25 pixels. Change the font to one of those listed behind the … button at the
far right side of the font parameter. Add another Scalar stand-in and pass its output to the scale of
RubberSheet. Add this interactor to the existing control panel. Set the attributes on this interactor to
go from a minimum of 0 to a maximum of .01 by an increment of .001. Choose Execute on Change
from the Execute menu, and then experiment with changing the RubberSheet scale parameter using
your new interactor. Save one of the resulting images in a TIFF formatted file.

Exercise 2. Extending the Cloudwater Example

In the cloudwater example, the slab was taken in the "x" dimension. This may not reveal the key
features of the data set. Change the direction of the slab to highlight other information. Color plays a

5

F i r s t I n d e p e n d e n t E x e r c i s e s - C h a p t e r 5

85

unique role in visual analysis. It can catch the eye to important aspects of the data quickly. Change the
network to color the wind glyphs for this purpose.

Open the visual program you saved in Chapter 4 ("cloudwater.net"). Put an axes box around the
object. Change the dimension parameter of Slab to 1. Play the Sequencer and then reset its limits,
noting that the limits of the Sequencer are incorrect now since there are fewer slabs in its new
dimension than in the original example. For this data set, "dimension=1" does not imply the "y"
dimension as you might expect. This is because the second dimension specifies the second-slowest
varying dimension, which in this data set happens to be z (x varies slowest, z varies second slowest, and
y varies fastest). Color the wind glyphs by passing the mapped isosurface through another AutoColor
before passing it to A utoGlyph. Notice that you could also simply place the A utoColor after
AutoGlyph–try this alternative (since AutoGlyph passes both the data and any colors through to its
output, it doesn't matter which way you do it).

Step - by step instructions for Exercises

Instructions for Exercise 1
� If you need to start OpenDX, you can use the command "dx -edit" at the command

line to start directly using the VPE. Use the File menu Open Program option. Select
the program "sealevel.net" for which you saved in Chapter 3.

� Open the CDB for Caption by double clicking on the module. Change the position
parameter to [.05 .95] to move it to the upper left-hand corner.

� Click the Expand button of the Caption CDB to view more Input parameters to
caption. Change the height parameter from 15 to 25.

� Locate the font parameter, click on the "…" to the right of the current font name
used and pick a new font such as "area" from the list (Figure 5.1).

F i r s t I n d e p e n d e n t E x e r c i s e s - C h a p t e r 5

86

� Click the OK button and execute the visual program (Figure 5.2).

� Place a Scalar interactor (from Interactors) just above the RubberSheet. Wire the
output of the Scalar into the second input of the RubberSheet.

� Open the currently existing control panel by selecting Open Control Panel by Name -
> Control Panel from the Windows menu. Use the middle mouse button and drag
the newly added Scalar onto the Control Panel (Figure 5.3).

� Select the RubberSheet scale interactor in the Control Panel (click on its name).
Select Set Attributes… from the Control Panel's Edit menu. Set the Maximum to 0.01,
the Minimum to 0.0, and the Global Increment to 0.001. Make sure to press the Enter
key after changing each value. Press the OK button.

� Select Ex ecute on Chang e from the Ex ecute menu. Use the RubberSheet scale
interactor to change the value on the RubberSheet. Watch the image change with
each click.

Figure 5.1
Final Caption CDB

Figure 5.2
Final Image

F i r s t I n d e p e n d e n t E x e r c i s e s - C h a p t e r 5

87

� After selecting one single image to output, select Sav e Imag e … from the File menu
on the Image window. Click on the Sav e Curr ent button, change the Format to TIFF
and change the output name to "sealevel2.tiff".

� Click the Apply button. Once the cursor changes back to a pointer, the image has
been saved and you may close OpenDX's windows. You can save the program at this
time.

The scale between the data values in the data set and the grid size are typically not the same. Thus,
when Rubbersheet is applied, a scaling factor is automatically determined that will make the 3-D
object "look good". The scaling factor allows the programmer to increase or decrease this effect. It is
possible to create a Rubbersheet function that would scale the data accurately given the grid and data
value scales are known.

Instructions for Exercise 2
� If you need to start OpenDX, you can use the command "dx -edit" at the command

line to start directly using the VPE. Use the File menu Open Program option. Select
the program "cloudwater.net" for which you saved in Chapter 4.

� Execute the program once. Select AutoAx es… from the Options menu on the Image
Window. Click on the AutoAx es enabled button. Click the OK button and execute the
program once.

Figure 5.3
Final Visual Program

F i r s t I n d e p e n d e n t E x e r c i s e s - C h a p t e r 5

88

� Select the page with the Slab and Colorbar on it.

� Double click on the Slab to open its CDB. Change the dimension parameter to 1
(Figure 5.4).

� Click the OK button and execute the program with the Sequencer. An error message
will occur because the number of slabs in this dimension is fewer than that in the
original example (14 instead of 25).

� Double click on the Compute module located below the Inquire module to open its
CDB. Change the expression to "a.1-1" so that the Compute selects the second
dimension grid count value (Figure 5.5).

Figure 5.4
Slab CDB

F i r s t I n d e p e n d e n t E x e r c i s e s - C h a p t e r 5

89

Figure 5.5
Compute CDB

Figure 5.6
Final Visual Program

F i r s t I n d e p e n d e n t E x e r c i s e s - C h a p t e r 5

90

� Place an AutoColor module on the canvas between the Map and AutoGlyph
(Figure 5.6).

� Execute the program with the Sequencer (Figure 5.7).
� You could also place the AutoColor after AutoGlyph–try this alternative, i.e.,

unhook the AutoColor from the Map, unhook the AutoGlyph from the
AutoColor, and unhook the Color from the AutoGlyph. Rewire the network so that
the order of the modules is Map, AutoGlyph, AutoColor, Color. Execute once.

Figure 5.7 Final Animation

Conclusion

Knowing how to determine the order for each module in a network is not clear at this point. Some
modules should be starting to become familiar but creating your own program may still seem out of
reach. Understanding the data model underneath all of the visual programming will help you to
understand exactly how OpenDX works, which in turn will help you understand exactly how
OpenDX modules transform data sets to go from their input form to the desired output form.
Starting with the next chapter, you will begin to look at the computations that occur within OpenDX
to help you develop a better understanding of the complete visualization process.

M y s t e r y D a t a - C h a p t e r 6

91

Mystery Data

Rationale

Visualization experts are often called upon to help other scientists to import and visualize their data.
The scientists may not be able to completely (or even consistently) describe how their data set is
organized, but the information may be available, embedded inside the data file. In this chapter, you are
challenged to import a set of data files for which complete information is not available in advance, and
without step-by-step tutorial instructions. You should start by working through both exercises. Then,
you should work through the step-by-step instructions, comparing the details of your actions with the
details of the solution suggested here.

Understanding the way that OpenDX organizes data is important to understanding how both the
system and modules function. After importing the data, you should follow the program presented at
the end of the chapter to learn more about how the data are organized in OpenDX.

Topics covered in these exercises include use of the Data Prompter and an introduction to the internal
data structure of OpenDX.

Exercise 1. Mystery 2-D

In this exercise, you perform your first independent data import, then use the imported data to create a
simple colored image. The name of the file that you are to work with is "mystery2d.txt". At the start, all
that is known about this file is that it contains data on a regular grid and there is only one data value
per grid element. However, other information about the file is assumed to be in the file itself. The goal
is to use the Data Prompter to examine the data file, gather the information needed, collect it in a
separate header file named "mystery2d.general", import the data, and produce an appropriate image.
The visual program can be quite simple: import the data file, autocolor the data, then display the result
as an image. If the data set is described and imported successfully, you should recognize the resulting
image. Save your program as “logo.net”.

6

M y s t e r y D a t a - C h a p t e r 6

92

Exercise 2. Mystery 3-D

As in Exercise 1, you are given a data file with exact contents and format unknown. This time the file
is named "mrb.binary". The only known information about this file is that it contains a three-
dimensional data set aligned to a regular grid. However, other information is available as a header
inside the binary file. Again, you must use the data prompter to create a header file that allows you to
correctly import the data set into OpenDX. Name the header file "mrb.general". Check your import
by pressing the "Test Import" button in the Data Prompter and compare the results to Figure 6.6.

Step - by step instructions for Exercises

Instructions for Exercise 1
� Start OpenDX using the Data Prompter. In UNIX, typing "dx -prompter" bypasses the

initial startup dialog box, and starts OpenDX in a mode that gives you the Data
Prompter.

� Select the file "mystery2d.txt" by using Select Data File ... in the File menu. This file is
included with the materials.

� The data are positioned on a regular grid; thus, select the Grid or Scatter ed file
(General Array Format) option from the formats.

� To use the General Array Format option you must add information to the default
settings, such as grid size, etc. To look in the data file and determine what other
information is given, click on the Browse Data... button. This displays the contents of
the file in a text viewer.

� Click the Describe Data... button.

Note: The data browser may disappear (automatically close). At any time, you may re-open it by
selecting B r o wser… from the … button that succeeds the Data File (Figure 6.1).

� Look at the information from the header of the file. Enter those values appropriate
to the file description into the dialog that creates a header file that describes this
data, as shown in Figure 6.1. First, set the prompter to skip the header when it
imports the data, i.e., because you are now using a separate, explicit header. Then,
set the grid size as defined in the header, set the data format to ASCII, and adjust the
data order. Save the explicit header file as “mystery2d.general”.

M y s t e r y D a t a - C h a p t e r 6

93

Figure 6.1 Opening the Browser

Figure 6.2 Data Prompter Filled Out

� Start a new visual program in OpenDX. Do this easily at the UNIX prompt by typing
"dx -edit" or double-click the icon in Windows.

M y s t e r y D a t a - C h a p t e r 6

94

� Place an Import module (from Import and Export) on the canvas. Set the file
name input parameter to import the target data file.

� Connect the Import to an AutoColor module (from Transformation.)
� Connect the AutoColor to an Image module (from Rendering), to produce the

program shown in Figure 6.3. Execute the program once.

Do you see a recognizable image (Figure 6.4)? If not, you may have to adjust your import header using
the prompter.

� Save this program as “logo.net”.

Figure 6.3
Complete Visual Program

M y s t e r y D a t a - C h a p t e r 6

95

Instructions for Exercise 2
� Start up OpenDX to use the Data Prompter, as in Exercise 1 ("dx -prompter"), or start

OpenDX normally then choose Import Data from the initial dialog to start the Data
Prompter.

� From the File menu of the Data Prompter, choose Select Data File… and choose the
file named “mrb.binary” supplied with these materials.

� The file is known to contain data associated with a 3-D grid, so choose Grid or
Scatter ed Data .

� Choose Browse Data... to look at the file. As you will see, the data in the file are
encoded in binary, except for the first few lines. These lines represent an embedded
header that gives the grid size and other characteristics of the data in the file.

� Press the Describe Data... button to get a dialog box that allows you to build an
explicit header. Fill in the necessary information for the header. Make sure to set the
data type to Binary (IEEE).

� Use the Modify and Ad d buttons to create the three short scalar variables.

Save the header using the Sa v e A s… command from the F ile menu, This data set is quite large, so it
does not "auto-visualize" well. Use another function of the prompter called Test Import to assist in the
import process, as illustrated in Figure 6.5.

Figure 6.4
Resultant Image

M y s t e r y D a t a - C h a p t e r 6

96

Figure 6.5 Completed Data Prompter

� Press the T est Import … button that is on the main Import Data window.

Figure 6.6 Message window from Test Import

Starting DX executive
Memory cache will use 112 MB (6 for small items, 106 for large)
port = 1900
 0: worker here [18042]
server: accepted connection from client
Begin Execution
Object Description:
Input object is a Group which contains 3 members.
 member 0 is named pd
 member 1 is named t1
 member 2 is named t2
Each group member is a Field, the basic data carrying structure in DX.
The positions are enclosed within the box defined by the corner points:
[-94.7266 -106.445 -185.25] and [98.6328 86.9141 -61.75]
Data range is:
minimum = 1, maximum = 2185, average = 356.979
(These are the scalar statistics which will be used by modules
which need scalar values. The length is computed for vectors and
Begin Execution
the determinant for matricies.)
Input is not ready to be rendered because 3 Fields in the Input object do
not have colors yet.
Use the `AutoColor', `AutoGreyScale', or `Color' modules to add colors.

Compare the message window that appears to the information in Figure 6.6. If an error message
occurs in the message window, you may have forgotten to set the data type to the right binary size.

M y s t e r y D a t a - C h a p t e r 6

97

Return to the data prompter and set the data type for all three variables to "short". You may have also
forgotten to skip the 6 lines of the embedded header when you tried to import the file -- if so, correct
that and try again.

Introduction to the Data Model

Understanding how data are structured and how OpenDX manipulates data internally provides you
with significant insight into programming in OpenDX. The following visual program allows you to
investigate how data are structured and to better understand how certain modules operate.

� Start a new session of the Data Explorer VPE by choosing New Visual Program from
the startup dialog.

� Place an Import (from Import and Export) on the canvas, and fill in its name with
the name of the file you saved from the prompter in Exercise 2. Change the variable
parameter to "pd" (the first variable).

� Drag a Print module (from Debugging) onto the canvas and set its first input to the
output of Import. Change its options parameter to "r", which means to recursively
print the OpenDX object, and execute.

Take your time and thoroughly read the information presented in the resulting message window
(Figure 6.7). Four components of the data set are described in detail: data, positions, connections, and
box. This complete detail results from use of the recursive print option "r". The default for printing an
object is "o", which just prints the top-level information about the object.

M y s t e r y D a t a - C h a p t e r 6

98

Figure 6.7 Message window for "r" option

Starting DX executive
Memory cache will use 112 MB (6 for small items, 106 for large)
port = 1900
server: accepted connection from client
 0: worker here [15338]
Begin Execution
Field. 4 components.
Component number 0, name 'data':
 Generic Array. 200000 items, short, real, scalar
 Attribute. Name 'dep':
 String. "positions"
Component number 1, name 'positions':
 Product Array. 3 terms.
 Product term 0: Regular Array. 100 items, float, real, 3-vector
 Product term 1: Regular Array. 100 items, float, real, 3-vector
 Product term 2: Regular Array. 20 items, float, real, 3-vector
 Attribute. Name 'dep':
 String. "positions"
Component number 2, name 'connections':
 Mesh Array. 3 terms.
 Mesh offset: 0, 0, 0
 Mesh term 0: Path Array. connects 100 items
 Mesh term 1: Path Array. connects 100 items
 Mesh term 2: Path Array. connects 20 items
 Attribute. Name 'element type':
 String. "cubes"
 Attribute. Name 'dep':
 String. "connections"
 Attribute. Name 'ref':
 String. "positions"
Component number 3, name 'box':
 Generic Array. 8 items, float, real, 3-vector
 Attribute. Name 'der':
 String. "positions"
Attribute. Name 'name':
 String. "pd"

� Change the options parameter of Print to "rd", to recursively print the object
description along with parts of the data. Clear the message window by selecting
Clear from the Edit menu of the message window. Execute again. The result should
look like Figure 6.8.

M y s t e r y D a t a - C h a p t e r 6

99

Figure 6.8 Message window with "rd" option

Begin Execution
Field. 4 components.
Component number 0, name 'data':
 Generic Array. 200000 items, short, real, scalar
 first 25 and last 25 data values only:
 14 13 7 11 19 20 10 12
 14 13 11 11 3 9 15 11
 12 9 9 10 19 11 14 5
 12
 ... 15
 7 9 14 18 9 14 15 14
 10 11 14 9 17 9 11 18
 7 8 11 13 10 14 12 15
 Attribute. Name 'dep':
 String. "positions"
Component number 1, name 'positions':
 Product Array. 3 terms.
 Product term 0: Regular Array. 100 items, float, real, 3-vector
 start value [-94.7266, 0, 0], delta [1.95312, 0, 0], for 100
repetitions
 Product term 1: Regular Array. 100 items, float, real, 3-vector
 start value [0, -106.445, 0], delta [0, 1.95312, 0], for 100
repetitions
 Product term 2: Regular Array. 20 items, float, real, 3-vector
 start value [0, 0, -185.25], delta [0, 0, 6.5], for 20 repetitions
 Attribute. Name 'dep':
 String. "positions"
Component number 2, name 'connections':
 Mesh Array. 3 terms.
 Mesh offset: 0, 0, 0
 Mesh term 0: Path Array. connects 100 items
 Mesh term 1: Path Array. connects 100 items
 Mesh term 2: Path Array. connects 20 items
 Attribute. Name 'element type':
 String. "cubes"
 Attribute. Name 'dep':
 String. "connections"
 Attribute. Name 'ref':
 String. "positions"
Component number 3, name 'box':
 Generic Array. 8 items, float, real, 3-vector
 data values:
 -94.726562 -106.4453 -185.25
 -94.726562 -106.4453 -61.75
 -94.726562 86.914078 -185.25
 -94.726562 86.914078 -61.75
 98.632812 -106.4453 -185.25
 98.632812 -106.4453 -61.75
 98.632812 86.914078 -185.25
 98.632812 86.914078 -61.75
 Attribute. Name 'der':
 String. "positions"
Attribute. Name 'name':
 String. "pd"

Changing the print options to "rd" causes the object to be recursively traversed as before, but now a
subset of the data for each component is shown along with the description. This allows you to

M y s t e r y D a t a - C h a p t e r 6

100

examine what is happening internally in the import process, without having to view every single data
value.

� Add an Isosurface module (from Realization) between the Import and the Print.
Clear the message window, execute once, then compare the result with Figure 6.8.

Notice that the data in the positions, connections, and box components are all different from the
original values. Now the data component contains one unique value, and new components for colors
and normals have been created.

What Isosurface has done to transform this three-dimensional data set, is find the point(s) where the
data set has values that are equal to the value specified, which in this case is the data mean. OpenDX
connects the points with equal values, thus giving new positions, connections and a box. Thus,
Isosurface changes the data value to the specified data value and colors the defined surfaces with colors
and normals.

� Connect the output of Isosurface to an Image module (from Rendering). Execute
once.

� Place a Remove module (from Structuring) on the canvas and connect the
Isosurface output to it. Place a second Image module on the canvas and hook the
Remove to it. Change the component option of the Remove to "normals", Figure
6.9. Execute again.

The separate Image modules create two separate displays (OpenDX allows you to define as many
image modules as your machine's memory can handle). By comparing the two images, you should see

Figure 6.9
Current VPE

M y s t e r y D a t a - C h a p t e r 6

101

that removing the normals component deletes information that the renderer needs to shade surfaces.
Without this information, all surfaces are rendered with the same color, resulting in a flat image.

� Delete the connected Remove and Image modules.
� Add a Color module (from Transformation) below Isosurface. Set the color input

to "red" and the opacity input to "0.5". Send the output of the Color module to a
Print module with options “rd”.

Look at the message window and notice how coloring has changed the Isosurface output, i.e., the
'colors' and 'opacities' components are changed (Figure 6.11). From this example you can conclude
that the Color module affects only the two components 'colors' and 'opacities'.

Figure 6.11 Message window showing changed components

Begin Execution
Field. 7 components.

… (Components removed to reduce size) …

Component number 1, name 'colors':
 Constant Array. 42736 items, float, real, 3-vector
 constant value [1, 0, 0]
 Attribute. Name 'dep':
 String. "positions"

… (Components removed to reduce size) …

Component number 6, name 'opacities':
 Constant Array. 42736 items, float, real, scalar
 constant value 0.5
 Attribute. Name 'dep':
 String. "positions"

� Now place another Import tool on the canvas (the easiest way is by copying the one
you already have; use the middle mouse button on it and drag to a new location). In
the new Import module, import the "t1" variable.

� Place a Map module (from Transformation) below Isosurface; feed the output of
Isosurface into the first input, and the output of the new Import into the second
input. Move the Print to accept Map’s output and execute once.

Figure 6.10
Image with Normals and
without

M y s t e r y D a t a - C h a p t e r 6

102

Looking at the print after the Map (Figure 6.13), note that the only component Map changes is the
'data' component: a single constant value is replaced by a set of values dependent upon the isosurface
positions. That is, Map looks at each position in the isosurface and finds what data value in the 't1'
data set exists in the same space.

� Place AutoColor below Map and print the output of AutoColor.

You know that Color only changes the 'colors' and 'opacities' components. A utoColor also only
changes these two components. Looking at the 'colors' component, you will see that the color is no
longer a constant value, but now has values that are dependent on the positions. Also note that the
'colors' component is stored as a floating point three-vector, which means OpenDX uses an internal
96-bit color scheme.

� Wire the AutoColor into the Image to display the object that has been produced,
Figure 6.12. Execute once.

� Put the output of AutoColor into the first input of a VisualObject (from
Debugging). Run the output of the VisualObject into the Image module.

The VisualObject will produce a visual tree representation of the object’s internal data structure. You
may need to zoom in to view the information produced by this module.

Figure 6.12
Current VPE

M y s t e r y D a t a - C h a p t e r 6

103

Figure 6.13 Message window showing mapped data

Begin Execution
Field. 6 components.

… (Components removed to reduce size) …

Component number 2, name 'data':
 Generic Array. 42736 items, short, real, scalar
 first 25 and last 25 data values only:
 492 434 433 422 350 383 353 348
 406 349 329 428 323 315 377 322
 327 387 352 306 350 327 276 290
 300
 ...
 521
 447 185 159 399 401 159 374 378
 359 340 318 312 345 351 372 357
 394 374 307 313 293 299 273 228

… (Components removed to reduce size) …

 Attribute. Name 'der':
 String. "positions"
Attribute. Name 'Isosurface value':
 Generic Array. 1 item, float, real, scalar
 data values:
 263.6926
Attribute. Name 'series position':
 Generic Array. 1 item, float, real, scalar
 data values:
 263.81586

Conclusion

All of the modules in the debugging category provide functions that can be used to illustrate how
various modules transform an input data object to produce an output. The information provided by
each of the modules vary; when in doubt, start with Print as one of the most general and useful
debugging modules.

OpenDX has many strengths, but one of the biggest strengths is its very general and robust data
model. Throughout this chapter, characteristics of the data model have been illustrated using the
display produced by the Print module. In the next chapter, we describe the data model in much more
detail, as a system of producing self-describing abstract objects. Understanding these details is a key in
gaining further understanding into how parts of OpenDX perform their “magic”.

O p e n D X D a t a M o d e l - C h a p t e r 7

104

OpenDX Data Model

Introduction

The OpenDX Data Model uses an object-oriented, self-describing approach to defining the data sets
imported, used, and manipulated by the system. The data model is flexible enough to adapt to
arbitrary or new types of data sets, generally using six types of descriptive objects.

An a ttribute names an association between an OpenDX object (array, component, field, or group)
and a (simple or compound) value. A typical use for an attribute is to associate “metadata” with a data
set.

An arra y object is a basic data carrying structure that holds actual data. OpenDX uses one-
dimensional arrays and permits the array elements to be of any type, so an array object can be
described by simply listing the number of items it contains. Array elements are referenced by index.

A c omponen t object is an element of a field with a specific role in data description; a component is
typically an array object with a specific associated name.

A f ield object is a fundamental compound object in OpenDX, used to collect and encapsulate related
components; all its elements must be components.

A gr oup object is a compound object used to collect members that themselves may be fields and/or
groups; it cannot collect components (a field is used for that purpose). A member of a group can be
referred to either by name or by index.

OpenDX also uses other special purpose objects to describe special attributes or characteristics of
objects used in the image rendering process, such as Camera, Light, Transform, and others. The most
obvious sense in which the OpenDX data model is extensible is that new special purpose objects can
be added to suit the purposes of modules with specific requirements. Any special object is simply
ignored by modules that do not use or require it.

The diagram in Figure 7.1 illustrates how a somewhat complex data set might be described. As
illustrated, fields collect components, groups collect fields and other groups, and attributes can be
attached to arrays, components, fields, and groups. Remember that components are typically just
named arrays that have a specific designated role in the data description, e.g., holding collections of

7

O p e n D X D a t a M o d e l - C h a p t e r 7

105

data values or coordinate system values, so the whole framework is just a way to systematically collect
all the values and relationships present in a complex data set.

Attributes

An attribute names an association between an object in the data model and a value that adds extra
information (the value) to that object. The use of attributes formalizes the attachment of metadata to
specific parts of a data set. OpenDX uses a set of standard predefined attributes and also allows users
to define their own attributes. Predefined attributes are used frequently within OpenDX to define key
characteristics of arrays, components, fields, and groups. For example, a subset of the predefined
attributes used with components is listed below.

• ‘dep’ specifies the component on which the given component depends. For example, a 'data'
component can be dependent upon 'positions'.

• ‘ref’ specifies the component to which the given component refers. For example, a 'connections'
component will typically refer to the 'positions' component.

• ‘der’ specifies that a component is derived from another component, and so should be
recalculated or deleted when the component it is derived from changes. For example, the ‘box’
component typically has a ‘der’ attribute naming the ‘positions’ component.

• ‘element type’ is an attribute of the ‘connections’ component. This attribute names the type of
interpolation primitives.

• ‘shade’ indicates whether or not to shade the object if a ‘normals’ component is present.

Other predefined attributes, such as ‘color multiplier’, ‘opacity multiplier’, and ‘fuzz’ are described in
the User's Guide under "Understanding the Data Model".

Figure 7.1
Object Diagram

O p e n D X D a t a M o d e l - C h a p t e r 7

106

Array Objects

Array objects are the basic structures used in OpenDX to collect sets or sequences of actual
information. An array consists of a designated number of items, referenced consecutively starting at 0.
Generally the characteristics of an array object are given by the values of predefined attributes, such as
type, category, rank, and shape. Each array definition is “self-describing”, in the sense that both the
array’s data values and the values of its attributes are packaged in the same structure. OpenDX arrays
can be heterogeneous, containing elements with different characteristics (vs. the homogeneous arrays
that are required in most programming languages).

An example Array object description is “class array type float category real rank 1 shape 2 items 3 data
follows 11 2.3 23 40 15 16”. The standard OpenDX syntax has predefined attribute names followed
immediately by the attribute’s value. The type attribute of an array describes the internal numerical
format to be used for the array’s data. Predefined type values include double, float, int, uint, short, ushort,
byte, ubyte, and string. The ca tegory attribute specifies which of two possible floating point
representations is to be used, i.e., real or complex. The rank attribute refers to element order
dimensionality, where rank 0 indicates a scalar, 1 a vector, 2 a matrix or rank-2 tensor, and 3 or higher a
higher-order tensor. Lastly, the shape attribute defines the dimensionality in each of the order
dimensions of the structure. Thus, for rank-0 items (scalars), there is no shape. For rank-1 structures
(vectors), the shape is a single number corresponding to the number of dimensions. For rank-2
structures, shape is two numbers, and so on.

Field Objects

A field object is a fundamental compound object in the OpenDX data model used to encapsulate a set
of components (named arrays). Fields can also have attributes. Describing complex data sets that
include both data elements and elements describing the space in which the data is positioned typically
requires the specification of two or more arrays. Though you could use an array object to hold the data
and then attach attributes (with compound values) to hold the spatial descriptions, OpenDX
typically uses a field object to collect all this information in a set of specific, predefined component
arrays. The following is a list of some of these standard field components.

• ‘positions’ stores the coordinates of a set of positions in an n-dimensional space. Except in special
circumstances, this component is always defined.

• ‘connections’ provides a means for explicitly relating individual collections of positions (e.g.,
representing lines, surfaces, etc) and interpolating data values between positions.

• ‘data’ stores actual data values. Only one ‘data’ component can exist in a field, but other
components can be used to store data.

• ‘colors’, ‘front colors’, and ‘back colors’ give specific information that helps the renderer
determine how an object is to be depicted.

O p e n D X D a t a M o d e l - C h a p t e r 7

107

Other components, such as ‘normals’, ‘opacities’, ‘box’, ‘faces’, ‘loops’, and ‘edges’ can also be used to
describe additional characteristics of complex data. See the User's Guide under "Understanding the
Data Model" for a complete description of the set of OpenDX standard components.

Group Objects

Groups are objects used to collect fields and other group objects together. Each object within a group
is referred to as a member. Each member must have a unique numeric identifier, and may be given a
unique name. When a group is used as an input to a module, the module normally examines the
entire group object looking for appropriate components to manipulate. Thus, some group members
may be modified while others are unchanged, but all are examined. It is acceptable to have a group with
no members, though some modules will find such a group unacceptable.

There are four specific group types.

• A generic group is the standard group object used to collect related information.
• A multigrid group is a collection of separate fields, each with its own grid but treated as a single

field, rather than as a group.
• A composite field group is a similar to a multigrid group, used primarily to segment fields to

permit parts of the field/group to be processed in parallel in environments where parallel
processing is supported.

• A series group is a generic group that stores a series value for each member in the group, as
illustrated in Figure 7.2.

Data Model Support

Intuitively, most data are collected for phenomena related to familiar types of geometric spaces. Thus,
the OpenDX data model provides built-in support for a collection of commonly used geometric

Figure 7.2
Simplified Series Diagram

O p e n D X D a t a M o d e l - C h a p t e r 7

108

structures. As noted above, this support is reflected in the various predefined attributes and
components embedded within OpenDX that make it easy to define certain geometries. These include
• grid topologies such as lines, triangles, quads, cubes, tetrahedra, as well as faces, loops, and edges

that are used for defining polyhedra; and
• position-dependent and cell-centered data support.

The data model also provides built in support for common varieties of data association, such as
• multi-dimensional and multi-parameter data sets; and
• data series (e.g. time dependent) data.

Generally the OpenDX data model is a self-describing object structure that allows the user to
formulate flexible data descriptions that can be interpreted appropriately by general-purpose data
transformation modules. The model also provides ways to detect and filter out invalid data (with
special ‘invalid positions’, ‘invalid connections’, ‘invalid faces’, and ‘invalid polylines’ components) and
to describe efficient methods to allocate and manage the memory required to store the described data.

How Modules Work

Most OpenDX Modules work in a similar manner: the module uses one or more group and/or field
objects as input, manipulates certain components of the input objects to create one or more new
objects as intermediate or final results, and makes some or all of its inputs and intermediate objects
available as outputs. A module usually changes, adds, and/or deletes one or more components, but
may also pass through other components unchanged. Each individual module uses and manipulates
different components, as described in detail in its documentation. For example, the Color module only
manipulates ‘color’ and ‘opacity’ components, and leaves other components (‘data’, ‘position’,
‘connections’, etc.) alone. Thus, the output of the Color module is a group/field object that is identical
to the input object, except the color component has been changed or added.

Interoperability in OpenDX provided by the Data Model

The data model allows separate modules to work independently on different parts of an object. Each
module looks for a specific component or components on which to operate. Since modules require
and work on only certain components, the order in which the user places modules in the network
(visual program) may not matter; however, in other cases the order does make a difference, and
dramatically affects the way an object is depicted as an image.

For example, imagine a streamline that coils through a data set. The user wishes to make the
streamline easier to see and also wants to be able to view the data values as colors along the line. The
user decides to use three modules to perform this function: Tube to make the streamline more
prominent in the image, Map to map specific data onto the streamline, and AutoColor to color the
streamline based on the values of the mapped data. The user can arrange these modules in six different

O p e n D X D a t a M o d e l - C h a p t e r 7

109

orders, but, since the requirement is that the data values of the field be colored along the streamline,
only three sequences are feasible: <Map, AutoColor, Tube>, <Map, Tube, AutoColor>, and <Tube,
Map, AutoColor>. Knowing how OpenDX works on components allows you to understand the
impact of each of these three orders.

To elaborate, the sequences <Map, AutoColor, Tube> (Figure 7.4) and <Map, Tube, AutoColor>
produce identical output images, but <Tube, Map, AutoColor> (Figure 7.5) produces a somewhat
different image result. To understand why, note first that the streamline prior to application of the
Tube, Map, and AutoColor modules simply appears as a spiral or coil within a 3-D field (Figure 7.3).

Figure 7.3
Original Streamline

Figure 7.4
Map, AutoColor, Tube

O p e n D X D a t a M o d e l - C h a p t e r 7

110

Applying <Map, AutoColor, Tube> to the coil first maps the new data onto the streamline, then
colors the coil to produce Figure 7.6. Now, tubing the coil (expanding the line’s diameter) produces
Figure 7.7, with colors in a concentric ring pattern.

Applying <Tube, Map, AutoColor> instead first tubes the streamline to produce Figure 7.8, with a
default colored (thicker) coil. Now mapping the data to the coil then coloring the data produces
Figure 7.9, with a very different coloring pattern on the coil.

Figure 7.5
Tube, Map, AutoColor

Figure 7.6
Colored Streamline

Figure 7.7
Tubed Result

O p e n D X D a t a M o d e l - C h a p t e r 7

111

The key to the difference between these two results is the role of the map operation. Map can match
its data to a 2-D line or a 3-D surface. This flexibility makes it easy to use M a p in a range of
applications, but it is up to the user to determine the suitability of the application. In this example, the
data to be mapped is such that it is most appropriately mapped to the 2-D line, giving the result shown
in Figure 7.7; the approach resulting in Figure 7.9 would most likely be appropriate if the data to be
mapped to the streamline were too complex to be represented on a simple line.

Summary

This is just a first step into understanding how OpenDX really works. With this basic introduction to
the data model, you should begin to use and study the debugging information carefully, to identify
exactly what data objects are present at each step and exactly how various modules work. Realizing
exactly how each module changes, adds, and/or deletes data elements allows you to understand
exactly how OpenDX works, and to start putting modules in the order required to produce a specific
desired visual output. Reading the outputs in the message window from a Print may seem tedious,
but it will help you gain a greater understanding of how OpenDX works with its data model. In the
next chapter, you will look at the OpenDX data model of a two-dimensional grid and use the
debugging information to change the data values and move the grid positions in space.

Figure 7.8
Tubed Streamline

Figure 7.9
AutoColored Result

M a n i p u l a t i n g D a t a - C h a p t e r 8

112

Manipulating Data

Rationale

Most visualization work requires that data be manipulated to facilitate the production of the desired
visualization product. The previous chapter gave you an overview of the OpenDX data model. Next
you will learn how to manipulate data within that model to achieve a desired result.

The first exercise illustrates how to create a network that manipulates 2-D grid positions to create a 3-
D model that depicts a waving flag. The second exercise shows how to detect, handle, and manipulate
invalid data.

Exercise 1. Flag Waving

In this exercise, you will examine the organization of the data model in more detail to see how the
modules Compute, Mark, and Unmark work.

� Reload the program logo.net produced in Chapter 6.

� Hook the output of Import into the first input of a Print. Make sure that the
options of Print are "rd". Execute once. Pay close attention to the 'data' component.

� Place a Compute module (from Transformation) on the canvas. Hook the output
of Import into the input of the Compute. Change the expression in Compute to
"a+20". Use Print to print the output of Compute.

Look specifically at the data component.

As you can see, the only component that changed was the data component. By giving the expression
"a+20", each data point has its value increased by 20. That is, Compute applies its expression to every
data value in a field, i.e., to every value in each 'data' component of an object.

Compute can be used to define a multitude of functions, using an expression syntax similar to that of
the "C" programming language. Refer to the Reference Guide or the Context-Sensitive help for more
details on writing expressions.

8

M a n i p u l a t i n g D a t a - C h a p t e r 8

113

Many of Data Explorer's functions work primarily with the 'data' component, performing specific
predefined calculations that create new components. For example, AutoColor creates a new ‘color’
component. Some modules, such as Compute and Map, actually change the content of the 'data'
component. Other modules, such as Isosurface and R ubbersheet, change the 'positions' and
'connections' components.

The Compute module modifies data values, but it only works on the 'data' component. The next
obvious question in data manipulation is how to change the 'positions' component with the Compute
module.

� Replace the Compute module with a Mark module (Structuring category). Open
the CDB of the Mark and change the name to "positions". Execute once.

The print in the message window shows that the 'data' and 'positions' are now identical, and the
original data are now in a new component named 'saved data'. Thus, the Mark module copies the
specified component into the 'data' component along with its original component name, and preserves
the original data component as 'saved data'.

� Use a Compute module to change the values of this data. Place a Compute
between the Mark and Print and enter the expression "[a.x, a.y, 30*sin(a.x/75.0 +
a.y/100.0)]". Execute once.

Note the type of data that results. The expression in Compute creates a three-vector from the original
two-vector. The values for the x and y positions are the same; however, they are explicitly written out,
plus a new z component has been added. The a.x and a.y in the expression refer to the x and y
components of the incoming vector data (this expression could have been written with a.0 and a.1 as
well). This expression allows you to change the positions from 2-D to 3-D. However, now the
positions are stored in the 'data' component, so you need to use the Unmark module to move them
back to the 'positions' component.

� Add an Unmark module (from Structuring) and feed it the output from Compute.
Add a Shade module (from Rendering) after the Unmark. Wire the rest of the
program from the Shade into the existing AutoColor and Image, and execute once
(Figure 8.1). Rotate the image a bit.

M a n i p u l a t i n g D a t a - C h a p t e r 8

114

The Unmark module moves the 'data' component back to either the component originally marked, or
to another named component, and restores the 'saved data' component to 'data'.

Originally, the positions were a regular grid, but now they have a "z" component that cannot be
described regularly. This result is a new type of grid called a Warped Grid.

Note that you have to explicitly shade the object in this case, whereas the shading was added
automatically in earlier examples. The reason is that in the earlier example the object was
RubberSheeted; Rubbersheet automatically creates a 'normals' component, which adds the shading.
Warping the positions does not create the ‘normals’ component, so you must explicitly use the Shade
module to create the 'normals'.

� Add a Sequencer (from Special) and run its output to the second input of the
Compute (Figure 8.2). Change the limits on the sequencer to run between 1 and 10.
Open the Sequencer by double clicking on the Sequencer stand-in. Click on the
ellipses and the Frame Control will open. Change the Max to 10.

Figure 8.1
Warped Grid Image
and Network

M a n i p u l a t i n g D a t a - C h a p t e r 8

115

� Change the expression of the Compute to "[a.x, a.y, 30*sin(a.x/75.0 + a.y/100.0 +
b/10.0*6.28)]". Shrink the Image window to a relatively small size so that all ten
images can be cached, then execute using the sequencer.

For the Compute module, each input is automatically labeled alphabetically from left to right, thus the
first input is "a" the second input is "b", the third "c", and so on. So in this expression, the Sequencer is
the variable "b". You can rename the inputs, but if you do, remember to use the new name in the
expression. Compute is one of the modules that can have more input tabs added.

Once the images are each computed and cached, the flag with the VIS Inc. logo should wave in the
wind.

Figure 8.3 Waving Flag Images

� Save your program.

Figure 8.2
Final VPE for Waving Flag

M a n i p u l a t i n g D a t a - C h a p t e r 8

116

Exercise 2. Invalid Data

This exercise illustrates how OpenDX handles invalid data. Often model and field data sets sampled
on a regular grid contain invalid or undefined data points. OpenDX incorporates a simple facility for
dealing with this type of data.

"Bad", "missing" or otherwise invalid data are quite common in real data sets. Missing data values are
sometimes marked by a special value, such as -9999. One method to handle invalid data is simply to
remove all those values and proceed with the visualization. However, there are several reasons why it is
better to mark these data points as invalid rather than removing them.

In a regular grid the positions and connections can be stored compactly (i.e. the positions can be
specified by origin and delta, and the connections by the counts in each dimension). This encoding
provides a tremendous saving in memory over explicitly listing each position and connection.
However, if bad values are actually removed, the result is scattered data that lacks regularity and loses
the associated memory savings. Also, there are cases where it is useful to know whether and where
invalid data occur. For example, you may want to visualize your valid data, but also show the areas of
invalid data.

Data Explorer supports the concept of 'invalid positions' and 'invalid connections'. A field typically has
a 'data' component that is dependent on either the ‘positions’ or ‘connections’ component. To indicate
invalid data, the field also has either an 'invalid positions' component or an 'invalid connections'
component. Any data associated with an invalid position or connection is itself considered invalid
(whether you have the position or connection flavor of invalidity depends on the dependency of the
data).

All Data Explorer modules detect and understand invalidity. Typically they simply ignore the invalid
data (pretend it isn't there); however, the "missing" positions or connections remain in the field if you
want to operate on them explicitly.

� Start this exercise by importing the Data Explorer formatted file "invalid_field.dx".
Start by just Printing the output of Import with the "r" option (Figure 8.4).

M a n i p u l a t i n g D a t a - C h a p t e r 8

117

Figure 8.4 Message window of "invalid_field" print

Field. 5 components.
Component number 0, name 'positions':
 Product Array. 2 terms.
 Product term 0: Regular Array. 75 items, float, real, 2-vector
 Product term 1: Regular Array. 100 items, float, real, 2-vector
 Attribute. Name 'dep':
 String. "positions"
Component number 1, name 'connections':
 Mesh Array. 2 terms.
 Mesh offset: 0, 0
 Mesh term 0: Path Array. connects 75 items
 Mesh term 1: Path Array. connects 100 items
 Attribute. Name 'element type':
 String. "quads"
 Attribute. Name 'dep':
 String. "connections"
 Attribute. Name 'ref':
 String. "positions"
Component number 2, name 'data':
 Generic Array. 7500 items, float, real, scalar
 Attribute. Name 'dep':
 String. "positions"
Component number 3, name 'invalid positions':
 Generic Array. 302 items, integer, real, scalar
 Attribute. Name 'ref':
 String. "positions"
Component number 4, name 'box':
 Generic Array. 4 items, float, real, 2-vector
 Attribute. Name 'der':
 String. "positions"
Attribute. Name 'name':
 String. "invalid field"

Printing the description of this data set shows that it is a standard 2-D field, with the exception that
302 'invalid positions' exist.

� AutoColor the output of Import and wire it to an Image. Execute once.

As you can see, a large portion in the middle of the image is black, a good guess that the 'invalid
positions' occur in this area.

� Now insert the Remove module (Structuring category) between Import and
AutoColor. Remove the "invalid positions" component.

Clearly all of the original positions of the grid are present and contain data, but they just are not being
drawn by the renderer where the 'invalid positions' component exists.

� Remove the Remove module. Print the output of Import with the options "rd"
(Figure 8.5).

Pay particular attention to the 'invalid positions' component in Figure 8.5. Notice that this component
contains integers which 'ref' the 'positions' component. What do you think this means? What are
those integers?

M a n i p u l a t i n g D a t a - C h a p t e r 8

118

Figure 8.5 Message window with options "rd"

Field. 5 components.
Component number 0, name 'positions':
 Product Array. 2 terms.
 Product term 0: Regular Array. 75 items, float, real, 2-vector
 start value [0, 0], delta [0, 3.02703], for 75 repetitions
 Product term 1: Regular Array. 100 items, float, real, 2-vector
 start value [0, 0], delta [3.0202, 0], for 100 repetitions
 Attribute. Name 'dep':
 String. "positions"

… (Components 'connections' and 'data' removed to reduce size) …

Component number 3, name 'invalid positions':
 Generic Array. 302 items, integer, real, scalar
 first 25 and last 25 data values only:
 2716 2720 2721 2730 2731 2739
 2740 2752 2753 2754 2755 2756
 2757 2758 2759 2760 2761 2764
 2768 2769 2776 2777 2778 2779
 2780
 ...
 4080 4081 4084 4164 4184
 4264 4284 4364 4384 4464 4484
 4564 4584 4615 4616 4617 4664
 4668 4669 4684 4715 4716 4717
 4768 4769
 Attribute. Name 'ref':
 String. "positions"

… (Component 'box' removed to reduce size) …

Attribute. Name 'name':
 String. "invalid field"

� Insert a ShowConnections module (Realization category) between AutoColor and
Image. Execute once.

The ShowConnections does what its name implies, i.e., it simply creates lines between connected
points.

� Insert a Reduce module (from Import and Export) between Import and
Print/AutoColor. Execute once.

It should be obvious that there are fewer connections in this image. By studying the positions
component in the message window (Figure 8.6), you can see that there are approximately half the
number of positions in each direction as you might expect (38 as compared to 75 and 50 as compared
to 100). By default the reduce factor is set to 2. If this were changed to 4, what would you expect to see?
Note also that the Reduce module calculates new positions using interpolation; it does not just sub-
sample existing positions, such as taking every second or fourth one.

M a n i p u l a t i n g D a t a - C h a p t e r 8

119

Figure 8.6 Message window of reduced object

Field. 5 components.
Component number 0, name 'positions':
 Product Array. 2 terms.
 Product term 0: Regular Array. 38 items, float, real, 2-vector
 start value [0, 0], delta [0, 6.05405], for 38 repetitions
 Product term 1: Regular Array. 50 items, float, real, 2-vector
 start value [0, 0], delta [6.10204, 0], for 50 repetitions
 Attribute. Name 'dep':
 String. "positions"

… (Components 'connections' and 'data' removed to reduce size) …

Component number 3, name 'invalid positions':
 Generic Array. 265 items, integer, real, scalar
 first 25 and last 25 data values only:
 657 707 658 708 659 709
 660 710 661 711 664 714
 665 715 666 716 669 719
 670 720 675 725 676 726
 677
 ...
 1132 1141 1142 1181 1182 1191
 1192 1107 1157 1108 1158 1109
 1159 1133 1183 1134 1184 1135
 1185 1207 1208 1209 1233 1234
 1235
 Attribute. Name 'ref':
 String. "positions"
… (Component 'box' removed to reduce size) …
Attribute. Name 'name':
 String. "invalid field"

� Now change the factor parameter of Reduce to 4. Execute again.

Pay close attention to the 'invalid positions' component. If you look at the "Attribute" at the end of the
component, you will notice that this value changed from 'ref' to 'dep' (Figure 8.7). Do you remember
what these attributes do?

These two types of invalidity, 'dep' and 'ref', can refer to either position or connection dependent data.
'dep' invalidity means the "invalid" component is simply a list of bytes that are either 0 or 1. 0 means
that the associated position or connection is valid, whereas 1 means that the associated position or
connection is invalid. The bytes are in a one-to-one correspondence (that's what dep means) with
either the "positions" or the "connections". In contrast, 'ref' invalidity means the "invalid" component is
a list of integers. These integers are references (indices) to the specific positions or connections that are
considered to be invalid.

M a n i p u l a t i n g D a t a - C h a p t e r 8

120

Figure 8.7 Message window after reduced by 4

Field. 5 components.
Component number 0, name 'positions':
 Product Array. 2 terms.
 Product term 0: Regular Array. 19 items, float, real, 2-vector
 start value [0, 0], delta [0, 12.4444], for 19 repetitions
 Product term 1: Regular Array. 25 items, float, real, 2-vector
 start value [0, 0], delta [12.4583, 0], for 25 repetitions
 Attribute. Name 'dep':
 String. "positions"

… (Components 'connections' and 'data' removed to reduce size) …

Component number 3, name 'invalid positions':
 Generic Array. 475 items, unsigned byte, real, scalar
 first 25 and last 25 data values only:
 00
 00 00 00 00 00
 ...
 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 Attribute. Name 'dep':
 String. "positions"

… (Components 'box' removed to reduce size) …

Attribute. Name 'name':
 String. "invalid field"

� Figure the minimum and maximum data values for this data set. (Hint: You will need
to use the Statistics and Echo modules).

Echo prints into the message window just like the Print module. You may need to disable the Print,
clear the message window, and then execute once. If you have set everything up correctly, you should
see "ECHO: 0.601579 373.134."

� Insert an Include module (from Import and Export) after the Reduce module.
Read the man page for Include (select Conte xt-Sensitiv e Help from the Help menu
and then click on Include) to figure out how to remove all values near the top of the
data range (values above 300).

� Print the output of Include (Figure 8.8).

It is quite apparent that something has changed, since the output now fills up the message window.
There is no longer an 'invalid positions' component present and there is a 'positions' component that is
explicitly listed. Thus, the Include has physically removed all the invalid positions from the data set.

M a n i p u l a t i n g D a t a - C h a p t e r 8

121

Figure 8.8 Message window after include

Field. 4 components.
Component number 0, name 'positions':
 Generic Array. 310 items, float, real, 2-vector
 first 5 and last 5 data values only:
 0 0
 12.458333 0
 24.916666 0
 37.375 0
 49.833332 0
...
 149.5 223.99998
 161.95833 223.99998
 174.41666 223.99998
 186.875 223.99998
 199.33333 223.99998

 Attribute. Name 'dep':
 String. "positions"
Component number 1, name 'connections':
 Generic Array. 244 items, integer, real, 4-vector
 first 5 and last 5 data values only:
 0 1 25 26
 1 2 26 27
 2 3 27 28
 3 4 28 29
 4 5 29 30
...
 286 287 304 305
 287 288 305 306
 288 289 306 307
 289 290 307 308
 290 291 308 309

 Attribute. Name 'element type':
 String. "quads"
 Attribute. Name 'dep':
 String. "connections"
 Attribute. Name 'ref':
 String. "positions"

… (Components 'data' and 'box' removed to reduce size) …

Attribute. Name 'name':
 String. "invalid field"

� Change the cull parameter of Include to 0. Execute again and study the message
window (Figure 8.9).

Notice that the image did not change, but the structure of the object listed in the message window did.
The object now contains an 'invalid positions' component and the 'positions' are listed in a compact
grid description. The cull parameter has a default value of “on” (1), which explicitly removes invalid
positions and connections. Setting cull to “off” results in an output object that retains invalidity
information.

M a n i p u l a t i n g D a t a - C h a p t e r 8

122

Figure 8.9 Message window with cull set to false

Field. 5 components.
Component number 0, name 'positions':
 Product Array. 2 terms.
 Product term 0: Regular Array. 19 items, float, real, 2-vector
 start value [0, 0], delta [0, 12.4444], for 19 repetitions
 Product term 1: Regular Array. 25 items, float, real, 2-vector
 start value [0, 0], delta [12.4583, 0], for 25 repetitions
 Attribute. Name 'dep':
 String. "positions"

… (Components 'connections', 'data', and 'box' removed to reduce size) …

Component number 4, name 'invalid positions':
 Generic Array. 475 items, unsigned byte, real, scalar
 first 25 and last 25 data values only:
 00
 00 00 00 00 00
 ...
 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 01 01 01 01 01 01 01 01
 Attribute. Name 'dep':
 String. "positions"
Attribute. Name 'name':
 String. "invalid field"

� Replace the ShowConnections with an Isosurface (Figure 8.10). It will help to
specify a number of contour lines; set the number parameter of Isosurface to 10.
Execute once.

� Save your program as "invalid.net".

As you can see from the image, Isosurface finds equal valued data points and connects them together.
However, isolines are not rendered for invalid positions. This illustrates the comment made earlier: all
modules in OpenDX are designed to work with objects that contain "invalid data".

M a n i p u l a t i n g D a t a - C h a p t e r 8

123

Conclusion

Often objects contain multiple data values stored as separate fields, such as those imported using the
general array importer or two fields brought together with a Collect module. In this case, the user can
use the Select module to select each variable. However, there are other times when it is more
convenient to have multiple variables stored in the same field as separate components. To use the
separate components in a field, you can use the Mark and Unmark modules as well as other modules
not discussed in these exercises, such as Extract, Rename and Replace.

The Compute module applies its expression on every data value in the 'data' components. In order to
compute on other components, Mark and Unmark modules can be used to temporarily interpret
these components as ‘data’.

With a combination of Compute, Mark, and Unmark you can construct your own Rubbersheet
style module. There are times where you may wish to do this. With the combination of these three
modules, you can construct a wide range of operations.

Compute is probably the most powerful function in OpenDX. Power users use it for everything from
defining arbitrary mathematical transformations and string manipulations, to vector
construction/deconstruction. You should familiarize yourself with its capabilities.

Figure 8.10
Final "Invalid" network

M a n i p u l a t i n g D a t a - C h a p t e r 8

124

The Remove module does not work on data but works on the data model. Using Remove allows you
to delete a specific component within a field. You used this module earlier to remove components such
as 'invalid positions' and 'normals'. To remove data from a field, use the Include module.

If you import data with an "invalid" component, you can use either the reference or dependence
method. Typically, however, you can create invalid data using the Include module. If your data has an
invalid "marker" (such as -9999), you can use Include to mark the bad values as invalid. Which of the
two types ("ref" or "dep") is used will depend on how many invalid items there are relative to the
number of valid items. OpenDX will determine the optimum (memory savings) fashion to store the
invalidity.

When working with large data sets that have a small number of invalid items, be sure to set the cull
parameter of Include to 0 (the default is 1). As you have seen, the default behavior of Include is to cull
(physically remove) invalid data values. This is generally not the best thing to do, because it results in
non-regular data sets, which increases memory use. However, when removing a large portion of a data
set using Include, the cull option may save some memory.

The strength of the data model is subtly shown in this chapter. Modules change only the components
that they need to perform their function. For example, the ShowConnections module does not
change the 'colors' component–the resulting image has the connections colored as before. The
ShowConnections module creates a new 'connections' component and will only add a 'colors'
component if one does not exist.

M o r e o n D a t a I m p o r t - C h a p t e r 9

125

More on Data Import

Rationale

Often the use of scientific software is limited by the complexity of interchanging data from one format
or software package to another. As new formats become de facto standards and new intermediate
software packages become commonly used, visualization software is forced to adapt to different file
formats. There are several different data organization strategies commonly used when storing
information. Knowing the information’s structure and being able to define that structure allows the
researcher to describe data from a wide range of software environments, if the visualization package is
flexible enough to accept general data specifications. OpenDX allows the visualization user to describe
data formats in two different manners. The first is a simple, general array header file that describes
predefined file structures. The second is the native file format facility that is flexible enough to permit
definition of almost all data structures. We describe these two facilities in more detail below.

Data Organization

The way that data variables are organized in a file can make a difference in how that data set should be
imported. The General Array Importer (Data Prompter) can import data that are arranged in two
basic organization schemes, Block or Columnar (Figure 9.1).

9

M o r e o n D a t a I m p o r t - C h a p t e r 9

126

Block style organization implies that the data are organized with variables in regularly sized blocks (or
records) as illustrated in Figure 9.2.

Figure 9.2
Block organized variables

A1 A2 A3 A4 ...
B1 B2 B3 B4 ...
C1 C2 C3 C4 ...

Columnar style organization implies that the data are organized with values in regular columns, like
the spreadsheet output shown in Figure 9.3.

Figure 9.3
Columnar organized variables

A1

A2

A3

A4

…

B1

B2

B3

B4

…

C1

C2

C3

C4

…

Figure 9.1
Data Prompter Organization
Selector

M o r e o n D a t a I m p o r t - C h a p t e r 9

127

An example of an actual data file arranged in the two different styles is shown in the following two
figures. Note that each technique uses header lines before the actual block of data to describe the data
organization.

Figure 9.4 Example of a block style data set.

grid_x = 5
grid_y = 4
origin_x = 2.1
origin_y = 3.0
step_x = 2
step_y = 1
100.9 99.9 102.3 106.8 109.9 99.1 100.2 100.1 102.1 98.1
99.9 109.3 103.1 108.1 99.9 109.1 90.2 112.3 107.2 108.2
7.7 8.0 9.2 1.2 2.0 1.2 3.0 1.8 9.3 9.2
1.2 3.4 8.3 1.3 5.4 1.9 9.2 9.1 1.0 3.1

Figure 9.5 Example of a columnar style data set.

grid_x = 5
grid_y = 4
origin_x = 2.1
origin_y = 3.0
step_x = 2
step_y = 1
temperature pressure
100.9 7.7
99.9 8.0
102.3 9.2
106.8 1.2
109.9 2.0
99.1 1.2
100.2 3.0
100.1 1.8
102.1 9.3
98.1 9.2
99.9 1.2
109.3 3.4
103.1 8.3
108.1 1.3
99.9 5.4
109.1 1.9
90.2 9.2
112.3 9.1
107.2 1.0
108.2 3.1

M o r e o n D a t a I m p o r t - C h a p t e r 9

128

Row versus Column Major Order

For multidimensional data with regular positions, you must specify both the data organization and
the data order with respect to the position’s axes. For example, two-dimensional data may be ordered
such that the vertical (row) positions vary faster than the horizontal (column) positions, which is
known as row major order. Alternatively, the horizontal positions may vary faster than the vertical
positions, giving column major order.

To demonstrate row versus column major order, start with the regular grid illustrated in Figure 9.6,
i.e., with origin at 0,0, deltas of 1 and 0.5, and counts of 5 x 4.

Assume that the data file lists data values as: 7, 12, 2, 17, 9, 10, 3, 11, 15, 4, 8, 14, 6, 1, 6, 13, 0, -1, 16, 5.

The "majority" keyword specifies how those data values are to be associated with the positions. If no
explicit majority is defined, the default set by the Prompter is row major. Figure 9.7 and Figure 9.8
show how the list of values above would be associated with the 5x4 grid in row major and column
major orders, respectively.

Figure 9.6
5 x 4 Grid

Figure 9.7
Row Major Order

M o r e o n D a t a I m p o r t - C h a p t e r 9

129

Including Explicit Positions in a Data File

Data positions can be listed as explicit, primary values in an OpenDX data file, allowing for the
specification of irregular, sparse, or so-called scattered positions. When scattered positions are
included in a data file, the positions can be imported into Data Explorer using the General Array
format and the Import module, or using the ImportSpreadsheet module.

If the General Array Importer is used, the keyword “locations” must be specified as the Field Name.
Data Explorer then interprets values in the “locations” field as the positions of the data. The structure
of the locations field would be 2-vector for 2-D data, 3-vector for 3-D data, etc. In Chapter 11, you
will perform an import of a data set with the positions located in the data file.

If the data file is in a spreadsheet format, where each row contains the position and the corresponding
data values, the ImportSpreadsheet module can be used to do the import. ImportSpreadsheet imports
all columns as separate components of a field. Thus, the output of ImportSpreadsheet must be routed
through the Mark, Compute, and Unmark modules to convert the column components into the
“positions” component. The network needs one Mark module for each dimension of the data, with
name parameters specified as “column1”, “column2”, and “column3” respectively for the successive
Mark modules. Use Compute to form a vector [a,b,c] and Unmark to transfer the vector into the
“positions” component.

General Header Files

Up to this point you have used the Data Prompter’s graphical user interface to construct header files
for the different data sets. These header files, usually suffixed by general, are ASCII text files that
describe how the data are organized. After they are constructed and saved, these files can be modified
as desired outside of the OpenDX system with any text editor. The data description language
supported by OpenDX uses the same generic version of a header to describe multiple files, e.g., a
descriptor with the same structural entries but with different sizes and value entries. This generic type
of general header file is called a Template. If a general header file can describe the location of grid

Figure 9.8
Column Major Order

M o r e o n D a t a I m p o r t - C h a p t e r 9

130

information within your own data file, then OpenDX can use this information without needing to
explicitly add it.

Templates

Typically data analysis, acquisition, and simulation programs are used to create a number of different
data files, each with the same internal structure. Once you successfully describe a particular data
format with the “Data Prompter”, the filename may be the only variable that must change to allow a
visual program to import one file or another. Templates allow you to construct one general header file
that can be used for several data files.

Inside the Import module, the user fills in the information as follows:

name = data file name (not the general file)

format = "general, template = file-header.general"

If you use a template in this fashion and the header file contains the keyword "file=", OpenDX
generates a warning to let you know that OpenDX is ignoring the filename. If you wish to remove the
warning, you must delete the "file" entry from the corresponding general file.

If only the number of points or grid size changes from one data set to another, you can use a template
to override these other parts of the header file as well. For example, if the grid in a data file is different
from the template, then you can use the grid keyword in the Import Format input.

name = data file name

format = "general, template = file-header.general, grid = 13x14"

Deriving Grid Information

Often information about the grid, such as the number of points or the origin/deltas, is included as
part of the data file itself. As illustrated in Figure 9.9 and
Figure 9.10, you can derive information about the grid, points, and positions by using the OpenDX
keyword “marker” to associate an OpenDX keyword with an actual label that appears in the data
file.

M o r e o n D a t a I m p o r t - C h a p t e r 9

131

Figure 9.9 Example Data File

grid_x = 5
grid_y = 4
origin_x = 2.1
origin_y = 3.0
step_x = 2
step_y = 1
100.9 99.9 102.3 106.8 109.9 ...
7.7 8.0 9.2 1.2 2.0 1.2 ...

Figure 9.10 OpenDX Header File with Derived Grid Information

file = datafilename
grid = marker "grid_x = " x marker "grid_y ="
field = temperature, pressure
header = lines 6
positions = marker "origin_x =", marker "step_x =", marker "origin_y =",
marker "step_y ="

The Native File Format

OpenDX uses its own format to store data internally. This format can represent virtually any object
that can be displayed or manipulated. By writing explicit external processing code, you can create data
files in this format that can be directly imported into OpenDX. The native format can be used to
describe some data types that cannot be imported using the General Array Importer, such as:
1. skewed grids;

2. combination grids where positions may be irregular in some dimensions but regular in others
(often called “product arrays”);

3. irregular connections (e.g., tetrahedra or triangles);

4. fields with components other than “positions”, “connections”, and “data”;

5. data with required meta-data attributes;

6. compound structures known as faces, loops, and edges; and

7. specialty objects such as lights and cameras.

The Import module reads data in native OpenDX format directly, from either a file or as a stream
from stdin. To execute a program that writes to the native OpenDX format on stdin, you include the
bang "!" operator preceding the name of an external executable that creates the native format data
stream. For example, you can use the set of data converters called “gis2dx” developed by the University
of Montana Computer Science Department to produce a native format data stream by giving the
Import module a Name parameter of "!gis2dx".

The OpenDX file format is similar in fashion to the internal storage of OpenDX objects. Each object
is defined by a header section accompanied by an optional data section. The header section describes

M o r e o n D a t a I m p o r t - C h a p t e r 9

132

the structure of the object, and the data section is simply an array object that defines the values in the
object.

The OpenDX native file format can also refer to separate data files. As an example, consider a data set
that lies on a regular grid, has triangular connections, and has data values at each position. The grid
has origin {0, 0}, delta's {1, 1}, and has counts {2, 3}. The triangle connections for the grid are {1, 0, 3},
{1, 3, 4}, {4, 2, 1}, {5, 2, 4}. Remember OpenDX uses row major order by default, so the grid is
organized as shown in Figure 9.11. The data values for the positions are {0.21, 0.07, 0.62, 0.88, 0.81,
0.005}.

To begin describing this data set as a native file, you first build the header section for the grid, as
illustrated in Figure 9.12.

Figure 9.12 Grid Header Section

Lines beginning with a pound sign are comments.
Define the header for the positions.
object 1 class gridpositions counts 2 3
origin 0 0
delta 1 0
delta 0 1
attribute "dep" string "positions"
#

To complete the native file description of the unconnected set of positions you need to add the extra
three lines shown in Figure 9.13 to add the formal definition of the object.

Figure 9.11
OpenDX Order of Points on
Grid

M o r e o n D a t a I m p o r t - C h a p t e r 9

133

Figure 9.13 Native file describing an object of 6 unconnected points equally spaced.

Lines beginning with a pound sign are comments.
Define the header for the positions.
object 1 class gridpositions counts 2 3
origin 0 0
delta 1 0
delta 0 1
attribute "dep" string "positions"
#
object "default" class field
component "positions" value 1
end

Next you add the information defining the "connections" and the "data". For simplicity, you assume
that the data values are contained in a separate file named data.txt. Figure 9.14 shows how to define the
header with the connection data immediately following the grid points.

Figure 9.14 Adding the connections to the native file.

Lines beginning with a pound sign are comments.
Define the header for the positions.
object 1 class gridpositions counts 2 3
origin 0 0
delta 1 0
delta 0 1
attribute "dep" string "positions"
#
Define the header for the connections
object 2 class array type int rank 1 shape 3 items 4 data follows
List the data
1 0 3
1 3 4
4 2 1
5 2 4
Add the necessary attributes
attribute "element type" string "triangles"
attribute "dep" string "connections"
attribute "ref" string "positions"
#
object "default" class field
component "positions" value 1
component "connections" value 2
end

The last piece of information to add is the data. As mentioned earlier, the data set is assumed to be in
the file data.txt, thus the actual data description includes structural information, the term “data file”,
and the actual file (Figure 9.15).

Thus, the user who is building external programs can create output data streams for OpenDX in the
appropriate native file format. Or, separate programs such as “gis2dx” can be built to convert a data set
in one format to a data set encoded in the OpenDX native file format. Thus OpenDX can
accommodate most sophisticated data structures.

M o r e o n D a t a I m p o r t - C h a p t e r 9

134

Figure 9.15 Native file with Data added

Lines beginning with a pound sign are comments.
Define the header for the positions.
object 1 class gridpositions counts 2 3
origin 0 0
delta 1 0
delta 0 1
attribute "dep" string "positions"
#
Define the header for the connections
object 2 class array type int rank 1 shape 3 items 4 data follows
List the data
1 0 3
1 3 4
4 2 1
5 2 4
Add the necessary attributes
attribute "element type" string "triangles"
attribute "dep" string "connections"
attribute "ref" string "positions"
#
Define the header for the data
object 3 class array type float rank 0 items 6
data file data.txt
attribute "dep" string "positions"
#
object "default" class field
component "positions" value 1
component "connections" value 2
component "data" value 3
end

Summary

The general array importer is flexible enough to accommodate a large number of data formats. It is
possible to list the general header information directly above the data in a data file. So if you write your
own file output routine in a program and do not need the power of the native file format, you can
write the file directly to the general format.

With the flexibility of the template function of the general format, it is easy to bring in multiple data
files with one single general description file.

The native file format is extremely powerful; however, it does require effort to understand its layout.
For more information on how to construct Data Explorer formatted files, make sure to work through
Chapter 15 and see the Appendices in the User's Guide. It is also possible to export OpenDX files as
ASCII so you may model your own files after an existing OpenDX objects. To do this, use the Export
module and change its format parameter to "dx text follows" or "dx text".

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

135

Network Flow Control

Rationale

OpenDX provides a visual programming environment that combines elements of data flow with
more traditional conditional flow control. OpenDX's flow control modules allow a program to
dynamically decide which branch of a visual program to execute, or to implement looping, routing,
and switching operations. These operations are essential in building complex visual applications.

Since OpenDX is a complete visualization environment, there are a large number of modules available
to perform visualization tasks. Knowing what each of the modules does is beneficial, but not
necessary. Throughout the next few chapters, you will look at a few of the most common visualization
tasks and the modules most often used to construct the visualizations within OpenDX. Not all
modules are covered here, but additional details and examples are available with the OpenDX
distribution.

The data set used in this chapter is courtesy of The Department of Radiology, New York University
School of Medcine, 550 First Avenue, New York, NY 10016. Image format conversion was
performed using Interformat, available from www.radio-logic.com.

Exercise

This exercise is designed to import and manipulate the three-dimensional MRI data set from Chapter
6 in various ways. First, import the mrb.binary data set into OpenDX and use the "pd" variable to
create an isosurface of the exterior of the volume for reference. Second, make it possible to view
arbitrary slices of a user selected data variable from the data set. Third, add a method to clip off
portions of the data to allow better viewing. Fourth, create a second Image window that can be
popped-up on demand using an interactor, to show the object rotated slightly from the original.
Finally, use OpenDX's execution styles to investigate how a completed network runs as a developed
program. You may also wish to attempt this exercise on your own. For this reason, we start by showing
the completed Control Panel and final images in Figure 10.1 and Figure 10.2, respectively.

10

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

136

Figure 10.1
Final Control Panel for this
exercise

Figure 10.2
Final Images for this exercise

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

137

Step by Step Instructions
� Use a FileSelector interactor and an Import module to import the "mrb" file.

Recall that this file has already been imported in an exercise in Chapter 6, so simply import the header
file created during that exercise. Remember this data file contains an object with three variables "pd",
"t1", and "t2", and it is imported as an OpenDX group with three fields of data.

� Place a Select module (from Structuring) below Import and connect the output of
Import to the Select.

� As an easy way to choose which of the three fields to depict, pass the output of
Import also to a Selector interactor, and pass the first output of Selector to the
open input of Select.

� Drag the Selector interactor with the middle mouse button into the control panel
that exists for the FileSelector.

� Run the output of Select to an Isosurface. Set the value of the Isosurface to 100.0.

� Hook the output of the Isosurface into a Color module. Set the color parameter to
"goldenrod" and the opacity parameter to 0.3.

� Add an Image module to render the colored isosurface. Execute Once.

After the first execution, look at the Selector interactor in the control panel. This interactor is data
driven, since it examines the imported object, determines what fields it contains, then displays the field
names for you to select which field to visualize. A different data file, with different field names, would
create a different selection list. Thus, the data driven interactor automatically updates the field names
to those contained within the imported data object. Many modules in OpenDX can be data driven.

Double-click on the name "Select which:" in the Control Panel to open the Set Attributes dialog for
this interactor. Note the correspondence between the integers 0, 1 and 2 and the field names. The
integers 0, 1, or 2 are the first output of the Selector, and the field names are the second output. The
value passed to the Select module is actually one of the integers, but the actual field names will work
with the Select module as well. The reason that either will work is because the OpenDX data model
describes fields with both a name and a number, and the data-driven Selector captures both types of
information.

� Use the view control dialog of the Image window to set the view to "Off Top", which
is a good position from which to view the data set. Set the Projection to
"Perspective" with a view angle of 30.0.

� Add a ShowBox module (from Realization) after the Import and Collect it with
the current object before passing it to Image (Figure 10.3).

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

138

OpenDX provides various modules that can produce "slices" through a 3-D data set. Two modules in
the Import category, Slice and Slab, can almost accomplish the task you want to perform. At first
thought, Slice seems to do exactly what you want. However, neither of these modules actually create
arbitrary slices through the data set; instead, they both create a subset of the input which can be
depicted to appear as a “slice”. Since you want to be able to view a slice from arbitrary planes
throughout the data set, you cannot start by subsetting the data. Thus, the module you need for this
visualization is MapToPlane.

� Copy the Select and Selector modules at the same time (this will make the new
ones automatically connected), pass Import into the new Select and Selector, and
drag the Selector into the existing Control Panel.

� Change the label on the first Selector interactor to "Isosurface Layer" and the label
on the second Selector interactor to "Slice Layer".

� Place a MapToPlane (from Realization) below the new Select and wire the output
of Select into the first input of the MapToPlane.

� MapToPlane needs two other inputs. Both of these inputs are three-vectors
describing how to construct the plane. Wire a separate Vector interactor into each of
these inputs and put the interactors into the existing control panel.

� AutoColor the output of MapToPlane and Collect this branch with the rest before
Image.

Figure 10.3
Current VPE

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

139

� Set the MapToPlane point vector to {0, 0, -125} and the MapToPlane normal vector
to {0, 0, 1}. Execute once.

� Data drive the MapToPlane point vector so that points located outside of the object
cannot be selected. Wire a Mark module between the Select and the point Vector.
Change Mark's name attribute to "positions". Execute once, then play with the point
vector interactor in the control panel to see the imposed limits (Figure 10.4).

� Change the Labels on the Vector interactors to Slice origin and Slice normal and set
the limits on the Slice normal as -1 to 1 with an increment of .05. Make sure to set
All Components .

It is difficult to see through the front of the semi-transparent exterior, so you next need to add a way to
selectively clip the front of the object off for better viewing into the interior.

� Between the Collect and Image, add a ClipPlane (from Rendering). Add two new
Vector Interactors to feed into the other two inputs of the ClipPlane.

� Set up the Vector Interactors similarly to the way you set up the two MapToPlane
Vector Interactors.

� Set the initial ClipPlane Normal to {-0.5, 1.0, 0.0}. Execute once.

Notice that the ClipPlane clips all the objects coming out from the Collect. You don't want the
bounding box to be clipped, so some parts of the network must be rewired.

Figure 10.4
Current VPE

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

140

� Unhook the ShowBox from the Collect. Place a new Collect between the
ClipPlane and the Image and hook the ShowBox into that Collect (Figure 10.5).

� Now would be a good time to save this network. Save it as "mrb.net". If you play
with the positions of the ClipPlane and the MapToPlane, you should be able to
generate an image similar to the right hand Figure 10.2

You want the user to be able to turn on and off this clipping plane, so next look at the Switch module
that will perform this function.

� Unwire the ClipPlane and the last Collect. Run the ClipPlane into the third input
of a Switch module (from Flow Control). Wire the Switch output to the last
Collect's input. Run another output from the first Collect into the second input of
the Switch.

The first input of a Switch module is the selector input. The selector input determines which of the
inputs is passed through to the output. A value of 1 for the selector will pass the first input through, a
value of 2 will pass the second input through, etc. A value of 0 for the selector of a Switch will pass a
NULL object out of the output.

� Place a Toggle interactor near the Switch and wire its output to the first input of
Switch (Figure 10.6).

Figure 10.5
Current VPE slightly re-
arranged.

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

141

� Drag the Toggle into the existing control panel. Set the Attributes so that Button
down (set) is 2 and Button up (unset) is 1. Change the Label to "Clipping Plane".
Execute the program trying the toggle both set and unset.

Switch modules can be used programmatically as well as with interactors. It is possible to use a
combination of Inquire and Compute modules to ask questions about data and thus control
execution flow through various program branches.

Another module that controls data flow is the Route module, which works similarly to the Switch
module. It differs in that it only accepts one input and the selector determines through which output
to pass the resulting object. OpenDX will not execute any of the non-selected output branches of
code.

The next requirement in the exercise is to create a second Image window with a slightly rotated image.
The user should be able to select whether the rotated image is displayed or not.

� Below the last Collect, place a Rotate module (from Rendering) on the canvas.
Below the Rotate, place a Display module (from Rendering) on the canvas. Wire
the network with the output of the last Collect going into the first input of the
Rotate, the output of Rotate being the first input of the Display, and the second
output of Image being the second input of Display.

� Set the parameters of Rotate with axis set to "z" and rotation set to 90.0. Execute
once.

Figure 10.6
Current VPE

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

142

You will see a second Image window appear with the objects rotated 90 degrees. This is what the
exercise requires; however, you must make this Display window open and close under user control.

� Place a ManageImageWindow (from Interface Control) on the canvas. Place a
Toggle interactor near the ManageImageWindow and wire the Toggle output
into the second input of the ManageImageWindow.

� Open the Display's Image window by clicking on the Display module and selecting
Open Selected Imag e Window (s) from the Windows menu. Click on Chang e Imag e
Name … in the Options menu of Display's Image window. Type the name in as
"Rotated Image".

� Set the name attribute of the ManageImageWindow to "Rotated Image". Execute
the program trying it with the toggle button on and off.

� Change the label on the Toggle button to "Show Rotated Image".

� Try rotating the image in the Display window. Now try rotating the image in the
Image window. Now try rotating the image in the Image window with the rotated
image turned off.

If you watch closely, you should notice that OpenDX still renders both the Image and the Display.
ManageImageWindow opens and closes the Image windows, but does not tell OpenDX to stop
rendering. Rendering images that are not displayed is expensive in terms of both time and space, and
should be avoided if possible. In order to make this network cease rendering the Display when it is
toggled off, you must add a Route module.

� Place a Route module (from Flow Control) between the last Collect and the
Rotate module. Wire the output of the last Collect into the second input of the
Route, and wire the first output of the Route into the first input of the Rotate.
Wire the output of the "Show Rotated Image" Toggle into the first input of the
Route (Figure 10.7).

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

143

When the "Show Rotated Image" Toggle is off (set to 0), the Route will stop all execution of modules
that lie downstream. However, when the Toggle is on (set to 1), Route will allow all modules that lie
downstream of output 1 to be executed.

When presenting a program to an end-user, it helps to organize the control panels. There are some
items that can be added to Control Panels to enhance their appearance.

� Open your Control Panel and manipulate all the interactors, stretch their lengths
(ctrl-click-drag on a corner), change their style and orientation, and add separators.

� Now click on Dialog Style under the Options menu. This new appearance is how it
will appear to end-users (Figure 10.1). Click Close on the Control Panel and answer
No to the question of wanting to revert the style back.

� Save your network and exit OpenDX.

OpenDX can be used to deploy custom networks as full stand-alone programs. Once a network is
written, it can be invoked as a command with a few extra command line options to become a custom
visualization program.

� At the UNIX command line, type the following: dx -image -execute_on_change
mrb.net. Also try the following: dx -menubar mrb.net.

Figure 10.7
Current VPE

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

144

Review

Route and Switch are two powerful flow control modules. They differ in that S witch always
continues to pass information down the execution flow, but may sometimes pass a NULL value.
Route however stops the flow of execution down branches of non-selected outputs. If a non-flowing
execution branch (routed off) is an input to a valid execution branch, the valid branch does not
execute. There is one exception to this rule using the Collect module, see the Reference manual for
more information. Sometimes it is necessary to use a combination of Routes and Switches to reach a
desired result. The other flow control modules, mainly looping, are discussed in a later chapter.

Other modules besides interactors can be data-driven. Throughout this book you have used modules
that need bounding information. The data model allows modules to gather this information from the
data structures as needed. Any module with minimum and maximum inputs can have a field with a
'data' component passed to it, and OpenDX will calculate the minimum and maximum.

As mentioned in the text above, the Selector uses integers for the first output and a string for the
second output. Note that the first output of a Selector can be items other than integers.

There are other "Manage" tools that open and close control panels, including the Colormap editor
and the Sequencer. These work in the same fashion as ManageImageWindow. When writing a
network, it becomes useful to have a control panel containing specific information to pop-up when
some condition becomes true. Note that if you close an Image window using ManageImageWindow,
you must also route off execution of the Image tool to prevent it from reopening when Image executes.

OpenDX can also be used as a complete application development product. You can create a visual
program and distribute it to be invoked as a system using the command line arguments or a simple
script file. A developer can even encrypt networks and override the OpenDX copyright and splash
screen to preserve property rights.

Display versus Image
In general, creating an image for display to the screen involves complex and time consuming rendering,
involving converting a geometrical and color description of an object to a matrix of pixels. (An
exception is the case where you already have an image, for instance the output of ReadImage. We will
discuss that shortly.) To perform rendering, you need an object to render, and a camera to specify the
viewpoint.

The Image tool, which provides direct interaction (rotation, zoom, etc.), takes as input the object to
render. The Image tool derives the initial camera from the object itself, and afterwards deduces camera
position from mouse movement. The Display module takes as input the object to render and an
explicit camera to specify the viewpoint. The camera can come, as it did here, from an Image tool, or it
can come from the AutoCamera or Camera modules, if you want to specify a precise viewpoint.

N e t w o r k F l o w C o n t r o l - C h a p t e r 1 0

145

Note that if you input an existing image, such as one read from a file using ReadImage, you do not
want to pass it to Image. Rendering an image is the same as rendering many little quads instead of
simply displaying it to the screen. Instead, you should simply pass such images directly to Display
without a camera.

Another module that performs rendering is (appropriately) the Render module. However, it does not
display the image to the screen. It simply creates the image for further processing, such as filtering
(using Filter), arranging it in a panel with other images (using Arrange), or writing to a file (using
WriteImage). Once you have this type of processed image, you can use Display without a camera to
show it.

A set of modules can be used to provide the same functionality as the Image module less user
interaction. These modules would be a combination of AutoCamera, Render, and Display. For
example, when creating large animations that will be written first to disk and subsequently converted
to video, you have more programming control using AutoCamera, Render, and WriteImage than
using an Image where control is interactive.

For advanced users, the SuperviseWindow and SuperviseState modules allow you to add extra
functionality, such as to define your own interaction modes (e.g., if you don't like the supplied rotation
operations, you can define your own) or create interactive panels of "arranged" images. The Supervise
functionality is a complex topic; more information is available in the User's Reference under these two
module names.

Control Panels
Since the end-user usually sees the control panels containing interactors as an end product, you can
truly customize the control panel. OpenDX provides the developer with a large degree of flexibility.
Control panels can:
• have data-driven interactors (autoconfigure based on data being viewed);
• allow for customizing the type, label, and placement of interactors;
• have multiple instances of interactors in one or more control panels;
• save and restore interactor settings;
• be placed in a hierarchy;
• have functional documentation; and
• be saved in "dialog style" for more seamless applications.

Make sure when delivering OpenDX networks with set values and nicely laid out control panels to
include the .cfg file, because OpenDX stores the Control Panel information within these files.

You can take advantage of a few of the control panel’s special features. You can:
• change size of interactors using control-mouse click drag on a corner;
• create multiline custom labels using backslash-n;
• change interactors to have vertical or horizontal orientation; and
• change the appearance of certain interactors.

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

146

Series, Categorical, and Scattered Data

Rationale

OpenDX calls data collected over time or produced in a time based simulation, series data. Series data
can be in single file or multiple files. For series data in multiple files, the user must create a header that
describes the series data and logically links the files together.

Categorical data are simply categories or bins that contain other data types. OpenDX uses
"categorical" data to reduce the size of a component that contains duplicate values, strings or vector
data. That is, in many circumstances OpenDX will detect repeated values in a component and place
them to a single category.

Scattered data involve both data values and position values. OpenDX can import a data file that
contains position descriptions as well as data values. This can be done using the general array
importer, ImportSpreadsheet or converting the data file to a native OpenDX file.

You should complete the following three exercises and compare your results to the step-by-step
instructions in this chapter. The exercise instructions contain some important information for
working with series, categorical, and scattered data.

Exercise 1. Series Data

Use the Data Prompter to import the "amerSeries.bin” data file. Create a simple visualization to
examine how OpenDX stores the imported data field. Use a Select and the Sequencer to animate
auto colored frames from the series. Reduce memory usage by removing the Select and feeding the
Sequencer as input into Import to select one of the series positions. Investigate how OpenDX
internally structures the field importing in this fashion.

Exercise 2. Categorical Data

Import the data file "carMiles.txt" as spreadsheet data and plot the mean of the miles per gallon and
the mean horsepower for each make and then each model. Label each plot accordingly.

11

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

147

Exercise 3. Scattered Data

Given the data file "tmpScattered.txt", import the data and locations into OpenDX using both the
general array importer and the ImportSpreadsheet module. Note that this file has values that should
be used to define the 'positions' component for the imported object. Depending on the layout of the
file, there are two possible solutions for importing the data. The ImportSpreadsheet can be used here,
because the data are in columnar spreadsheet style, or you could use the general array importer if the
data are in either columnar style or block style. Auto glyph and auto color the temperature, auto glyph
the city name and display the resulting image. Be aware of any 'connections' components.

Step-by-step instructions for Exercises

Instructions for Exercise 1
� Start the Data Prompter and use Select Data File ... from the File menu to select

"amerSeries.bin". This file is a regular array.

� Browse the data to see the header (most of the file is binary as you can see). Click on
the Single time ste p button so that it is disabled, since the header says there are 10
steps.

� Click on the Describe Data… button and fill in the prompter with the information
from the header, see Figure 11.1.

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

148

Figure 11.1 Completed Data Prompter Window

If at any time certain options that you need are not visible in the prompter, select the F ull P r ompter
option under the Options menu.

� Save this header as amerSeries.general. Try the Visualize Data… option and you
should see a representation of the North American continent. You can use the
Sequencer to cycle through the series.

� Exit out of the "Data Prompter" and start the visual programming editor. Place an
Import module on the canvas and import "amerSeries.general".

� Place a Print following Import, specifying the option "o". Execute.

Look at the message window. Notice this object is a Series Group and lists the number of members.

� Place a Select module (from Structuring) below Import and connect the output of
Import to its first input. Connect the output of the Sequencer to the second input
of Select. Set the Sequencer to run from 0 to 9.

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

149

� Place an AutoColor following Select and run the output of AutoColor into an
Image. Play the Sequencer (Figure 11.2).

An alternative to importing the en tir e series and selecting the desired time step is to import the desired
time step one at a time. The next step demonstrates this technique.

� Remove Select, and expose the start and end inputs for Import. Connect the output
of the Sequencer to both. Wire the Import directly to the AutoColor (Figure 11.3).
Play and observe the result.

Figure 11.2
Current VPE

Figure 11.3
Current VPE

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

150

For a large data set, it is often desirable to import and store data for a single step, instead of importing
the entire series. That is, if OpenDX stores the entire series object in memory, this can limit how
much memory is available for subsequent processing.

� Save the program as "series.net." Quit OpenDX.

Instructions for Exercise 2
� Look at the file "carMiles.txt" using the Unix command more or a text editor.

Note the layout of the file and count the number of header lines at the top. The file is also tab-
delimited. This file contains data about a variety of makes and models of cars. It gives information
such as miles per gallon, volume, horsepower, and weight.

� Start a Visual Program Editor session (dx -edit). Place an ImportSpreadsheet (from
Import and Export), and fill in the filename with "carMiles.txt" and the delimiter
with "\t". In order to skip the 6 lines of header, expand the configuration dialog and
scroll down to fill in headerlines.

� Print with option "rd" the output of ImportSpreadsheet. You will see a number of
components (note that none of them are the 'data' component). Many of the
components are of type string.

Modules like AutoColor and Isosurface do not know how to deal with "string" data. This is where
the Categorize module is useful; it can transform "string" data to numerical data through mapping or
binning.

� Place a Categorize (from Transformation) after ImportSpreadsheet. Pass the
output of ImportSpreadsheet to the first input, and set the second input to the
component name "MAKE". Now print the output of Categorize.

Look specifically at the 'MAKE' component. Note how it is now an array of numbers. These
numbers reference into a new "MAKE Lookup" component named after the categorized component.
The lookup component is a sorted array of unique string values from the original 'MAKE'
component.

Categorize thus takes a list of values, finds all unique values and creates an indexed sorted list from
them. The component is then changed to become a list of values that references the lookup table. Like
the "C" programming language, OpenDX references the index into the lookup table starting at 0.

The ImportSpreadsheet module can categorize during import. It can categorize any component you
name, or for convenience, categorize all "string" components.

� Open the configuration dialog box for ImportSpreadsheet, and find the categorize
input. Use the ... button to find the correct option so it categorizes all the string
data, i.e. select "allstring".

� Now you can remove the Categorize module. Print the output of
ImportSpreadsheet.

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

151

Note how both the "MAKE" and "MODEL" are both binned. By converting the string data to
numerical data, you can now use these columns with most of the modules in OpenDX.

There is a useful module called CategoryStatistics, which allows OpenDX to relate various data
items within a categorical data field.

� Place CategoryStatistics (from Transformation) below ImportSpreadsheet, and
pass the first output of ImportSpreadsheet into its first input.

� Set the operation input of CategoryStatistics to "mean" and unhide the hidden
parameters category and data.

� Place two Selectors (from Interactor) on the canvas between ImportSpreadsheet
and CategoryStatistics. Wire the second output of ImportSpreadsheet to each
Selector. Wire the second output of one Selector to the category input of
CategoryStatistics and the second output of the other Selector to the data input.

� Wire the output of CategoryStatistics to the Print and execute once to initialize the
Selectors, Figure 11.4.

� Place both Selectors in one Control Panel. Change the "category" Selector to
"MAKE" and the "data" Selector to "HP". Execute once.

Look at the message window. Note that you now have a 'data' component and a 'MAKE lookup'
component. CategoryStatistics performs functions based on each category. In this case, you named

Figure 11.4
Current VPE

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

152

the category 'MAKE' and asked for an average of the horsepower. CategoryStatistics works through
the 'MAKE' component averaging all the horsepowers per unique 'MAKE' value. This calculates the
average horsepower per make of automobile. Since data exists, OpenDX can create a plot.

Plots require a data set with one-dimensional positions and a data value. Plot uses the position as the
x-axis and the 'data' component value as the y-axis, which is exactly what you have after the
CategoryStatistics.

� Pass the output of CategoryStatistics into Plot (from Annotation) and the output
of Plot into Image. Execute once.

The image does not look bad, but labels on the x-axis are imperative to allow an observer to know
what the plot represents. If you pass in a list of strings to Plot, it will interpret them as labels for the
axes. The 'MAKE lookup' component contains the list of strings you need as axes labels.

� Extract the 'MAKE lookup' component using Extract (from Structuring) and pass it
to the xticklabels input of Plot. Change the labelscale of Plot to 3.0. Execute once.

Remember that OpenDX creates the lookup tables during the categorize step in
ImportSpreadsheet. For each of the string data components, there is a lookup table that corresponds
to the string component. But after the CategoryStatistics, only one of the lookups is passed through.

� Using the Selector, change the "data" from "HP" to "MPG". Execute once.

Notice how the plot changes to reflect the average miles per gallon. You may need to reset the image in
order to get the plot re-centered. This is due to the fact that the camera for the image is set to the
previous plot's center. Automating the rest is left as an exercise for the reader.

� Using the Selector, change the "category" from "MAKE" to "MODEL". Execute once.

Note that you get an error at this point because the available "lookup" table is now the 'MODEL
lookup' and not the 'MAKE lookup'. It would be easy to change the value set for the Extract module
to 'MODEL lookup', but this is a problem if you need to change this value each time the selector is
changed. You can programmatically tell OpenDX which component to extract by using the Selector
in combination with the Format module.

The Format module works like a printf in the "C" programming language. First you pass a template
describing what the resulting string should look like, placing %s where a string substitution should
take place, %d where integer substitution should take place, and %f where floating point number
substitution should take place. In this case you also need to add the word "lookup" after the value you
get from the Selector. Thus your template will be "%s lookup" where %s is the string you get from the
Selector.

� Place a Format (from Annotation) above the Extract module. Wire the second
output of the category Selector into the second input of the Format module. Set
the template of Format to "%s lookup". Wire the output of Format to the second
input of Extract, Figure 11.5.

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

153

Note that this will substitute the string passed from the Selector into the template at the "%s"
position. So when "MAKE" is selected, the output of the Format is "MAKE lookup". When
"MODEL" is selected, the output is "MODEL lookup".

Execute the program selecting different categories and data options. Note that if you select a
numerical data component for the categorical data an error will occur. This is due to the fact that only
the string data had been categorized in the ImportSpreadsheet. It is possible to categorize numerical
data as well.

� Save the program as "category.net".

Instructions for Exercise 3
� Start the Data Prompter, select the data file "tmpScattered.txt", and click on the Grid

or Scatter ed file . Browse the data file to look at its layout.

� Next to Grid type, click on the scatter ed type (the button with random dots on it).
Change the number of variables to three (the temperature, city and state). Click the
Positions in data file button and change it to Dimension: 2. Change the Data
organization to Columnar.

At this point, you have almost completely described the data file; however, you need to give the exact
layout of the file.

Figure 11.5
Current VPE

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

154

� Click the Describe Data… button. Fill in the information for the Header (1 line) and
the number of points (56). The Data format is Text so that will not change.

The order of the variables is important in the Field list. In the file, the variables are listed as City, State,
temperature, latitude, and longitude. Thus you must reorder the field list and rename the variables in
the process. Note the data prompter uses the keyword “locations” as the name of the positions in a
field.

� Use the Mov e field buttons to arrange them in order as {field0, field1, field2,
locations}. Rename "field0" to "city" and make it a string of length 15. Change
"field1" to "state" and make it a string of length 2. Rename "field2" to "temp".

The general array importer has some strict parsing algorithms for dealing with files. OpenDX
assumes data are separated by a number of characters. Spaces and tabs both separate data. So telling
OpenDX that a string is of length 18 does not mean it will always read in 18 characters. If OpenDX
locates a separator within a character string it will assume that the next set of characters belong to the
next field. Thus in this file, you will note that city names that are two words have an underscore in
place of the space. This is not a problem with ImportSpreadsheet. In fact, you will bring in the city
name and state together as one variable when using the ImportSpreadsheet later.

� Save the file as "tmpScattered.general". You may quit the prompter at this time.
� Start a Visual Program session and Import the general file you just created.
� Place a Select after the Import and select the "temp" field.
� Place an AutoGlyph, AutoColor, and Image in that order on the canvas after the

Select. Hook the network up in order and execute once (Figure 11.6).

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

155

At each point on the map, display the name of the town associated with its temperature.

� Place another Select below the Import and select "city".

� Pass the "city" field to an AutoGlyph and Collect it with the temperature glyphs
before the Image. Change the glyph type to "text". Execute once.

� Zoom in and out to investigate how the text auto glyph works.

Note that the image seems to be reversed; however, this is correct for this data set since the
longitudinal numbers are stored as positive, not negative, numbers (longitude is increasingly “negative”
as you move west in the Western Hemisphere from the origin at Greenwich, U.K.). In order for the
image to look like what you want, you must use a Transform module right before the Image.

� Place a Transform (from Rendering) module between Collect and Image, Figure
11.7. The transform to apply is [-1 0 0][0 1 0][0 0 1]. You will have to reset the image
after executing.

Figure 11.6
Current VPE

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

156

For the rest of this visualization, make sure to apply the Transform to all data before sending it to
Image.

� Play with the shape, scale, and ratio of the glyph until a desirable result is obtained.

To understand how ImportSpreadsheet and the general array importer differ, produce the same
image with a network that starts with ImportSpreadsheet.

� Without deleting any part of the current network, place an ImportSpreadsheet to
its right. Import the data file "tmpScattered.txt" and change the delimiter to "\t".

All of the columns become components to one field from an ImportSpreadsheet. None of these
components are the 'positions', thus you must use modules to construct a 'positions' component.

� Wire ImportSpreadsheet to two new Mark modules. Mark "Long" with the left
module and "Lati" with the right module.

� Run both of the Marks into a Compute module. Set the Compute's expression to
[a, b].

If the Longitude and Latitude are not correctly input into the Compute's "a" and "b" tabs, then the
positions will be transposed as [y, x] and the image will be incorrect.

� Place an Unmark below the Compute and unmark "positions".

This will create a new 'positions' component overwriting the old with the positions becoming the files
Long/Lat. The field is now very similar to what was imported with the general array importer; except

Figure 11.7
Current VPE

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

157

all the variables are components to a field instead of a group of fields. Variables used as components
must have their own name, but to be used with modules such as AutoGlyph, a variable must be
marked as the 'data' component.

� Mark the "Tmp" component of the result from Unmark.

� Copy the AutoGlyph and AutoColor from the previous temperature branch of the
network, and move the Transform and Image, wiring the network as in Figure
11.8. Execute once.

The resulting image should be identical to the one produced for the temperature glyphs earlier. Just
like in the other network, add the city name to the temperature glyphs. The field after the Unmark
can be used to accomplish this.

� Wire the Unmark into another Mark, and mark the "City" component.
� Copy the "text" AutoGlyph and the Collect over and wire the network similar to the

way it was done previously (Figure 11.9). Execute once.

Figure 11.8
Current VPE

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

158

Look at the two networks and note the differences. Try removing the AutoGlyph for the temperature
and discover what happens. See if you can explain it to yourself.

Review of Chapter 11

You can import series data as a single time slice or as one object and then use Select to select one time
slice. The Sequencer is a valuable tool to animate series data. OpenDX designates series data as a
special group. The native OpenDX file format can handle series data with ease.

ImportSpreadsheet is a quick way to import spreadsheet type data into OpenDX. Each column
imports as a separate component to one field. The column header is the name of that component. You
select fields in a group using the Select module whereas to select components in a field use the Mark
or Extract modules. After using ImportSpreadsheet, you typically need to Mark a column as 'data'.

Often for scattered type data, columns in a spreadsheet are the positions. You can apply a Mark,
Compute, and Unmark sequence of instructions to create positions from the components.

If OpenDX imports data as "1-d" using the ImportSpreadsheet module, then the positions become
the indices (row numbers) of the imported file. If OpenDX imports data as "2-d" then the output field
will be a C x R grid, where R is the number of imported rows, and C is the number of imported

Figure 11.9
Current VPE

S e r i e s , C a t e g o r i c a l , a n d S c a t t e r e d D a t a - C h a p t e r 1 1

159

columns. The field will have a single data component that contains all the values in the imported rows
and columns.

Categorize converts a component of any type to an integer array that references a newly created
'lookup' component. The 'lookup' component is a sorted list of unique values of the original data that:

• reduces the size of a component that contains duplicate values;
• converts string or vector data into "categorical" data; and
• allows the detection of repeated values in a component.

Categorize uses the smallest possible memory block to store "categorical" data, e.g. it uses Byte if the
category has 256 or less unique values.

CategoryStatistics works on binned data. It

• creates a new 'positions' component representing the categorical indices;
• creates a new 'data' component containing the requested statistics; and
• performs a calculation on the named data per category (bin).

Plot always expects a field with a one dimensional positions component (this will become the x-axis,)
and a one dimensional data component (this becomes the y-axis.)

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

160

Looping and Probing

Rationale

The programming interface of OpenDX is based on a more or less traditional data flow architecture,
but also includes extensions that provide both conditional execution tools (Route and Switch) and
explicit looping tools (ForEachMember, ForEachN, Done). It is important to understand these
control flow constructs since they provide extended functionality that is used in many examples.
OpenDX also includes modules Get and Set that allow the user to explicitly control data caching,
which is important when loops are used.

OpenDX allows you to interact with and investigate the data set within the Image window. Using the
special Probe and Pick tools, the end-user can interactively select or position points in space to gather
information about the rendered objects.

The exercises in this chapter illustrate complex data and flow control. You may try to complete the
two exercises on your own or may find it beneficial to follow the provided instructions. In either case,
you should be sure to read all of the accompanying text. It contains a great deal of explanation about
how OpenDX handles looping and interactive picking.

Exercise 1. Looping and Macros

Your first task is to use the flow control modules to create a loop that echoes the values of 0 through 10
to the message window. Later, you will extend this functionality by stopping the loop with the Done
module at a user-specified value. The next task is to start a new visual program and import the
"amerSeries" data. Then, accumulate the data over the grid for all ten-time steps. Next, create and use a
macro to view only the final accumulation. Create another network that uses an "until done" loop to
count to 50. Finally, examine the implications of using interactors with the Done module.

Exercise 2. Probes, Picks, and Text Glyphs

Use the data file “sealevel.bin” from Chapter 3 to create an autocolored rubbersheet. Then use the
mouse with the probe and pick to show the data values (elevations) at points on the earth’s surface.

12

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

161

Step-by-step instructions for Exercises

Instructions for Exercise 1
� Start the Data Explorer VPE by typing dx -edit.

� Place a ForEachN module (from Flow Control) on the canvas. Open its
configuration dialog box and set the start parameter to 0 and the end parameter to
10. Close the configuration dialog box. Attach an Echo module (from Debugging) to
the first output of ForEachN and execute once.

Notice that the Echo module executes 11 times, printing 11 values, although you only executed the
program once. Execute again; the same thing should happen.

You have just seen that a single loop (with the start and end values specified in ForEachN) completes
as a single execution in Data Explorer. This is important to remember for future use, especially for use
with interactors and macros.

OpenDX provides additional loop control modules. For example, the Done module provides an early
exit from a loop.

� Place Done (from Flow Control) on the canvas. Connect the first output of the
ForEachN to a Compute (leave the connection to Echo as is) and enter the
expression “a > 5 ? 1 : 0”. Connect the output of Compute to Done and execute.

The expression “a > 5 ? 1 : 0” is special syntax (borrowed from the "C" programming language) for an
"if <condition> then <result1> else <result2>" statement. This particular expression reads as “ if a is
greater than 5 then return 1 else return 0.” Thus, whenever the first input “a” is greater than 5, the
Done module directs the loop to stop. In this case, the message window prints the values 0 through 6
because the first value greater than 5 is 6. Using Compute and Done modules together in this fashion
allows you to create conditional looping.

Next, consider a more interesting looping example with the series data from the previous chapter.

� Clear the canvas using File->New . Place an Import module on the canvas and
import the series data. The general file should be named “amerSeries.general”

Remember that the result of this Import is a series group with 10 different fields, each representing a
time slice. If you wish to verify this, place a Print after the Import to view the group’s structure.

� Place a ForEachMember module after Import. Wire them together.

ForEachMember consecutively selects each field from the series, starting at time zero and finishing
when the last field is selected.

� Wire ForEachMember’s first output to an AutoColor, and connect the output of
the AutoColor to Image. Execute once.

Notice that the visual output is similar to the example in the previous chapter, but the
ForEachMember drives the selection of the steps. The ForEachMember provides no control over

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

162

playing, stopping, and reversing the selection with a single click of a button. Thus, it may not seem as
useful as the Sequencer. However, explicit looping has some powerful applications that are
demonstrated in the remainder of this exercise.

Suppose you want to sum all the series members together and make an image of the accumulated
total. In addition to ForEachMember, OpenDX has a pair of modules that accumulate data while
the loop runs. Assume that what you are trying to accomplish is summarized in the following
pseudocode.

sum = 0
i = 0
while i < number_of_members

i = i + 1
sum = sum + the ith member //Add each point in the field

end while

The Compute module adds data in the following way. If a field is one of the inputs to Compute and a
scalar is added to the input, the scalar is added to every point in the field. If two fields (with the same
number of data values) are input into Compute and added together, Compute performs a point-wise
addition of the fields.

The GetLocal and SetLocal modules store intermediate results into a cache. These can be used to
implement the variable sum in the pseudo-code above. In each iteration of the loop, SetLocal puts the
intermediate sum value into cache; GetLocal retrieves this value out of the cache for the next addition.

� Place a GetLocal and a SetLocal (both from Flow Control) on the canvas. Add a
Compute. Connect the second output of GetLocal to the second input of SetLocal
to link them as a pair (so that GetLocal knows which cache to use). Connect the first
output of GetLocal to the second input of Compute.

Remember that GetLocal provides the current value of “sum” to Compute as the second input "b"
and Compute adds the current series member to it.

� Connect the output of ForEachMember to the first input of Compute, and enter
the appropriate expression to compute the sum (a+b). Place the new sum into the
cache by connecting the output of Compute to the open input of SetLocal.
Initialize the output of GetLocal (the equivalent of setting sum=0 above) by
entering 0 as the initial input of GetLocal. Execute once.

OpenDX produces the same result as before because it images only the original data values, not the
values stored in the cache.

� Copy the AutoColor/Image pair and wire the output of the Compute to the first
input of the new AutoColor (Figure 12.1). Execute once.

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

163

OpenDX now displays two images: the original series data, and the accumulation of the series.
Compare these images to see if the accumulation occurs.

Whenever a loop appears in an OpenDX program, it raises the question of what part(s) of the
program is interpreted as being in the loop, i.e. what part(s) should be repeated for each loop value?
OpenDX considers ALL modules at the level of a looping construct to be in the loop. Thus if you
want to have only certain modules of the program executed iteratively, you must create a macro to
encapsulate the loop components.

� Delete the AutoColor/Image pair wired directly from ForEachMember.
� Select the set of tools ForEachMember, GetLocal, SetLocal, and Compute. Do

this by rubberband selecting, or by shift-clicking on each module.

� From the Edit menu, choose Cr eate Macro . Enter the Name LoopExample for this
macro. Enter the Filename loopexample-macro.net. Press OK .

Note that the macro name is the name placed on the module box, whereas, the filename is the name of
the small network as stored on disk. Although two separate and distinct names are used, it is a good
idea to make the two match as closely as possible. When you define part of a network as a macro, all of
its selected components collapse into one tool with the macro name. OpenDX also creates a new
category in the Categories list named Macros, and within this category, it lists all currently defined
macros.

� Execute once.

Figure 12.1
Current VPE

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

164

Notice that the image only displays the final result, not the intermediate results of all ten of the
separate additions.

The important thing about putting looping tools inside macros is that the macro only returns the
result, and does that only when the loop finishes. To see the intermediate steps, you must place the
looping tools (ForEachN or ForEachMember) at the “top” level visual program, not in a macro.

Macros allow you to create subnets for repeated transformations, simplify your programming
interface, and add customized tools to the programming toolbox. In many occasions, you may also
have access to other programmers' macros, which can dramatically shorten the amount of time it takes
you to develop a sophisticated program. Once a macro exists, you can also edit it as needed to produce
your own customized version.

� Double-click on the macro. A configuration dialog box will appear, just as for any
other module. To edit the macro, select the macro tool and choose Open Selected
Macro from the Windows menu.

Note that the new VPE window contains all the tools in the original network, plus one Input and one
Output tool at the start and end of the network, respectively. You can configure the Input and
Output modules to define more appropriate input and output names for the macro. Open the
configuration dialog box for an Input module and change the name parameter from input_1 to
something that describes the type of input data (e.g., series). You can change the output name in a
similar manner. After editing information in the Input or Output modules, the macro must be saved
and reloaded in the original network for the changes to take place. After changing anything within a
macro, remember to save it by selecting Sa v e P r ogram from the F ile menu of the macro's window.

OpenDX does not allow all the available modules to be included within macros. Modules that
provide user interaction, such as Image, Sequencer, Colormap or any of the interactors cannot be
included within a macro. Creating a macro can also be difficult if you are uncertain about exactly what
the macro should do versus what the main program using the macro should do. In such a case, it is
easier to initially include all elements in the main program, then create the macro for a subnetwork as
shown in the above steps.

� Close the macro. Save your network as looping.net.

Up until this point in this exercise, all of the looping has been done with a "For" module, either
ForEachN or ForEachMember. OpenDX can create loops without one of these modules present.
For example, whenever you place a Done module on the canvas, you create an "until done" loop. In the
following steps, you create this type of loop and investigate its implications.

� Clear the canvas. Place a Done, a GetLocal and SetLocal pair, and two Computes
on the canvas.

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

165

� Wire the second output of GetLocal to the second input of SetLocal. Wire the first
output of GetLocal into the first input of the first Compute. Wire the output of the
Compute to the first input of SetLocal. Set the expression of the Compute to be
"a+1". Set the initial value of GetLocal to "-1".

This set up creates a loop that starts with an implicit counter of -1 , adds 1 to the counter at each
iteration, and repeats. Thus, the value available after the compute starts at 0 and increments forever.

� Wire the output of the first Compute to both an Echo and to the second Compute.
Set the second Compute's expression for the test: “if the input is greater than 50,
output 1, otherwise output 0", i.e., "a>50?1:0".

� Pass the output of the second Compute to Done (Figure 12.2). Execute once.

Open the message window and determine if this is the expected result. You should see the numbers up
to 51 echoed, at which point Done terminates the loop. This is the basic until loop. At times you may
want to define a continuous loop to allow an end-user to explicitly end the loop by clicking on an
interactor.

� Place a Toggle interactor on the canvas and pass its output to the Done module.
Toggle by default outputs 1 if pressed in, 0 otherwise. Execute once and experiment
with pressing the Toggle. To stop execution use End Ex ecution from the Ex ecute
menu.

From the execution result it appears that the Done module is working incorrectly because when you
press the Toggle button the loop continues to execute. Actually, the module is working correctly, but

Figure 12.2
Current VPE

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

166

there are process interaction aspects to consider. Because OpenDX runs as a client-server process, the
executive only gets the value for any interactor once, at execution launch. Once the network is
running, the executive ignores interactors, including those whose values may have changed. To provide
a more dynamic client-server interaction you would have to write your own user interface.

Instructions for Exercise 2
� Import the sealevel data from Chapter 3 into a new visual program. Create an

automatically colored rubbersheet of the topography and use Image to display it.

Refer to Chapter 3 if you can't remember how to do this.

Suppose you want to use the mouse to select a point in the image and view its data value. The
modules Pick and Probe allow you to select a position in the Image Window. Once you have "picked"
or "probed" correctly you can use normal OpenDX facilities to display characteristics of the point.

� Place a Probe module (from Special) on the canvas. Connect the Probe to a Print
module with the options of "rd".

� Open the View Control dialog from the Image Window and set the Mode to Cursors.
Double-click on the terrain in the Image window. A cursor (green dot) will appear.
The user can drag the dot to any position within the bounding box of the object.
Execute once and look at the output of Print in the message window.

� Go back to the Image window and drag the little dot upwards. Execute once.

Notice that the values printed in the message window are the position of the dot, relative to the
positions of the object. For example, if you drag the dot up, the second value (y) of the position display
increases.

Suppose you want to display the data value at the probed point. Probe generally returns a vector value
in three-space, but the original data is only two-dimensional. Thus, you must convert the position to
2-D space. You can then use Map to acquire the data value at that point. However, a single vector
cannot be used as an input for Map, which requires an object as its input. You must use a Construct
module to take a vector as input and construct an appropriate object as an output.

� Place a Compute between the Probe and the Print. Set the expression of
Compute to [a.x, a.y]. Execute once and observe the output in the message window.

This removes the third dimension from the vector.

� Place a Construct (from Realization) between the Compute and the Print. Wire
the output of the Compute to the origin input of the Construct. Execute once and
observe what object Construct creates.

The output of Construct is a field with two components. The first component is 'positions', which is
the two-vector you passed in as the origin. The other component is the 'box' derived component. Map
can now use this field with the original data set to locate an appropriate data value.

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

167

� Wire the output of the Construct into the first input of a new Map module (from
Transformation). Wire the output of the Import into the second input of Map. Use
the Print module to print the output of Map.

The field from Map now has a data value assigned for the position from the Probe. You can use
AutoGlyph to produce a text glyph that displays the data value at the location of this new field.

� Wire the output of Map into the first input of an AutoGlyph (from Annotation).
Collect the output of the RubberSheet and the AutoGlyph before sending them to
Image (Figure 12.3). Execute once.

It may be extremely hard to see, but DX places a small dot on the map with the same X, Y position as
the probe.

� Open the CDB of the AutoGlyph and change the type to "text". Execute once.

Experiment with moving the probe point around in the scene. You can set DX to Execute On
Change, so that as you move the probe the text is updated. Think about what the data values being
displayed represent. Re-read the beginning of Chapter 3 if you don't remember.

OpenDX includes a second module that handles some of this work. Next, perform the same task as
above, using Pick instead of Probe.

� Place a Pick (from Special) on the canvas. Wire its output up to the Print. Go into
Pick mode using View Control. (Single) click somewhere on the surface and execute
once.

Figure 12.3
Current VPE

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

168

Notice how the output of Pick is already a Field with a 'positions' component. There are some other
components, but no 'data' component.

� Open the configuration dialog box for Pick and look at the interpolate input; set it
to 1.

The interpolate option forces the output of Pick to find the object's data value at the position of the
Pick.

� Copy the existing AutoGlyph. Wire the output of the Pick into its first input and
wire the output of the AutoGlyph into the Collect (Figure 12.4).

� Change DX to Execute on Change. Use the View Control to select the Pick mode. Try
single clicking at different points in the Image Window.

Notice how Pick updates its value after every selection. Try picking outside the image; you should find
that Pick returns a Field with 0 components, so no glyph is produced.

� Save the program as "pick.net"

Review

In Exercise One, you used the ForEachN module to loop over a series of integers and the
ForEachMember to loop over the members in a series. ForEachMember can also loop over the

Figure 12.4
Current VPE

L o o p i n g a n d P r o b i n g - C h a p t e r 1 2

169

items in a list. This feature allows for looping over all data elements in a field. You used the Extract
module to extract the data component and pass this into the ForEachMember module.

You also used Done to create a loop all by itself. However, you should have learned to be careful of
using interactors to control Done, because Interactors have effect only at startup. Remember that
OpenDX is a client-server program. While the server is executing a program, changes in interactor
values are not processed. Using 0 as an input to Done creates an infinite loop. Though it wasn't
illustrated here, you could write your own user interface to hook up to DX using the DXLink
libraries. For example, you could define a button that interrupts an infinite loop by calling the End
Execution routine.

You used GetLocal and SetLocal to accumulate a series of data. In the Flow Control category, there is
another pair of modules named GetGlobal and SetGlobal. These are similar to GetLocal and
SetLocal. Recall that each time OpenDX executes a loop with GetLocal and Setlocal, the loop is
reinitialized to the “initial value” input. In contrast, GetGlobal and SetGlobal are NOT reinitialized
until explicitly done using the “reset” input. Thus, the "global" modules are useful if you want to
maintain state over the course of multiple loops.

Everything at the level of the looping tools is assumed to be inside the loop. This includes modules on
separate pages, so it is generally best to put a loop inside a macro because only the modules within the
macro are executed during the loop

When working with a package such as OpenDX, speed and memory play a significant role. OpenDX
caches results after computation within modules. The results from loops and macros are also cached.

The Sequencer and looping have a great deal in common. However, only one Sequencer can exist in
a visual program, whereas multiple loops can exist. The developer should use the Sequencer when
user interaction is required or desired. For more extensive information on looping, refer to the chapter
entitled “Data Explorer Execution Model” in the User’s Guide.

Picks and Probes provide an easy to use interface for selecting and viewing specific data and objects.
The Pick module is often easier to use but provides a higher level of complexity. For example, if a pick
intersects multiple objects in a scene, then the output returns information for each object. The Probe
module is simpler than the Pick module, but its use in complex applications may require additional
user programming.

The initial output of a Pick that has not yet been used in an Image window is a Field with 0
components. Most modules accept this and simply pass the Field through. However, the Probe's
initial value is a NULL object–when passed to most other modules this causes an error. In this case,
you would have to program the network with an Inquire and Route to shut off the Probe until it is
initialized. For more information, refer to the User's Reference Manual.

T i p s , T r i c k s , a n d M e m o r y U s a g e - C h a p t e r 1 3

170

Tips, Tricks and Memory Usage

Introduction

This chapter provides tips for working with large visual programs, rendering images and minimizing
memory usage. Recall that Chapter 4 presented techniques for organizing large visual programs,
including using pages and annotation. This chapter describes related techniques used to locate a
specific tool in a large program and prevent overlapping modules from displacing adjacent modules on
the VPE canvas. It also describes ways to prevent line aliasing, display two objects that occupy the
same position in space, and troubleshoot some common image rendering problems. Finally, it
describes the OpenDX execution model and its use of memory in some detail. Because OpenDX
does not always use memory efficiently, visual programs hosted on computers with limited memory
(<64 MB) or dealing with large data sets can run out of memory prior to completing the desired
visualization. Awareness of how OpenDX uses memory can help the user reduce memory
requirements and minimize these limitations.

VPE Tips

Module Overlap
As visual programs increase in size, the programmer is faced with the growing challenge of organizing
the program and keeping track of different program elements. When a network becomes sufficiently
large, it needs to be divided into separate pages, where each page ideally provides separate and distinct
functionality. Logically, adding or moving modules around can cause some modules to overlap, and by
default, modules are not allowed to overlap on the VPE canvas. Thus, when a module is placed too
close to an existing module, OpenDX automatically displaces one or more modules and connections
to avoid the overlap. There are two ways to modify the default automatic displacement feature
(commonly known as bumper cars). The first option changes the displacement behavior, so that
when a module is placed too close to an existing module, OpenDX moves the new or moved module
into the nearest open space and does not displace the existing module. This option is engaged in the
Visual Program Editor by selecting "Prevent Overlap" from the "Options" menu. The second option
turns off displacement altogether, allowing OpenDX to permit overlapping on the VPE canvas.

13

T i p s , T r i c k s , a n d M e m o r y U s a g e - C h a p t e r 1 3

171

Thus, modules may rest on top of each other. Some modules and connections can be obscured, but
the result (particularly for experienced users) may be preferable in large programs. Enabling
overlapping is more complicated than simply setting an OpenDX option, because characteristics of
the underlying X-windows system for this user-login must be changed. To enable overlapping, the
user must edit the ".Xdefaults" file in his/her home directory to add the line:

DX*vpeCanvas.allowOverlap: True

Every X session started after this file is changed recognizes the change and permits VPE canvas
overlapping. The change can be incorporated in the session current during editing by executing the
command "xrdb -merge .Xdefaults". The user who wants to use non-overlapping as the default, but be
able to occasionally enable overlapping immediately should put the above line by itself in a file, e.g.,
named "olap", then use the "xrdb –merge olap" command when desired.

Layout Graph
When visual programs are built with modules placed haphazardly on the canvas, a network graph can
become difficult to read and understand. Under the Edit menu there is a "Layout Graph"
option–selection of this option results in the visual program automatically being reorganized so that
modules are placed in a downward flow fashion. Often this is very helpful, but sometimes it can
produce a layout that is even harder to read and understand than the original. Layout Graph can
always be immediately undone using the Undo option in the Edit menu, so the user can always try it
to see how well it works.

Finding a Module
As visual programs grow it becomes increasingly difficult to locate a specific module or tool. The "Find
Tool" facility, found in the Edit menu, displays a list of currently used tools. Select the tool from the
displayed list to be located then select the Find button. The VPE will highlight the first occurrence of
the tool on the canvas. Click the Find button again to locate the next occurrence of the module.
Receivers and transmitters can be selected in a similar manner by typing in their names. To determine
which interactor goes with a particular stand-in, just double-click on the stand-in–OpenDX then
highlights the corresponding interactor in the Control Panel. Or, select the stand-in and use "Show
Selected Interactor" in Control Panel's Edit menu. To determine which stand-in goes with a particular
interactor, select the interactor and choose "Show Selected Tool" in Control Panel Edit menu.

To keep better track of a large visual program or provide hardcopy documentation, you can print your
visual program. To do this, use the "Print Program..." option under the File menu. Each visual
program page will be printed on a separate page. There is an option to display the values of module
inputs that are set as annotation on the printout. You can print the visual program as a postscript file
or directly to a printer.

T i p s , T r i c k s , a n d M e m o r y U s a g e - C h a p t e r 1 3

172

Image Rendering Features

Objects Sharing the Same Physical Space
If two objects exist in the same exact space, the rendering software will have a hard time determining
which object to display. The "fuzz" attribute is used to solve this problem. Pass the object through the
Options module, setting the value of the "fuzz" attribute to an integer to determine display priority,
where higher values are displayed on top of lower values in rendering from a positive view direction.
For example, if three objects are in the same space and have fuzz values of zero, one, and two, and the
view direction is positive, the object with "fuzz" of 2 renders on top of the objects with "fuzz" 0 and 1.

Empty or Inappropriate Display
Sometimes a visual program will produce an Image window whose contents are not what are
expected. For example, the Image window might be blank. Usually this results from use of
inappropriate, previously defined camera settings. Use the Reset under the Options menu or in the
View Control dialog of the Image window as a way to quickly reset the camera settings to point at the
center of an object scene and render all existing objects. However, if two objects exist in the scene but
the distance between the two is great, then a blank image can still result. The ShowBox module,
which creates the outline of a box that encapsulates the objects in the display, can be used to determine
if any objects are present. Simply pass the target output through the ShowBox module before sending
the output to an Image or Collect. The result will indicate whether elements are present but not
displayed in the current view, or no elements are present.

Another common problem is to zoom in too much or incorrectly rotate an object. To return to the
previous image, there is an Undo button under both the Options menu and in the View Control
window. Undo can cycle back through the previous 10 images. An accompanying Redo option allows
the user to move forward through the same sequence of images, following one or more Undo
operations.

Finally, during development an Image window can easily become buried under the VPE and other
windows. Rather than move the VPE around or close windows, simply double-click on the Image
tool in the VPE and the Image window will be moved to the "front" of the display. If the image is
created using a Display module, select the Display module in the VPE and select "Open Selected
Image Window(s)" from the Windows menu.

Line Aliasing
A common problem in rendering lines is that under-sampling the points along the line results in so-
called aliasing, which makes the line thickness appear to vary or have missing sections. Anti-aliasing
makes the lines appear smoother and more uniform by adding subtly shaded pixels, as illustrated in
Figure 13.1. If your computer system provides hardware support for OpenGL 3-D rendering and
OpenDX was built properly for your system, the software will support anti-aliased and multiple pixel
width lines with hardware rendering. To have OpenDX render anti-aliased lines, simply pass the

T i p s , T r i c k s , a n d M e m o r y U s a g e - C h a p t e r 1 3

173

renderable object through the Options module, and set the value of the "antialias" attribute to "lines".
To specify multiple pixel width lines, pass the object through Options, setting the "line width"
attribute to the desired number of pixels. If OpenDX is running on a system without OpenGL or
GL installed, the anti-aliasing effect can be achieved by rendering the image at a larger size than
needed, then using OpenDX facilities (e.g., the Reduce modules) or post-production software (e.g.,
Adobe Photoshop or ImageMagick) to reduce image size to that desired.

Memory Usage

OpenDX is a memory intensive application, and thus prone to “Out of Memory” errors during
execution on hosts with small memory or in applications involving large data sets. Several techniques
can be used to reduce the amount of memory OpenDX uses to avoid memory problems.
Understanding these techniques first requires understanding the OpenDX execution model and its
use of memory.

The OpenDX Executive manages the execution of the visual program. The Executive processes the
inputs and analyzes the program’s flow to determine an efficient execution order for the different
modules. Its default behavior is to run as a single process, passing objects "by reference" between
modules. However, OpenDX provides two other execution behaviors, symmetric multiprocessor

Figure 13.1
Anti-aliased and aliased
images

T i p s , T r i c k s , a n d M e m o r y U s a g e - C h a p t e r 1 3

174

(SMP) execution and distributed execution. Initial designs of the software were written with SMP
hardware in mind, so the Executive was designed to allow it to segment data and tasks to run using
shared memory and multiple processors. The default behavior of OpenDX on a multiprocessor
machine is to start by using two processors; if there are more than four processors available, then
OpenDX uses half the total number of processors. Alternatively, the user can specify the number of
processors to use with the "–processors" parameter. The distributed execution model allows OpenDX
to take advantage of a network of single processor machines. The user within the VPE can assign
control of a module or a set of modules to one or more different machines and the Executive itself
controls the details of distributed execution. Thus, facilities for parallel/distributed execution of visual
programs are an integral part of OpenDX, when running in a multiprocessor or networked
environment.

OpenDX Object Cache
During program execution, the Executive saves (i.e., caches) intermediate results for use if the
program runs again or if the Sequencer is used to generate a sequence of images. By default, the
Executive manages the cache, determining which intermediate results to store, which to remove as the
cache fills during execution, etc. By default, the size of the OpenDX cache is set to a very large
percentage of the physical memory available on the host. Thus, removing results from the cache is
critical, since this is the primary way to reclaim memory needed to store new results. The size of the
cache can be explicitly controlled using the “-memory” option when starting OpenDX. Minimally,
cache size must be at least as large as the maximum amount of memory required by any module in the
program. For most programs, increasing the cache size generally speeds up execution, but the cache
size cannot exceed the amount of virtual memory available to OpenDX.

Default Memory Size and Paging Space
OpenDX’s default memory allocation scheme is initially determined by the amount of physical
memory available to the system. Unless noted in implementation-specific documentation, if there is
less than 64 megabytes of physical memory, memory allocation will use all but 8 megabytes of the
physical memory; if there is more than 64 megabytes of physical memory, OpenDX will grow to use
7/8 of the amount of physical memory. At present, physical memory is currently limited to two
gigabytes. The default amount of memory that can be used can be set explicitly using the "-memory"
parameter when starting OpenDX, or the "Memory" field of the Connect-to-Server Options dialog.
Since it is possible for OpenDX to use a large amount of virtual memory, the host workstation should
be configured with paging space at least two or three times the total physical memory in the
workstation. If the host has insufficient paging space, the host operating system may kill OpenDX or
other processes, often without warning. Thus, particularly for use with large, complex visualizations,
OpenDX, physical memory, and paging space need to be appropriately matched by the system
administrator when the system is initially installed.

T i p s , T r i c k s , a n d M e m o r y U s a g e - C h a p t e r 1 3

175

Reducing Memory Requirements
Besides using the “-memory” option, there are several other methods to reduce the memory
requirements if OpenDX still does not have enough memory to execute a visual program. Some
memory saving techniques include not rendering image data, using delayed and/or byte colors, using
“speedy” glyphs, converting to different data types, importing one series member at a time, and
reducing the grid resolution.

A common mistake by developers is to render image data (i.e. 2-d arrays of scalar values) using
Render, Image, or Display with a camera input. This results in interpreting the image as a very large
number of quads. Instead, the image can be passed directly to Display, without a camera input. If the
field does not contain a ‘colors’ component before the Display, a module such as AutoColor can add
one. By default OpenDX uses three 32-bit floating point values (96 bits) to describe each color value.
This is much greater color resolution than is required for many applications. In such cases, the
delayed colors option can be specified to use a single scalar byte as an index into a 256 value color table.
To specify delayed colors, convert the data component to unsigned byte and set the 'delayed' input in
the Color module to 1. Yet another option to reduce the amount of memory for colors is to use 3-byte
color descriptors. Set the DXPIXELTYPE environment variable to "DXByte" or start OpenDX
using "dx -optimize memory" to force colors to be 24-bit instead of the default 96-bit color descriptors.
Note that this setting affects both ReadImage and Render tools.

If the visual program requires use of glyphs (AutoGlyph or Glyph), the programmer can select less
ornate, less complex glyph objects to reduce memory consumption. These "speedy" glyphs have fewer
connections and therefore consume less memory. Set the AutoGlyph or Glyph 'type' parameter to
either "speedy" or to a small fraction of 1.

In many situations, it may be acceptable to convert data components to types that require less space by
using the Compute module. For example, floating-point data can be changed to byte data, using an
expression in Compute such as: byte(255*(data-min)/(max-min)). Note that such a reduction
reduces the space requirements of ALL downstream modules, and can thus result in a dramatic
decrease in total space used.

When working with series data, an easy way to reduce the memory requirements is to import one
series member or slice at a time instead of the whole series. This reduces the memory requirements by
not having the whole series in memory at once.

Finally, if it is possible to sacrifice resolution in the data set, the Reduce module (usually right after
Import) can be used to reduce the number of points in the data set. The Reduce module requires
regular connections, so this technique is applicable only if the data set is on a regular grid. Again, the
earlier such a reduction is made the greater the cumulative effect.

T i p s , T r i c k s , a n d M e m o r y U s a g e - C h a p t e r 1 3

176

Cache Control: Executive
As noted above, OpenDX stores intermediate results in its object cache, and to some extent the cache
can be explicitly controlled by the user. For example, the Import module reads in a data set and caches
it within OpenDX. If the data file is changed and the program simply re-executed, the program
continues to use the old data. That is, OpenDX must be forced to reread the input file, because the
Executive's default behavior is to use the results cached from the previous execution. The Reset Server
option in the Connection menu flushes the cache, and also forces OpenDX to (re)read the (updated)
data file.

The user can control how the Executive caches intermediate output values from each module. For any
specific module, simply open the module's Configuration Dialog Box and look at the Cache option
menu to the right of each output. In general, it is most efficient to cache only the output of the last
module in a "straight line execution" sequence. That is, unless unusually difficult computation is
involved in this sequence, it is better to reduce memory in each computation than to try to decrease
computation in the "next" program execution. It is important to note that the cache of the Import
module refers to its result, not its input. Even if the Import module cache is turned off, the default
behavior of OpenDX is to cache the result obtained by actually reading an external file. This is
important if the input file is being changed while repeatedly executing the visual program.

Caching can be turned off altogether using the “-cache off” execution option. However, the effect on
execution can be dramatic, so this is not generally a good idea. A better alternative, at least as a starting
point to improve memory utilization, is to use an option in the Edit menu of the VPE called Output
Cachability -> Optimize. This causes OpenDX to use a heuristic to try to optimize the caching
behavior of each tool in the program.

Display and Image Cache Control
Some modules use a special internal caching system to cache local data other than final results to
simplify recalculation if the program is re-executed with the same parameter values. The most
important internal caches are maintained by the Display and Image modules. Most of the time this is
desirable because it speeds up execution, but in some cases it is preferable to turn off the Display and
Image caching. For example, turning off the internal image cache can be useful if the program is
running as a batch job that generates images for external storage only. To turn off the internal caching,
open the Configuration Dialog box for the Image module and select "No Results" in the column
labeled "Internal Caching" (Figure 13.2). For the Display module, the value of attribute "cache" must
also be set to "0" using an Options module. Note that the “-cache off” execution option mentioned
above has no effect on OpenDX internal caching.

T i p s , T r i c k s , a n d M e m o r y U s a g e - C h a p t e r 1 3

177

Per Process Limits
As a final note, some systems may enforce per process limits on such things as data segment size, stack
size and so forth. A user who encounters such limits should work with the host system administrator
to adjust these parameters to run OpenDX most effectively and efficiently, particularly when using
large data sets.

Conclusion

Managing the features of the VPE can increase the developer’s productivity. Understanding the
advanced features available for rendering can increase the speed on systems with hardware assistance.
Understanding and managing aspects of the OpenDX Executive can help balance processing time
and memory utilization, a balance that is critical in the manipulation and analysis of large data sets.

Matching the configuration of the host system with intended use in running OpenDX can also help
produce a more effective and efficient visualization environment. Inattention to this sort of execution
detail often leads novice users to abandon their goals at the first "Out of Memory" error, whereas
attention to this detail allows the more experienced user to perform much more complex tasks on the
same host.

Figure 13.2
Image Internal Caching

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

178

Camera Animation and Arranging Images

Rationale

A majority of data visualization applications focus on showing scientific information through printed
imagery. In order to show all aspects of the data, it may be necessary to show multiple view angles,
time segments, or data subsets. Within OpenDX, you can easily combine multiple rendered images
together into a single conglomerate using prewritten modules such as Arrange. However, the
visualization may be more effective if produced as an animation that shows different view angles.
Using the sequencer as a time step generator, you can move the camera position around in a scene and
generate a sequence of images with different viewpoints. This chapter will show techniques for
creating conglomerate images as well as creating sequences by moving the camera position.

Exercise 1. Camera Animation

Capturing images as a variable changes over time is a way to create animation. The changes in variable
value may come from a time-series data set, result from moving the viewpoint of the camera, be
produced by changes in a module’s input value (e.g., Isosurface value) or even result from geometry
changes (e.g., different slab positions). In earlier chapters, you produced simple animations by two of
these techniques: using time-series data and changing slab positions (while keeping the camera
position constant). The technique of moving the viewpoint of the camera around in a static field or in
a dynamic field with one or more variables changing can often provide additional insights into the
data. As an example, you will expand the waving flag exercise so that the camera's position changes
over time. More specifically, the goal is to add a flagpole to the waving flag of logo.net from Chapter 8,
then move the camera in a circle around the flag. The final result should be a simple sequence of
images, similar to those in Figure 14.1.

14

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

179

Figure 14.1 Animation Sequence

Exercise 2. Arranging Images

As visualizations increase in complexity, it is often desirable to provide multiple views of the same
object in the same image, rather than capturing one view per image. This provides the viewer with
more information and a greater opportunity to visually compare the multiple views and understand
the information better. It is always possible to render multiple views separately, then combine them
into a single image in a postproduction process with tools such as Adobe® Illustrator®. However,
OpenDX has the facilities that make it relatively easy to combine and arrange multiple components
into a single image, thus avoiding the need for post-processing.

The goal in this exercise is to import the mrb.binary data set and produce a single image with two
views of an Isosurface of the MR scan, as shown in Figure 14.2. The Supervise functionality of
OpenDX then allows you to rotate or pan each isosurface separately within the single composite
image.

Step-by-step instructions for Exercises

Instructions for Exercise 1
� Start by opening the “logo.net” file you saved from Chapter 8.

To add a flagpole you will use three modules: Construct, Tube, and ShowConnections.

Figure 14.2
Arranged Images

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

180

� Turn on the AutoAxes or use the Print module to determine the flag’s positions.
From those, determine the endpoints of a line that will act as a flagpole, i.e., that
traces the edge of the flag that will be attached to the flagpole and extends
downward to give the pole an appropriate height. Use a Construct module to create
this line. The values for Construct should be something like the following: origin {[-
50, -2000, 0]}; deltas {[0 2370 0]}; counts [1 2 1]; and data {5}. Now, use
ShowConnections to display the line. Collect it and the flag, then send the
combined result to Image.

� At this point the pole consists of only a line. To form a more realistic pole, Tube the
line and change its Color to “grey75”. The resulting visual program is shown in
Figure 14.3.

� Create an even more realistic flagpole by using Construct, AutoGlyph and Color to
construct a gold ball on top of the flagpole. You center the ball at the top of the pole
using values for Construct something like: origin {[-50, 400, 0]}; deltas {[0 0 0]};
counts [1 1 1]; and data {1}. Set the scale of AutoGlyph to 50 and color it
“goldenrod”, giving the program in Figure 14.4.

Figure 14.3
Current VPE

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

181

In order to move the camera around in a 3-D space you need to have a starting point from which to
base camera movement, along with a plan which describes the additional points at which you will
position the camera to capture other images. For example, given a starting point you can use polar
coordinate translations to easily calculate new positions for the camera moving in a circular fashion in
the same horizontal plane around the target object.

� Within the Image window, use rotation and zooming, etc. to choose a nice starting
position for your animation.

� Place an UpdateCamera module (from Rendering) on the canvas near the Image
module and examine the inputs. Wire the Image’s camera to the first input of
UpdateCamera.

� Place a Display module on the canvas. Connect the output of the UpdatedCamera
and the “renderable” output of Image to Display, as shown in Figure 14.5.

� Connect the "camera from" output of Image to an Inquire module, and use this to
determine the origin in the calculation of the new camera positions.

� Place a Compute on the canvas between the Inquire and UpdateCamera modules
and wire the Sequencer into the second input of Compute, as shown in Figure
14.6.

Figure 14.4
Current VPE

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

182

Figure 14.5
Current VPE

Figure 14.6
Current VPE

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

183

Notice that you can’t use a second Sequencer here, since only one Sequencer is allowed per program.
However, you can produce different values from an existing Sequencer by connecting its output to a
Compute that transform the input sequence values to produce the new sequence needed.

� Use a multi-line compute statement to calculate the positions of the camera in a
circular position around the flag. Enter the following as the expression for the
Compute, entered all on one line with parts separated by semi-colons:
theta=atan2(a.x, a.z); r=a.x/(cos(theta)); x=r*cos(b*6.28/10.0); z=r*sin(b*6.28/10.0);
y=a.y; [x,y,z]

� Execute the program using the Sequencer.

This illustrates that functions within Compute modules can be quite complex. You can define
multiple computations by separating them with semicolons. You can also assign values to temporary
variables to simplify expressions. By defining multiple camera points you move the camera around the
waving flag, capturing a new image at each camera point. You can make the motion smoother by
increasing the number of camera points and images rendered. For example, increase the number of
sequencer steps to 50, and in the expression above, divide by 50 instead of 10.

� To get the camera centered on the flagpole, set the to point of the camera to [-50 0
0] in the UpdateCamera and set the up vector to [0 1 0].

Instructions for Exercise 2
� Start a new visual program.
� Import the variable "pd" of "mrb.binary". Remember that you created a general file

import for this data set in an earlier exercise.
� Create an isosurface, color it "peachpuff" and feed it to an Image.
� Place another Image tool on the canvas and feed the colored isosurface to it as well.

Notice how the images are independent of one another, i.e. their viewpoints, sizes, and rendering
options can be different. However, the goal of this exercise is to place both images in the same Image
window, so you can’t simply display the two views in two different Image windows. What you need to
do instead is to put together modules that perform the same rendering function as Image, but produce
a rendered object as a result instead of producing a complete Image window.

� Replace each of the Image modules with a Render, AutoCamera, and Display
combination (from Rendering), as shown Figure 14.7.

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

184

The new program still produces two images of the isosurface, but the viewing functionality associated
with Display is not as varied as with Image. Notice that you cannot rotate or zoom on the Display
windows as you could with the Image windows. In general, the Image module provides interactive
display control that Render and Display do not. To control the "viewpoint" of the Display, you must
program your network to explicitly change the inputs of AutoCamera.

� Change the input parameters so that both images are smaller and the viewpoints are
different. Change the direction parameter on one of the AutoCameras to “top”.
Select the Expand button in each of the AutoCamera CDBs, then change the
resolution parameter to 320.

� To combine the two images, add a Collect module and pass the outputs of the two
Render modules to it. Pass the output of Collect to Arrange (from Rendering) and
pass Arrange to one of the Display modules. Delete the other Display module,
giving the program shown in Figure 14.8. Execute.

You can combine together as many images as needed by adding more inputs to Collect. You can
arrange the images in various ways using the parameters of the Arrange module.

Figure 14.7
Current VPE

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

185

It is possible to add user interactivity to the arranged images using Supervise modules. The Supervise
modules are more complex to use than Image or Display, but they give you a high degree of control
over window behavior. Several macros already exist that can be used to provide the higher level of
control, yet hide some of the complexity.

� Select Load Macro ... (from the File menu) to load the macro
ArrangeMemberMacro.net from OpenDX’s sample macros directory (typically in
/usr/local/dx/samples/macros). The new macro will appear in the Windows category.

� Place two copies of ArrangeMember and a single SuperviseWindow (from
Windows) on the canvas.

SuperviseWindow creates and manages windows, while SuperviseState acts on events that occur
within a window, such as mouse movement or click events. The ArrangeMember macro internally
includes its own SuperviseWindow and SuperviseState modules, along with a display to render the
object. With a combination of these modules, OpenDX associates a “parent” window with the
SuperviseWindow module, and places "child" windows associated with ArrangeMember macros
within the parent window. ArrangeMember will create, manage, and control the events of the child
windows. Whereas Image provides only the default interpretation of mouse actions in its window, a
Supervise module allows the programmer direct control over the interpretation of mouse events
within a window. The developer can use this capability to define a much wider range of customized
event interaction modes, to suit the particular application. However, due to the complexity of event

Figure 14.8
Current VPE

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

186

models and event programming, this topic is beyond the scope of this exercise. Only the predefined
interaction modes are used here.

The first output of SuperviseWindow is the "where" parameter of its window, which simply identifies
the window. Since this window is to be the parent of the two windows created by the two
ArrangeMember macros, the modules must be wired together.

� Wire the where output of the SuperviseWindow module to the parent input of
both ArrangeMember macros. Remove the Display module from the canvas since
the new modules will render the image. The network should now resemble Figure
14.9.

The ArrangeMember windows need to know the size of the parent window in order to render at the
appropriate size. One of the outputs from SuperviseWindow provides this information and can be
plugged into the two macros. Since the ArrangeMember macros must also know what objects to
render, you must pass the isosurface to each macro.

� Wire the size output of SuperviseWindow to the parentSize input of both
ArrangeMember macros.

� Wire the Color output to the object input of both ArrangeMember macros, giving
the program in Figure 14.10.

Figure 14.9
Current VPE

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

187

Although the wiring is complete, the ArrangeMember macros need more information before the
network can execute. Parameters such as totalSubimages, nHorizontal, and which must be specified.
totalSubimages is the number of images that are going to be pasted together. nHorizontal is equivalent to
the horizontal input for Arrange. which identifies the pane in which the image is to be placed (this
index always starts at 0).

� Open up the configuration dialog box for both of the ArrangeMembers. Set
“totalSubimages” to 2 and “nHorizontal” to 2. Set “which” to 0 on one of the
macros and to 1 on the other. Execute once.

OpenDX should display an "arranged" image with two isosurfaces.

� Set the interactionMode to 0 (for rotation) for each of the ArrangeMember macros.
Select Ex ecute on Chang e from the Ex ecute menu and try clicking and dragging on
the images.

� Try setting the interactionMode for one of the ArrangeMember tools to 1 (for pan).

Notice that the SuperviseState pan works differently than the pan mode in the Image tool. This
illustrates that functional interactions can be implemented completely differently in different types of
display tools.

Figure 14.10
Current VPE

C a m e r a A n i m a t i o n a n d A r r a n g i n g I m a g e s - C h a p t e r 1 4

188

Review
There are many ways to create animation. The first exercise shows how camera movement can be
used to produce animation. Note that simply rotating the object, instead of moving the camera, could
be used to produce the same animation. However, much more sophisticated camera paths can be
produced using modules such as BSpline or PathInterpolation (a custom VIS, Inc. module),
creating a smooth series of camera points that is difficult to duplicate by object rotation.

As illustrated in several earlier exercises, the Image tool provides an easy way to render and display
objects, while also providing the user interactive control over the viewpoint, size, etc. While the Image
tool is very easy to use, it does have disadvantages, notably that only a default set of behaviors is
supported. If the users don't like the way Image’s interaction works they must look for alternative
display mechanisms. For example, a user might want to define “zoom” as provided by a zoom
rectangle starting at one corner and ending at the other, which involves the more specialized
programming illustrated in the second exercise. This type of programming is also required if
OpenDX is being used to produce imagery for a custom application that runs outside the normal
OpenDX user interface. In such a case event control must be written to correspond to the
application’s "look and feel", rather than OpenDX’s default behavior as defined by Image.

Interactive arrangement of component images is not possible using Image or Display. To provide
interactivity, each individual panel must be a separate interactive image, which is then brought together
to be arranged. The Render/Display method shown in this exercise provides a method to explicitly
control the viewpoint using the Camera tools, but these modules don’t provide direct interactive
arrangement.

The Supervise modules provide another way to create images. While more complicated to use, they
give complete control over windows to the programmer. Interaction modes, such as mouse clicks or
keyboard presses, can be programmed to affect the object or camera in any way. The example in
/usr/local/dx/samples/supervise/complexdemo illustrates how this can be used to move one object
in a collection of objects independently of other objects in the collection, and how to create a "point
and type" caption which can then be dragged around using the mouse.

For authors creating applications on top of OpenDX, the Supervise modules provide irreplaceable
functionality. Suppose the developer requires an application with its own graphical user interface.
This interface can communicate with the Data Explorer modules in essentially two ways. Using the
DXCallModule interface, the developer can individually call OpenDX modules much like
subroutines. Thus, an application program can invoke Import, Isosurface, the Supervise modules,
and finally Display . In this mode, the program must directly control both the order of module
execution and memory management for the system. Alternatively, the developer can use the DXLink
Developer's toolkit, which allows an application to run OpenDX remotely, passing values into a visual
program and receiving results back from the visual program. In this mode, OpenDX retains control of
module execution and memory management, so that the developer can separate control and memory
concerns of the application and the visual program.

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

189

Constructing a Native DX File

Introduction

Often data sets are provided in a format that cannot be easily imported into OpenDX via the Data
Prompter. A detailed, real world example is described below to allow you to work through a typical
data import problem. The example is based on the National Atmospheric Deposition Program to
provide acid rain values on-line from their web site http://nadp.sws.uiuc.edu/. The data sets available
from this Web site are stored in a manner designed to allow a user to easily select data from a
particular data collection station. The time series information for each individual station is stored as
an ASCII formatted table, with fixed width fields delineated by either commas or tab characters. The
location of each station is available on each individual station’s general description page. Importing
data from a single station is easy using ImportSpreadsheet. However, importing data from multiple
stations as time series data, with location information intact, is quite difficult without using the native
OpenDX file format.

You should work through this example to gain experience in how to handle data that cannot be
imported into OpenDX using the other available importing techniques. In effect, the process using
the native file format proceeds along the lines of trial and error, where you construct the OpenDX
native file by progressively adding information and testing the file along the way. If you have a
significant programming background you are encouraged to think about the correlation between the
program that created the file and the native file description that you are incrementally constructing.
Programming tools such as Perl can be used to parse text files like these and write out an OpenDX
native file format.

Description of the Data Files

There are five data files needed in this exercise, each downloaded from the National Atmospheric
Deposition Program’s Web site. The first, “notes-depo.html”, is an HTML file describing what the
variables represent within the other data files. The second, “station-id.txt”, is the description of each
station for which data is reported on the Web site, including important location information. These
first two files are crucial, no matter what specific sites a user may choose. The last three files are

15

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

190

representative time series data sets, in this case the time series tables for the three collecting stations in
the state of Nevada.

Because collection stations are positioned based on physical properties rather than by virtue of being
at intersection points on some arbitrary grid, collection station data must be interpreted as scattered
data. Thus, you cannot and will not create a ‘connections’ component to organize data from different
stations. However, there is regularity in the data associated with each collection point, in the sense that
each station’s time series contains data for the same period of time, by years from 1985 to 1993.

There are two ways to structure this data into a native DX file. One way is to create separate fields for
each station, then group the fields together at the end. The other way is to create one field that
contains all of the stations’ information. If you create a single field, you can use a Connect module to
connect scattered data of the field; on the other hand, you cannot connect separate fields contained in a
group. Therefore, your ability to easily manipulate the data will be enhanced if you construct a single
field for this example.

Instructions for Exercise
� Begin by creating a new blank file named nv.dx. On the first line, place a few

comments by starting the lines out with a # symbol, as shown in Figure 15.1.

Figure 15.1 First Line

Nevada deposition amounts, time series for 1985-1993
#
Native DX file
#

The first information that needs to be placed in the file is the positions of each station. Within the
“station-id.txt” file, the longitude and latitudes are stored; however, we must convert them from
degrees-minutes-seconds to decimal degrees.

� Create an object definition, then place the locations below it (complete syntax for
creating an object can be found in IBM’s DX User’s Guide in Appendix B under the
Native file format). Start with the keyword “object” and assign the object a unique
number. Next construct an OpenDX description of the data and add the keywords
“data follows”. On the next three lines, place the three position pairs calculated from
the longitude and latitudes. Remember that you can put comments wherever
needed. Figure 15.2 illustrates the object definition, using comments to separate
each line of the definition.

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

191

Figure 15.2 Object 1

Nevada deposition amounts, time series for 1985-1993
object 1 class array type float rank 1 shape 2 items 3 data follows
#NV00
115.4255555 36.13583333
#NV03
119.2566666 38.79916666
#NV05
114.2158333 39.005
attribute “dep” string “positions”

Since you are working with time series data each time slice, or “series position”, is a separate object that
references the positions (object 1 above). The next step is to add data to the native file. Each variable
from the data files must be defined as a separate object. For example, the first column of each of the
data files is the “station-id”. This is also the first data value for each time slice.

� Create a new object to stores the station-id data. Make sure to add the attribute for
dependency, as shown in Figure 15.3.

Figure 15.3 Object 2

#
object 2 is row 1 column 1 of the spreadsheet. It is rank 1 because
strings are stored as vectors and shape 5 because it needs to store
the 4 char plus the end of line character. This is the same for all
the rows and columns so we only need to construct it once.
#
object 2 class array type string rank 1 shape 5 items 3 data follows
"NV00"
"NV03"
"NV05"
attribute “dep” string “positions”
#

There is a lot of information stored for each collecting station that may not be required in a particular
application. For this example, we include only the “CA” values, skipping the “percent completeness”.

� Create an object that contains the CA values for each position from 1985. Look at
row 1 in each of the nv data files. The resulting description is shown in Figure 15.4.

Figure 15.4 Object 3

#
CA values
object 3 class array type float rank 0 items 3 data follows
1.0
0.05
1.99
attribute “dep” string “positions”

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

192

Now you have enough information entered to construct an actual field object, which you need in
order to test the data file.

� Create a new field object and attach the other objects as appropriate components.
Note that the component values are the unique numbers assigned to the objects.
The resulting definition is shown in Figure 15.5.

Figure 15.5 Field Test Object

#
Field object
object "test" class field
component "positions" value 1
component "id" value 2
component "data" value 3

� Save the native DX file as “nv.dx”.
� Start the OpenDX VPE and construct a visual program with an Import set to import

the native DX file you just created, connected through AutoGlyph then Image, as
shown in Figure 15.6.

� Execute the program once. You should see three points that correspond to the CA
values. If you get an error, make sure to check for typos in “nv.dx”.

Figure 15.6
First Program

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

193

The native file now describes a field with ‘positions’ as object 1, a component named ‘id’ as object 2,
and a ‘data’ component as object 3. This description seems to be the right approach, but it is clearly
incomplete. Continue to add more of the data values from 1985 as separate components.

� Add another object in “nv.dx” to define the Mg values after the CA values. Continue
by defining similar objects for K, SO4, and % Ppt Rep. by F Chem, resulting in a
definition similar to the one in Figure 15.7.

Figure 15.7 Mg, K, SO4, and %Ppt added

#
Mg values
object 4 class array type float rank 0 items 3 data follows
0.142 0.011 0.234
attribute "dep" string "positions"
#
K values
object 5 class array type float rank 0 items 3 data follows
0.054 0.012 0.143
attribute "dep" string "positions"
#
SO4 values
object 6 class array type float rank 0 items 3 data follows
1.26 0.15 2.99
attribute "dep" string "positions"
#
% Ppt Rep.by F Chem.
object 7 class array type float rank 0 items 3 data follows
0 0 0
attribute "dep" string "positions"

� Remove the previously constructed field object. Before entering the 1986 data,
construct a field object that references all of the 1985 data and has a ‘series position’
attribute set to 1985. The entire data file should look similar to the one in Figure
15.8.

Figure 15.8 1985 data field

Nevada deposition amounts, time series for 1984-1993
#
Native DX file
#
object 1 class array type float rank 1 shape 2 items 3 data follows
#NV00
115.4255555 36.13583333
#NV03
119.2566666 38.79916666
#NV05
114.2158333 39.005
attribute “dep” string “positions”
#
object 2 is row 1 column 1 of the spreadsheet. It is rank 1 because
strings are stored as vectors and shape 5 because it needs to store
the 4 char plus the end of line character. These are the same for all
the rows and columns so we only need to construct it once.

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

194

#
object 2 class array type string rank 1 shape 5 items 3 data follows
"NV00"
"NV03"
"NV05"
attribute "dep" string "positions"
#
CA values
object 3 class array type float rank 0 items 3 data follows
1.0
0.05
1.99
attribute "dep" string "positions"
#
Mg values
object 4 class array type float rank 0 items 3 data follows
0.142 0.011 0.234
attribute "dep" string "positions"
#
K values
object 5 class array type float rank 0 items 3 data follows
0.054 0.012 0.143
attribute "dep" string "positions"
#
SO4 values
object 6 class array type float rank 0 items 3 data follows
1.26 0.15 2.99
attribute "dep" string "positions"
#
% Ppt Rep.by F Chem.
object 7 class array type float rank 0 items 3 data follows
0 0 0
attribute "dep" string "positions"
#
1985 field
object 8 class field
component "positions" value 1
component "id" value 2
component "CA" value 3
component "MG" value 4
component "K" value 5
component "SO4" value 6
component "%Ppt" value 7
attribute "series position" number 1985

The current visual program will still produce an image from the updated data file. However, the data
that is displayed is always just the last component added, i.e., ‘%Ppt’. Remember that the server must
be reset in order for the file to be re-imported.

Extend the program to allow the end-user to select which component (data value) is to be used for the
visualization. In order to change which object is the ‘data’ component within the visual program, you
must use the Mark module.

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

195

� Wire a Mark module between the Import and AutoGlyph modules. Place an
Inquire, Select, and Selector on the canvas to the right of the Import and Mark
modules. Wire them together as shown in Figure 15.9.

� Set the inquiry input of Inquire to “component names”.

The output from Inquire is a list of all the component names for the field. This list includes
component 1, ‘positions’, and a new component constructed during the Import, ‘box’. The Select
module is used to select a subset of the list. For this example, you want to chop the first name and last
name off the list. The list names are indexed from 0 to 7, so select 1 through 6 to pass the desired set of
data component names to the Selector.

� Set the which input of Select to { 1 .. 6 }. Make sure to place spaces between the 1,
the ellipsis, and the 6.

The list that is fed into the Selector now contains only the data component names. Note that the
Selector’s menu list is not updated until you connect all the modules and execute the program once.
The Mark module requires a string input to identify which component to copy into the ‘data’
component. Therefore, connect the right output of the Selector to the Mark module. The Selector’s
left output is a value that represents the component’s position in the list.

This same technique for selecting components can be very useful for data imported with the
ImportSpreadsheet module. ImportSpreadsheet imports data as a table with each column as a

Figure 15.9
Component Selector VPE

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

196

separate component of a field. The field contains no ‘data’ component for other modules to
manipulate. The Mark or Rename module must be used to identify which component represents the
‘data’ of interest.

Now, add a description of 1986 data to the native DX file. The positions and id objects do not change,
and the DX file format allows those objects to be used again for the second time slice without having
to be recreated. Thus you only need add data objects that are different.

� Create the new objects (components) at the end of the file for the next time slice.

Figure 15.10 Second time slice

#
Begin the next time slice.
#
CA values
object 9 class array type float rank 0 items 3 data follows
0.53 0.12 1.73
attribute "dep" string "positions"
Mg values
object 10 class array type float rank 0 items 3 data follows
0.083 0.024 0.172
attribute "dep" string "positions"
K values
object 11 class array type float rank 0 items 3 data follows
0.025 0.053 0.145
attribute "dep" string "positions"
SO4 values
object 12 class array type float rank 0 items 3 data follows
1.10 0.42 2.38
attribute "dep" string "positions"
% Ppt Rep.by F Chem.
object 13 class array type float rank 0 items 3 data follows
0.0 0.0 0.0
attribute "dep" string "positions"
#
1986 field
object 14 class field
component "positions" value 1
component "id" value 2
component "CA" value 9
component "MG" value 10
component "K" value 11
component "SO4" value 12
component "%Ppt" value 13
attribute "series position" number 1986

Notice that the component objects for ‘positions’ and ‘id’ are the same as the previous field. Reusing
these objects instead of creating new (duplicate) ones saves on the memory used to define the
OpenDX objects.

� Create a final object that contains the two years as a series group, as shown in Figure
15.11.

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

197

Figure 15.11 Series group object

#
Define a series group containing the two members.
#
object "default" class series
member 0 position 1985 value 8
member 1 position 1986 value 14
#
end

If you try to run your visual program with this data set, you will now get an error because the Inquire
requires a field, but now the data is defined as a group. You need to add another Select to choose which
field (i.e., year) to display.

� Place a Selector and a Select between the two modules, wired to the Import as
shown in Figure 15.12.

� Add two more years worth of data and expand the series group accordingly, as
shown in Figure 15.13.

Figure 15.12
VPE with series selector

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

198

Figure 15.13 Two more years of data

#
Begin the next time slice.
#
CA values
object 15 class array type float rank 0 items 3 data follows
0.74 0.18 1.03
attribute "dep" string "positions"
Mg values
object 16 class array type float rank 0 items 3 data follows
0.101 0.037 0.158
attribute "dep" string "positions"
K values
object 17 class array type float rank 0 items 3 data follows
0.036 0.056 0.075
attribute "dep" string "positions"
SO4 values
object 18 class array type float rank 0 items 3 data follows
1.37 0.91 2.20
attribute "dep" string "positions"
% Ppt Rep.by F Chem.
object 19 class array type float rank 0 items 3 data follows
22.60 75.50 22.40
attribute "dep" string "positions"
#
1987 field
object 20 class field
component "positions" value 1
component "id" value 2
component "CA" value 15
component "MG" value 16
component "K" value 17
component "SO4" value 18
component "%Ppt" value 19
attribute "series position" number 1987
#
Begin the next time slice.
#
CA values
object 21 class array type float rank 0 items 3 data follows
0.80 0.17 1.40
attribute "dep" string "positions"
Mg values
object 22 class array type float rank 0 items 3 data follows
0.119 0.026 0.159
attribute "dep" string "positions"
K values
object 23 class array type float rank 0 items 3 data follows
0.092 0.047 0.055
attribute "dep" string "positions"
SO4 values
object 24 class array type float rank 0 items 3 data follows
1.08 0.74 2.61
attribute "dep" string "positions"
% Ppt Rep.by F Chem.
object 25 class array type float rank 0 items 3 data follows
60.10 42.20 14.60
attribute "dep" string "positions"

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

199

#
1988 field
object 26 class field
component "positions" value 1
component "id" value 2
component "CA" value 21
component "MG" value 22
component "K" value 23
component "SO4" value 24
component "%Ppt" value 25
attribute "series position" number 1988
#
#
Define a series group containing the two members.
#
object "default" class series
member 0 position 1985 value 8
member 1 position 1986 value 14
member 2 position 1987 value 20
member 3 position 1988 value 26
#
end

The data is now defined as a series group containing a field object for each year. Since each field
contains a positions component, you can use the Connect module to create a connections component,
allowing OpenDX to interpolate between the points to smooth the depiction of the data.

� Replace the AutoGlyph module with a Connect and AutoColor module and wire
the network, as shown in Figure 15.14.

Although this manual process works, it is very tedious to construct. For example, imagine how much
time that it would take to construct a native DX file for all of the collecting stations within the U.S.
The key in constructing native file descriptions for large, common data formats is to complete enough
of the manual process to develop an understanding of what the desired file must look like. Then, given
a little time and programming expertise, a developer should be able to write a program that takes
original input files as inputs, and creates a single, appropriate DX native file as output.

C o n s t r u c t i n g a N a t i v e D X F i l e - C h a p t e r 1 5

200

Conclusion

Understanding the hierarchical data structure of OpenDX provides the programmer with a better
overall understanding of how OpenDX works. The native file format is a basic extension of the data
structure and adds more flexibility to the software.

A native OpenDX file contains a header section followed by an optional data section. The header
section consists of a textual description of a collection of objects. The data section contains either
ASCII text or binary data that is referred to by the header section. The header section can reference
other objects or data either in the same file or in other files.

The native OpenDX file format allows the user to transform output from computer simulations,
Web pages, or other on-line sources into a format that is directly importable into OpenDX. This
transformation can be done by hand, or implemented in a separate “filtering” program. A
programmer can also tightly couple a filtering program by having it direct its formatted output to
stdout instead of a file, then starting and running the program within OpenDX. To do this, use the
Import module and enter “!program_name” as the Name input parameter.

Figure 15.14
VPE with Connect

C o n c l u s i o n - C h a p t e r 1 6

201

Conclusion

The preceding chapters attempt to provide the reader the background knowledge and hands-on
experience necessary to begin using OpenDX to develop non-trivial visualizations. However, what is
illustrated in these chapters and their examples is just a fraction of the full power of OpenDX. The
examples and exercises presented provide enough background for a typical user to independently use
the software for visualization, but should be only a starting point for the serious user.

In covering various basic topics: basic terminology of data, the OpenDX user interfaces, OpenDX’s
extensive data importing facilities, and the OpenDX data model, this book provides the fundamental
background needed to use OpenDX. In passing, the book also tries to help the user understand how
the DX Executive manages the flow of DX data objects and how various modules transform objects
to create imagery. The book also provides some hints on OpenDX programming, particularly in
pointing out debugging modules and techniques that can help the OpenDX user understand how a
data object changes after each module manipulates it.

What’s next for the user? For additional understanding of OpenDX and the modules that are not
presented in this text, examine the plethora of available sample programs included with the OpenDX
distribution. The examples are by default installed in the “samples/programs” directory within the
“dx” root directory. The Quic kstart G uide , U ser’s Refer enc e , and U ser’s G uide can also be of great
assistance. Within the Quic kstart G uide are the standard tutorial, information about the general array
import format, and further help with the data prompter. The U ser’s G uide provides an in-depth look
at the data model, execution model, scripting language, and provides information about file formats
and command line options. The U ser’s Refer enc e provides for quick lookup of each standard
module’s description. All this documentation is available in HTML format within the “dx”
installation directory, or in other common formats at the opendx.org Web site. Also, much of the
OpenDX documentation is available through the Help menu, so the user need not turn to external
sources to get most questions answered.

OpenDX offers much more than presented in this book. The software is extremely extensible. It
provides a solid standard foundation for visualization, along with a full set of application
programming interfaces (APIs) that promote customization and extensions. The APIs help the user
build his/her own custom transformations, packaged as modules, to develop custom user interfaces,

16

C o n c l u s i o n - C h a p t e r 1 6

202

and to link to the Executive (DXLink) or just use the module transformations using DXCallModule.
For more information on using OpenDX’s APIs, refer to the P r ogrammer’s Refer enc e manual as well
as the programming examples available in the “samples” directory.

Since May 1999 when IBM announced its plans to open source Data Explorer, the user community
has been steadily growing from the original commercial customer base to a much larger community of
users and contributors. As with any large open source software system, on-going development of
OpenDX relies on the contributions of the user community. Users can find more information about
OpenDX on the Internet at www.opendx.org and www.research.ibm.com/dx. From there, interested
users can join various e-mail lists and find additional community information.

I n d e x

203

Index

A
Aliasing, 172
Animation, 32, 60, 62, 67, 68, 74, 81, 82,

178, 181, 188
Annotation, 39, 55, 71, 76, 78, 152
API

Builder, 21
DXLink, 20, 169, 188, 202

Arrange, 145, 178, 184, 187
ArrangeMember, 185, 186, 187
Attributes, 50, 105
AutoCamera, 144, 145, 183, 184
AutoColor, 41, 44, 51, 53, 65, 71, 72, 73,

75, 83, 85, 90, 94, 96, 102, 108, 109,
110, 113, 117, 118, 138, 149, 150, 154,
157, 161, 162, 163, 175, 199

AutoGlyph, 79, 80, 85, 90, 154, 155, 156,
157, 158, 167, 168, 175, 180, 192, 195,
199

Axes Box, 85

B
Box, 96, 97, 98, 99, 100, 105, 107, 117,

139, 166, 172, 195

C
Cache, 69, 96, 162, 174, 176
CallModule, 20
Camera, 104, 144, 175, 178, 188
Caption, 55, 56, 85, 86
Categorize, 150, 159
CategoryStatistics, 151, 152, 159

ClipPlane, 139, 140
Collect, 44, 45, 55, 56, 65, 71, 74, 76, 77,

78, 80, 123, 137, 138, 139, 140, 141,
142, 144, 155, 157, 167, 168, 172, 179,
184

Color, 45, 46, 51, 56, 73, 74, 76, 80, 84, 85,
90, 96, 101, 102, 108, 137, 175, 180, 186

ColorBar, 71
Colormap, 51, 52, 53, 56, 83, 144, 164
Component, 75, 83, 99, 100, 101, 102, 104,

108, 112, 113, 114, 116, 117, 124, 129,
133, 134, 144, 146, 147, 150, 151, 152,
153, 156, 157, 158, 159, 166, 168, 169,
175, 190, 192, 193, 194, 195, 196, 198,
199

Compute, 69, 71, 75, 82, 88, 89, 112, 113,
114, 115, 123, 129, 141, 156, 158, 161,
162, 163, 165, 166, 175, 181, 183

Configuration Dialog Box, 40, 41, 46, 47,
53, 59, 62, 66, 70, 71, 76, 85, 86, 88, 89,
113, 150, 161, 164, 167, 168, 187

Construct, 166, 167, 179, 180
Contour Lines. See Isosurface
Control Panels, 47, 143, 145
Cull, 121, 122, 124

D
Data

Block, 125, 126
Categorical, 151, 153
Column Major, 128
Columnar, 125, 126, 153
Connections Dependent, 23, 24, 25, 26
Deformed, 22
Dependency, 23, 24

I n d e x

204

Irregular, 22, 23
Majority, 128, 178
Position Dependent, 23, 24, 25, 26, 108
Regular, 22, 23, 34, 36, 60, 91, 92, 114,

116, 128, 132, 175
Row Major, 128, 132
Scattered, 21, 116, 190
Series, 146, 158, 161, 163, 175, 189,

190, 191
Data Driven, 52, 53, 63, 69, 83, 137, 144,

145
Data Model, 18, 19, 21, 29, 32, 33, 58, 60,

90, 103, 107, 108, 111, 112, 124, 137,
144, 201
Array, 104, 106, 132
Attribute, 104, 105, 132, 133, 134, 139,

172, 173, 176, 191, 193, 194, 196,
198, 199

Component, 104
Edges, 107, 108, 131
Element Type, 98, 99, 105, 117, 121,

133, 134
Faces, 107, 108, 131
Field, 104, 106, 108, 192, 193, 199
Group, 104, 197
Rank, 106, 133, 134, 191, 193, 194, 196,

198
Series, 161, 196, 197, 199
Shape, 106, 133, 134, 191, 193, 194

Data Prompter, 30, 36, 92, 97, 154, 201
Dialog Style, 143
Digital Elevation Map, 29, 34, 35, 57
Display, 141, 142, 144, 145, 172, 175, 176,

181, 183, 184, 185, 186, 188
Done, 160, 161, 164, 165, 169
Drag and Drop, 64

E
Echo, 120, 161, 165
Edges. See Data Model
Element Type. See Data Model
Execution Model

Client-Server, 18
Data Flow, 18, 20, 59, 135, 141, 144,

160
Executive, 20, 69, 96, 166, 201
Expand, 47, 85, 184
Export, 40, 65, 118, 134
Extract, 123, 152, 158, 169

F
Faces. See Data Model
Field. See Data Model
File Format

CDF, 29
Colormap, 29
HDF, 29
NetCDF, 29
OpenDX, 19, 131
Other, 29

FileSelector, 62, 63, 64, 75, 82, 137
ForEachMember, 160, 161, 162, 163, 164,

168
ForEachN, 160, 161, 164, 168
Format, 43, 53, 57, 81, 87, 92, 130, 152, 153
Fuzz, 105, 172

G
General Array Import. See Data Prompter
General Header File, 129, 130
GetGlobal, 169
GetLocal, 162, 163, 164, 165, 169
gis2dx, 6, 29, 131
Glyph, 79, 175
Group. See Data Model

H
Help, 20, 47, 71, 120, 201

I
Image, 41, 44, 50, 51, 53, 59, 62, 72, 76, 78,

80, 81, 87, 94, 100, 101, 102, 113, 115,
117, 118, 137, 138, 139, 140, 141, 142,
144, 145, 149, 152, 154, 155, 156, 157,
160, 161, 162, 163, 164, 166, 167, 168,
169, 172, 175, 176, 177, 179, 181, 183,
184, 185, 187, 188, 192

ImageMagick, 44, 82, 173
Import, 29, 30, 33, 40, 41, 43, 52, 53, 62,

63, 64, 65, 69, 75, 79, 94, 97, 100, 101,
112, 116, 117, 118, 125, 129, 130, 131,
137, 138, 146, 148, 149, 154, 155, 156,
161, 166, 167, 175, 176, 183, 188, 192,
195, 197, 200

ImportSpreadsheet, 29, 129, 146, 150, 151,
152, 153, 154, 156, 158, 189, 195

Include, 120, 121, 124

I n d e x

205

Inquire, 69, 70, 71, 83, 88, 141, 169, 181,
195, 197

Interactor, 47, 50, 53, 59, 62, 63, 64, 66, 82,
84, 86, 135, 137, 138, 139, 140, 145,
165, 166, 169, 171

Interactor Standin, 49
Invalid

Connections, 108, 116
Positions, 116, 117, 119, 120, 121

Isosurface, 44, 45, 46, 47, 48, 49, 50, 62, 63,
64, 65, 67, 74, 100, 101, 103, 113, 122,
137, 138, 150, 178, 179, 183, 188

L
Loop, 69, 135, 144, 160, 161, 162, 163, 164,

165, 168, 169

M
Macro, 19, 160, 163, 164, 169, 185, 186
ManageImageWindow, 142, 144
Map, 79, 90, 101, 102, 108, 109, 110, 113,

166, 167
MapToPlane, 138, 139, 140
Mark, 112, 113, 123, 129, 139, 156, 157,

158, 194, 195, 196
Memory, 69, 100, 108, 116, 124, 146, 150,

159, 169, 170, 173, 174, 175, 176, 177,
188, 196

N
Normal, 139, 166, 188

O
Opacity, 73, 74, 80, 101, 105, 137
OpenGL, 19, 172
Output, 32, 33, 55, 58, 164

P
Pages, 76, 78
Palindrome, 68, 69, 81
Pick, 160, 166, 167, 168, 169
Print, 97, 98, 100, 101, 103, 111, 112, 113,

117, 118, 120, 148, 150, 151, 161, 166,
167, 171, 179

Probe, 160, 166, 167, 169
Process, 21, 33, 34, 60, 90

Program, 15, 19, 20, 31, 32, 39, 40, 41, 59,
62, 66, 74, 75, 81, 83, 84, 85, 91, 97,
164, 169, 170, 171, 172, 175, 176, 180,
188, 192, 194, 197

R
Rank. See Data Model
ReadImage, 29, 144, 145, 175
Receiver, 77, 79
Reduce, 118, 119, 120, 146, 173, 175
Remove, 100, 101, 117, 124, 149, 186, 193
Render, 145, 175, 183, 184, 188
Rotate, 57, 67, 113, 141, 142
Rotation Globe, 57
Route, 141, 142, 143, 144, 160, 169
Rubbersheet, 56, 87, 113, 114, 123, 166

S
Samples, 21, 27, 31, 32, 63, 185, 188, 201,

202
Save, 53, 57, 140, 145, 164

Image, 43, 53, 54, 57, 58, 81, 87
Saved Data, 113
Scalar, 48, 49, 53, 63, 64, 84, 86
Scripting Language, 19, 20, 201
Select, 123, 137, 138, 139, 146, 148, 149,

154, 155, 158, 195, 197
Selector, 126, 137, 138, 144, 151, 152, 153,

195, 197
Sequencer, 53, 59, 67, 68, 69, 71, 75, 81,

82, 85, 88, 90, 114, 115, 144, 146, 148,
149, 158, 162, 164, 169, 174, 181, 183

SetGlobal, 169
SetLocal, 162, 163, 164, 165, 169
Shade, 113, 114
Shape. See Data Model
ShowBox, 137, 140, 172
ShowConnections, 118, 122, 124, 179
Slab, 62, 65, 66, 67, 68, 75, 82, 83, 85, 88,

138
Slice, 67, 138, 139
Special Purpose Object, 104
Statistics, 120
SuperviseState, 145, 185, 187
SuperviseWindow, 145, 185, 186
Switch, 140, 141, 144, 160

I n d e x

206

T
Template, 21, 31, 130, 134, 152, 153
Test Import, 95, 96
Toggle, 140, 141, 142, 143, 165
Transform, 104, 155, 156, 157
Transmitter, 76, 77, 80
Tube, 108, 109, 110, 179, 180

U
Unmark, 112, 113, 114, 123, 129, 156, 157,

158
UpdateCamera, 181, 183

V
Vector, 138, 139
View Control, 50, 56, 137
Visual Program Editor, 20, 31, 39, 48, 55,

58, 60, 62, 63, 71, 78, 85, 87, 97, 100,
102, 115, 138, 139, 140, 141, 150, 151,
157, 161, 164, 170, 171, 172, 174, 176,
177, 192

VisualObject, 102

W
WriteImage, 145

	Cover
	Background
	Table of Contents
	Chapter 1 - How to Use This Material
	Chapter 2 - The Complete Visualization Environment
	Chapter 3 - First Hands-on Demonstration
	Chapter 4 - Second Hands-on Demonstration
	Chapter 5 - First Independent Exercises
	Chapter 6 - Mystery Data
	Chapter 7 - OpenDX Data Model
	Chapter 8 - Manipulating Data
	Chapter 9 - More on Data Import
	Chapter 10 - Network Flow Control
	Chapter 11 - Series, Categorical, and Scattered Data
	Chapter 12 - Looping and Probing
	Chapter 13 - Tips, Tricks and Memory Usage
	Chapter 14 - Camera Animation and Arranging Images
	Chapter 15 - Constructing Native DX File
	Chapter 16 - Conclusion
	Index

